mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-21 16:05:44 -07:00
New puzzle: `pattern'.
[originally from svn r4953]
This commit is contained in:
2
Recipe
2
Recipe
@ -23,6 +23,7 @@ cube : [X] gtk COMMON cube
|
||||
fifteen : [X] gtk COMMON fifteen
|
||||
sixteen : [X] gtk COMMON sixteen
|
||||
rect : [X] gtk COMMON rect
|
||||
pattern : [X] gtk COMMON pattern
|
||||
|
||||
# The Windows Net shouldn't be called `net.exe' since Windows
|
||||
# already has a reasonably important utility program by that name!
|
||||
@ -32,6 +33,7 @@ cube : [G] WINDOWS COMMON cube
|
||||
fifteen : [G] WINDOWS COMMON fifteen
|
||||
sixteen : [G] WINDOWS COMMON sixteen
|
||||
rect : [G] WINDOWS COMMON rect
|
||||
pattern : [G] WINDOWS COMMON pattern
|
||||
|
||||
# The `nullgame' source file is a largely blank one, which contains
|
||||
# all the correct function definitions to compile and link, but
|
||||
|
975
pattern.c
Normal file
975
pattern.c
Normal file
@ -0,0 +1,975 @@
|
||||
/*
|
||||
* pattern.c: the pattern-reconstruction game known as `nonograms'.
|
||||
*
|
||||
* TODO before checkin:
|
||||
*
|
||||
* - make some sort of stab at number-of-numbers judgment
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <assert.h>
|
||||
#include <ctype.h>
|
||||
#include <math.h>
|
||||
|
||||
#include "puzzles.h"
|
||||
|
||||
#define max(x,y) ( (x)>(y) ? (x):(y) )
|
||||
#define min(x,y) ( (x)<(y) ? (x):(y) )
|
||||
|
||||
const char *const game_name = "Pattern";
|
||||
const char *const game_winhelp_topic = "games.pattern";
|
||||
const int game_can_configure = TRUE;
|
||||
|
||||
enum {
|
||||
COL_BACKGROUND,
|
||||
COL_EMPTY,
|
||||
COL_FULL,
|
||||
COL_UNKNOWN,
|
||||
COL_GRID,
|
||||
NCOLOURS
|
||||
};
|
||||
|
||||
#define BORDER 18
|
||||
#define TLBORDER(d) ( (d) / 5 + 2 )
|
||||
#define GUTTER 12
|
||||
#define TILE_SIZE 24
|
||||
|
||||
#define FROMCOORD(d, x) \
|
||||
( ((x) - (BORDER + GUTTER + TILE_SIZE * TLBORDER(d))) / TILE_SIZE )
|
||||
|
||||
#define SIZE(d) (2*BORDER + GUTTER + TILE_SIZE * (TLBORDER(d) + (d)))
|
||||
|
||||
#define TOCOORD(d, x) (BORDER + GUTTER + TILE_SIZE * (TLBORDER(d) + (x)))
|
||||
|
||||
struct game_params {
|
||||
int w, h;
|
||||
};
|
||||
|
||||
#define GRID_UNKNOWN 2
|
||||
#define GRID_FULL 1
|
||||
#define GRID_EMPTY 0
|
||||
|
||||
struct game_state {
|
||||
int w, h;
|
||||
unsigned char *grid;
|
||||
int rowsize;
|
||||
int *rowdata, *rowlen;
|
||||
int completed;
|
||||
};
|
||||
|
||||
#define FLASH_TIME 0.13F
|
||||
|
||||
game_params *default_params(void)
|
||||
{
|
||||
game_params *ret = snew(game_params);
|
||||
|
||||
ret->w = ret->h = 15;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
int game_fetch_preset(int i, char **name, game_params **params)
|
||||
{
|
||||
game_params *ret;
|
||||
char str[80];
|
||||
static const struct { int x, y; } values[] = {
|
||||
{10, 10},
|
||||
{15, 15},
|
||||
{20, 20},
|
||||
{25, 25},
|
||||
{30, 30},
|
||||
};
|
||||
|
||||
if (i < 0 || i >= lenof(values))
|
||||
return FALSE;
|
||||
|
||||
ret = snew(game_params);
|
||||
ret->w = values[i].x;
|
||||
ret->h = values[i].y;
|
||||
|
||||
sprintf(str, "%dx%d", ret->w, ret->h);
|
||||
|
||||
*name = dupstr(str);
|
||||
*params = ret;
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
void free_params(game_params *params)
|
||||
{
|
||||
sfree(params);
|
||||
}
|
||||
|
||||
game_params *dup_params(game_params *params)
|
||||
{
|
||||
game_params *ret = snew(game_params);
|
||||
*ret = *params; /* structure copy */
|
||||
return ret;
|
||||
}
|
||||
|
||||
game_params *decode_params(char const *string)
|
||||
{
|
||||
game_params *ret = default_params();
|
||||
char const *p = string;
|
||||
|
||||
ret->w = atoi(p);
|
||||
while (*p && isdigit(*p)) p++;
|
||||
if (*p == 'x') {
|
||||
p++;
|
||||
ret->h = atoi(p);
|
||||
while (*p && isdigit(*p)) p++;
|
||||
} else {
|
||||
ret->h = ret->w;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
char *encode_params(game_params *params)
|
||||
{
|
||||
char ret[400];
|
||||
int len;
|
||||
|
||||
len = sprintf(ret, "%dx%d", params->w, params->h);
|
||||
assert(len < lenof(ret));
|
||||
ret[len] = '\0';
|
||||
|
||||
return dupstr(ret);
|
||||
}
|
||||
|
||||
config_item *game_configure(game_params *params)
|
||||
{
|
||||
config_item *ret;
|
||||
char buf[80];
|
||||
|
||||
ret = snewn(3, config_item);
|
||||
|
||||
ret[0].name = "Width";
|
||||
ret[0].type = C_STRING;
|
||||
sprintf(buf, "%d", params->w);
|
||||
ret[0].sval = dupstr(buf);
|
||||
ret[0].ival = 0;
|
||||
|
||||
ret[1].name = "Height";
|
||||
ret[1].type = C_STRING;
|
||||
sprintf(buf, "%d", params->h);
|
||||
ret[1].sval = dupstr(buf);
|
||||
ret[1].ival = 0;
|
||||
|
||||
ret[2].name = NULL;
|
||||
ret[2].type = C_END;
|
||||
ret[2].sval = NULL;
|
||||
ret[2].ival = 0;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
game_params *custom_params(config_item *cfg)
|
||||
{
|
||||
game_params *ret = snew(game_params);
|
||||
|
||||
ret->w = atoi(cfg[0].sval);
|
||||
ret->h = atoi(cfg[1].sval);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
char *validate_params(game_params *params)
|
||||
{
|
||||
if (params->w <= 0 && params->h <= 0)
|
||||
return "Width and height must both be greater than zero";
|
||||
if (params->w <= 0)
|
||||
return "Width must be greater than zero";
|
||||
if (params->h <= 0)
|
||||
return "Height must be greater than zero";
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Puzzle generation code.
|
||||
*
|
||||
* For this particular puzzle, it seemed important to me to ensure
|
||||
* a unique solution. I do this the brute-force way, by having a
|
||||
* solver algorithm alongside the generator, and repeatedly
|
||||
* generating a random grid until I find one whose solution is
|
||||
* unique. It turns out that this isn't too onerous on a modern PC
|
||||
* provided you keep grid size below around 30. Any offers of
|
||||
* better algorithms, however, will be very gratefully received.
|
||||
*
|
||||
* Another annoyance of this approach is that it limits the
|
||||
* available puzzles to those solvable by the algorithm I've used.
|
||||
* My algorithm only ever considers a single row or column at any
|
||||
* one time, which means it's incapable of solving the following
|
||||
* difficult example (found by Bella Image around 1995/6, when she
|
||||
* and I were both doing maths degrees):
|
||||
*
|
||||
* 2 1 2 1
|
||||
*
|
||||
* +--+--+--+--+
|
||||
* 1 1 | | | | |
|
||||
* +--+--+--+--+
|
||||
* 2 | | | | |
|
||||
* +--+--+--+--+
|
||||
* 1 | | | | |
|
||||
* +--+--+--+--+
|
||||
* 1 | | | | |
|
||||
* +--+--+--+--+
|
||||
*
|
||||
* Obviously this cannot be solved by a one-row-or-column-at-a-time
|
||||
* algorithm (it would require at least one row or column reading
|
||||
* `2 1', `1 2', `3' or `4' to get started). However, it can be
|
||||
* proved to have a unique solution: if the top left square were
|
||||
* empty, then the only option for the top row would be to fill the
|
||||
* two squares in the 1 columns, which would imply the squares
|
||||
* below those were empty, leaving no place for the 2 in the second
|
||||
* row. Contradiction. Hence the top left square is full, and the
|
||||
* unique solution follows easily from that starting point.
|
||||
*
|
||||
* (The game ID for this puzzle is 4x4:2/1/2/1/1.1/2/1/1 , in case
|
||||
* it's useful to anyone.)
|
||||
*/
|
||||
|
||||
static int float_compare(const void *av, const void *bv)
|
||||
{
|
||||
const float *a = (const float *)av;
|
||||
const float *b = (const float *)bv;
|
||||
if (*a < *b)
|
||||
return -1;
|
||||
else if (*a > *b)
|
||||
return +1;
|
||||
else
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void generate(random_state *rs, int w, int h, unsigned char *retgrid)
|
||||
{
|
||||
float *fgrid;
|
||||
float *fgrid2;
|
||||
int step, i, j;
|
||||
float threshold;
|
||||
|
||||
fgrid = snewn(w*h, float);
|
||||
|
||||
for (i = 0; i < h; i++) {
|
||||
for (j = 0; j < w; j++) {
|
||||
fgrid[i*w+j] = random_upto(rs, 100000000UL) / 100000000.F;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* The above gives a completely random splattering of black and
|
||||
* white cells. We want to gently bias this in favour of _some_
|
||||
* reasonably thick areas of white and black, while retaining
|
||||
* some randomness and fine detail.
|
||||
*
|
||||
* So we evolve the starting grid using a cellular automaton.
|
||||
* Currently, I'm doing something very simple indeed, which is
|
||||
* to set each square to the average of the surrounding nine
|
||||
* cells (or the average of fewer, if we're on a corner).
|
||||
*/
|
||||
for (step = 0; step < 1; step++) {
|
||||
fgrid2 = snewn(w*h, float);
|
||||
|
||||
for (i = 0; i < h; i++) {
|
||||
for (j = 0; j < w; j++) {
|
||||
float sx, xbar;
|
||||
int n, p, q;
|
||||
|
||||
/*
|
||||
* Compute the average of the surrounding cells.
|
||||
*/
|
||||
n = 0;
|
||||
sx = 0.F;
|
||||
for (p = -1; p <= +1; p++) {
|
||||
for (q = -1; q <= +1; q++) {
|
||||
if (i+p < 0 || i+p >= h || j+q < 0 || j+q >= w)
|
||||
continue;
|
||||
n++;
|
||||
sx += fgrid[(i+p)*w+(j+q)];
|
||||
}
|
||||
}
|
||||
xbar = sx / n;
|
||||
|
||||
fgrid2[i*w+j] = xbar;
|
||||
}
|
||||
}
|
||||
|
||||
sfree(fgrid);
|
||||
fgrid = fgrid2;
|
||||
}
|
||||
|
||||
fgrid2 = snewn(w*h, float);
|
||||
memcpy(fgrid2, fgrid, w*h*sizeof(float));
|
||||
qsort(fgrid2, w*h, sizeof(float), float_compare);
|
||||
threshold = fgrid2[w*h/2];
|
||||
sfree(fgrid2);
|
||||
|
||||
for (i = 0; i < h; i++) {
|
||||
for (j = 0; j < w; j++) {
|
||||
retgrid[i*w+j] = (fgrid[i*w+j] > threshold ? GRID_FULL :
|
||||
GRID_EMPTY);
|
||||
}
|
||||
}
|
||||
|
||||
sfree(fgrid);
|
||||
}
|
||||
|
||||
int compute_rowdata(int *ret, unsigned char *start, int len, int step)
|
||||
{
|
||||
int i, n;
|
||||
|
||||
n = 0;
|
||||
|
||||
for (i = 0; i < len; i++) {
|
||||
if (start[i*step] == GRID_UNKNOWN)
|
||||
return -1;
|
||||
|
||||
if (start[i*step] == GRID_FULL) {
|
||||
int runlen = 1;
|
||||
while (i+runlen < len && start[(i+runlen)*step])
|
||||
runlen++;
|
||||
ret[n++] = runlen;
|
||||
i += runlen;
|
||||
}
|
||||
}
|
||||
|
||||
return n;
|
||||
}
|
||||
|
||||
#define UNKNOWN 0
|
||||
#define BLOCK 1
|
||||
#define DOT 2
|
||||
#define STILL_UNKNOWN 3
|
||||
|
||||
static void do_recurse(unsigned char *known, unsigned char *deduced,
|
||||
unsigned char *row, int *data, int len,
|
||||
int freespace, int ndone, int lowest)
|
||||
{
|
||||
int i, j, k;
|
||||
|
||||
if (data[ndone]) {
|
||||
for (i=0; i<=freespace; i++) {
|
||||
j = lowest;
|
||||
for (k=0; k<i; k++) row[j++] = DOT;
|
||||
for (k=0; k<data[ndone]; k++) row[j++] = BLOCK;
|
||||
if (j < len) row[j++] = DOT;
|
||||
do_recurse(known, deduced, row, data, len,
|
||||
freespace-i, ndone+1, j);
|
||||
}
|
||||
} else {
|
||||
for (i=lowest; i<len; i++)
|
||||
row[i] = DOT;
|
||||
for (i=0; i<len; i++)
|
||||
if (known[i] && known[i] != row[i])
|
||||
return;
|
||||
for (i=0; i<len; i++)
|
||||
deduced[i] |= row[i];
|
||||
}
|
||||
}
|
||||
|
||||
static int do_row(unsigned char *known, unsigned char *deduced,
|
||||
unsigned char *row,
|
||||
unsigned char *start, int len, int step, int *data)
|
||||
{
|
||||
int rowlen, i, freespace, done_any;
|
||||
|
||||
freespace = len+1;
|
||||
for (rowlen = 0; data[rowlen]; rowlen++)
|
||||
freespace -= data[rowlen]+1;
|
||||
|
||||
for (i = 0; i < len; i++) {
|
||||
known[i] = start[i*step];
|
||||
deduced[i] = 0;
|
||||
}
|
||||
|
||||
do_recurse(known, deduced, row, data, len, freespace, 0, 0);
|
||||
done_any = FALSE;
|
||||
for (i=0; i<len; i++)
|
||||
if (deduced[i] && deduced[i] != STILL_UNKNOWN && !known[i]) {
|
||||
start[i*step] = deduced[i];
|
||||
done_any = TRUE;
|
||||
}
|
||||
return done_any;
|
||||
}
|
||||
|
||||
static unsigned char *generate_soluble(random_state *rs, int w, int h)
|
||||
{
|
||||
int i, j, done_any, ok, ntries, max;
|
||||
unsigned char *grid, *matrix, *workspace;
|
||||
int *rowdata;
|
||||
|
||||
grid = snewn(w*h, unsigned char);
|
||||
matrix = snewn(w*h, unsigned char);
|
||||
max = max(w, h);
|
||||
workspace = snewn(max*3, unsigned char);
|
||||
rowdata = snewn(max+1, int);
|
||||
|
||||
ntries = 0;
|
||||
|
||||
do {
|
||||
ntries++;
|
||||
|
||||
generate(rs, w, h, grid);
|
||||
|
||||
memset(matrix, 0, w*h);
|
||||
|
||||
do {
|
||||
done_any = 0;
|
||||
for (i=0; i<h; i++) {
|
||||
rowdata[compute_rowdata(rowdata, grid+i*w, w, 1)] = 0;
|
||||
done_any |= do_row(workspace, workspace+max, workspace+2*max,
|
||||
matrix+i*w, w, 1, rowdata);
|
||||
}
|
||||
for (i=0; i<w; i++) {
|
||||
rowdata[compute_rowdata(rowdata, grid+i, h, w)] = 0;
|
||||
done_any |= do_row(workspace, workspace+max, workspace+2*max,
|
||||
matrix+i, h, w, rowdata);
|
||||
}
|
||||
} while (done_any);
|
||||
|
||||
ok = TRUE;
|
||||
for (i=0; i<h; i++) {
|
||||
for (j=0; j<w; j++) {
|
||||
if (matrix[i*w+j] == UNKNOWN)
|
||||
ok = FALSE;
|
||||
}
|
||||
}
|
||||
} while (!ok);
|
||||
|
||||
sfree(matrix);
|
||||
sfree(workspace);
|
||||
sfree(rowdata);
|
||||
return grid;
|
||||
}
|
||||
|
||||
char *new_game_seed(game_params *params, random_state *rs)
|
||||
{
|
||||
unsigned char *grid;
|
||||
int i, j, max, rowlen, *rowdata;
|
||||
char intbuf[80], *seed;
|
||||
int seedlen, seedpos;
|
||||
|
||||
grid = generate_soluble(rs, params->w, params->h);
|
||||
max = max(params->w, params->h);
|
||||
rowdata = snewn(max, int);
|
||||
|
||||
/*
|
||||
* Seed is a slash-separated list of row contents; each row
|
||||
* contents section is a dot-separated list of integers. Row
|
||||
* contents are listed in the order (columns left to right,
|
||||
* then rows top to bottom).
|
||||
*
|
||||
* Simplest way to handle memory allocation is to make two
|
||||
* passes, first computing the seed size and then writing it
|
||||
* out.
|
||||
*/
|
||||
seedlen = 0;
|
||||
for (i = 0; i < params->w + params->h; i++) {
|
||||
if (i < params->w)
|
||||
rowlen = compute_rowdata(rowdata, grid+i, params->h, params->w);
|
||||
else
|
||||
rowlen = compute_rowdata(rowdata, grid+(i-params->w)*params->w,
|
||||
params->w, 1);
|
||||
if (rowlen > 0) {
|
||||
for (j = 0; j < rowlen; j++) {
|
||||
seedlen += 1 + sprintf(intbuf, "%d", rowdata[j]);
|
||||
}
|
||||
} else {
|
||||
seedlen++;
|
||||
}
|
||||
}
|
||||
seed = snewn(seedlen, char);
|
||||
seedpos = 0;
|
||||
for (i = 0; i < params->w + params->h; i++) {
|
||||
if (i < params->w)
|
||||
rowlen = compute_rowdata(rowdata, grid+i, params->h, params->w);
|
||||
else
|
||||
rowlen = compute_rowdata(rowdata, grid+(i-params->w)*params->w,
|
||||
params->w, 1);
|
||||
if (rowlen > 0) {
|
||||
for (j = 0; j < rowlen; j++) {
|
||||
int len = sprintf(seed+seedpos, "%d", rowdata[j]);
|
||||
if (j+1 < rowlen)
|
||||
seed[seedpos + len] = '.';
|
||||
else
|
||||
seed[seedpos + len] = '/';
|
||||
seedpos += len+1;
|
||||
}
|
||||
} else {
|
||||
seed[seedpos++] = '/';
|
||||
}
|
||||
}
|
||||
assert(seedpos == seedlen);
|
||||
assert(seed[seedlen-1] == '/');
|
||||
seed[seedlen-1] = '\0';
|
||||
sfree(rowdata);
|
||||
return seed;
|
||||
}
|
||||
|
||||
char *validate_seed(game_params *params, char *seed)
|
||||
{
|
||||
int i, n, rowspace;
|
||||
char *p;
|
||||
|
||||
for (i = 0; i < params->w + params->h; i++) {
|
||||
if (i < params->w)
|
||||
rowspace = params->h + 1;
|
||||
else
|
||||
rowspace = params->w + 1;
|
||||
|
||||
if (*seed && isdigit((unsigned char)*seed)) {
|
||||
do {
|
||||
p = seed;
|
||||
while (seed && isdigit((unsigned char)*seed)) seed++;
|
||||
n = atoi(p);
|
||||
rowspace -= n+1;
|
||||
|
||||
if (rowspace < 0) {
|
||||
if (i < params->w)
|
||||
return "at least one column contains more numbers than will fit";
|
||||
else
|
||||
return "at least one row contains more numbers than will fit";
|
||||
}
|
||||
} while (*seed++ == '.');
|
||||
} else {
|
||||
seed++; /* expect a slash immediately */
|
||||
}
|
||||
|
||||
if (seed[-1] == '/') {
|
||||
if (i+1 == params->w + params->h)
|
||||
return "too many row/column specifications";
|
||||
} else if (seed[-1] == '\0') {
|
||||
if (i+1 < params->w + params->h)
|
||||
return "too few row/column specifications";
|
||||
} else
|
||||
return "unrecognised character in game specification";
|
||||
}
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
game_state *new_game(game_params *params, char *seed)
|
||||
{
|
||||
int i;
|
||||
char *p;
|
||||
game_state *state = snew(game_state);
|
||||
|
||||
state->w = params->w;
|
||||
state->h = params->h;
|
||||
|
||||
state->grid = snewn(state->w * state->h, unsigned char);
|
||||
memset(state->grid, GRID_UNKNOWN, state->w * state->h);
|
||||
|
||||
state->rowsize = max(state->w, state->h);
|
||||
state->rowdata = snewn(state->rowsize * (state->w + state->h), int);
|
||||
state->rowlen = snewn(state->w + state->h, int);
|
||||
|
||||
state->completed = FALSE;
|
||||
|
||||
for (i = 0; i < params->w + params->h; i++) {
|
||||
state->rowlen[i] = 0;
|
||||
if (*seed && isdigit((unsigned char)*seed)) {
|
||||
do {
|
||||
p = seed;
|
||||
while (seed && isdigit((unsigned char)*seed)) seed++;
|
||||
state->rowdata[state->rowsize * i + state->rowlen[i]++] =
|
||||
atoi(p);
|
||||
} while (*seed++ == '.');
|
||||
} else {
|
||||
seed++; /* expect a slash immediately */
|
||||
}
|
||||
}
|
||||
|
||||
return state;
|
||||
}
|
||||
|
||||
game_state *dup_game(game_state *state)
|
||||
{
|
||||
game_state *ret = snew(game_state);
|
||||
|
||||
ret->w = state->w;
|
||||
ret->h = state->h;
|
||||
|
||||
ret->grid = snewn(ret->w * ret->h, unsigned char);
|
||||
memcpy(ret->grid, state->grid, ret->w * ret->h);
|
||||
|
||||
ret->rowsize = state->rowsize;
|
||||
ret->rowdata = snewn(ret->rowsize * (ret->w + ret->h), int);
|
||||
ret->rowlen = snewn(ret->w + ret->h, int);
|
||||
memcpy(ret->rowdata, state->rowdata,
|
||||
ret->rowsize * (ret->w + ret->h) * sizeof(int));
|
||||
memcpy(ret->rowlen, state->rowlen,
|
||||
(ret->w + ret->h) * sizeof(int));
|
||||
|
||||
ret->completed = state->completed;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
void free_game(game_state *state)
|
||||
{
|
||||
sfree(state->rowdata);
|
||||
sfree(state->rowlen);
|
||||
sfree(state->grid);
|
||||
sfree(state);
|
||||
}
|
||||
|
||||
struct game_ui {
|
||||
int dragging;
|
||||
int drag_start_x;
|
||||
int drag_start_y;
|
||||
int drag_end_x;
|
||||
int drag_end_y;
|
||||
int drag, release, state;
|
||||
};
|
||||
|
||||
game_ui *new_ui(game_state *state)
|
||||
{
|
||||
game_ui *ret;
|
||||
|
||||
ret = snew(game_ui);
|
||||
ret->dragging = FALSE;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
void free_ui(game_ui *ui)
|
||||
{
|
||||
sfree(ui);
|
||||
}
|
||||
|
||||
game_state *make_move(game_state *from, game_ui *ui, int x, int y, int button)
|
||||
{
|
||||
game_state *ret;
|
||||
|
||||
x = FROMCOORD(from->w, x);
|
||||
y = FROMCOORD(from->h, y);
|
||||
|
||||
if (x >= 0 && x < from->w && y >= 0 && y < from->h &&
|
||||
(button == LEFT_BUTTON || button == RIGHT_BUTTON ||
|
||||
button == MIDDLE_BUTTON)) {
|
||||
|
||||
ui->dragging = TRUE;
|
||||
|
||||
if (button == LEFT_BUTTON) {
|
||||
ui->drag = LEFT_DRAG;
|
||||
ui->release = LEFT_RELEASE;
|
||||
ui->state = GRID_FULL;
|
||||
} else if (button == RIGHT_BUTTON) {
|
||||
ui->drag = RIGHT_DRAG;
|
||||
ui->release = RIGHT_RELEASE;
|
||||
ui->state = GRID_EMPTY;
|
||||
} else /* if (button == MIDDLE_BUTTON) */ {
|
||||
ui->drag = MIDDLE_DRAG;
|
||||
ui->release = MIDDLE_RELEASE;
|
||||
ui->state = GRID_UNKNOWN;
|
||||
}
|
||||
|
||||
ui->drag_start_x = ui->drag_end_x = x;
|
||||
ui->drag_start_y = ui->drag_end_y = y;
|
||||
|
||||
return from; /* UI activity occurred */
|
||||
}
|
||||
|
||||
if (ui->dragging && button == ui->drag) {
|
||||
/*
|
||||
* There doesn't seem much point in allowing a rectangle
|
||||
* drag; people will generally only want to drag a single
|
||||
* horizontal or vertical line, so we make that easy by
|
||||
* snapping to it.
|
||||
*
|
||||
* Exception: if we're _middle_-button dragging to tag
|
||||
* things as UNKNOWN, we may well want to trash an entire
|
||||
* area and start over!
|
||||
*/
|
||||
if (ui->state != GRID_UNKNOWN) {
|
||||
if (abs(x - ui->drag_start_x) > abs(y - ui->drag_start_y))
|
||||
y = ui->drag_start_y;
|
||||
else
|
||||
x = ui->drag_start_x;
|
||||
}
|
||||
|
||||
if (x < 0) x = 0;
|
||||
if (y < 0) y = 0;
|
||||
if (x >= from->w) x = from->w - 1;
|
||||
if (y >= from->h) y = from->h - 1;
|
||||
|
||||
ui->drag_end_x = x;
|
||||
ui->drag_end_y = y;
|
||||
|
||||
return from; /* UI activity occurred */
|
||||
}
|
||||
|
||||
if (ui->dragging && button == ui->release) {
|
||||
int x1, x2, y1, y2, xx, yy;
|
||||
int move_needed = FALSE;
|
||||
|
||||
x1 = min(ui->drag_start_x, ui->drag_end_x);
|
||||
x2 = max(ui->drag_start_x, ui->drag_end_x);
|
||||
y1 = min(ui->drag_start_y, ui->drag_end_y);
|
||||
y2 = max(ui->drag_start_y, ui->drag_end_y);
|
||||
|
||||
for (yy = y1; yy <= y2; yy++)
|
||||
for (xx = x1; xx <= x2; xx++)
|
||||
if (from->grid[yy * from->w + xx] != ui->state)
|
||||
move_needed = TRUE;
|
||||
|
||||
ui->dragging = FALSE;
|
||||
|
||||
if (move_needed) {
|
||||
ret = dup_game(from);
|
||||
for (yy = y1; yy <= y2; yy++)
|
||||
for (xx = x1; xx <= x2; xx++)
|
||||
ret->grid[yy * ret->w + xx] = ui->state;
|
||||
|
||||
/*
|
||||
* An actual change, so check to see if we've completed
|
||||
* the game.
|
||||
*/
|
||||
if (!ret->completed) {
|
||||
int *rowdata = snewn(ret->rowsize, int);
|
||||
int i, len;
|
||||
|
||||
ret->completed = TRUE;
|
||||
|
||||
for (i=0; i<ret->w; i++) {
|
||||
len = compute_rowdata(rowdata,
|
||||
ret->grid+i, ret->h, ret->w);
|
||||
if (len != ret->rowlen[i] ||
|
||||
memcmp(ret->rowdata+i*ret->rowsize, rowdata,
|
||||
len * sizeof(int))) {
|
||||
ret->completed = FALSE;
|
||||
break;
|
||||
}
|
||||
}
|
||||
for (i=0; i<ret->h; i++) {
|
||||
len = compute_rowdata(rowdata,
|
||||
ret->grid+i*ret->w, ret->w, 1);
|
||||
if (len != ret->rowlen[i+ret->w] ||
|
||||
memcmp(ret->rowdata+(i+ret->w)*ret->rowsize, rowdata,
|
||||
len * sizeof(int))) {
|
||||
ret->completed = FALSE;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
sfree(rowdata);
|
||||
}
|
||||
|
||||
return ret;
|
||||
} else
|
||||
return from; /* UI activity occurred */
|
||||
}
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Drawing routines.
|
||||
*/
|
||||
|
||||
struct game_drawstate {
|
||||
int started;
|
||||
int w, h;
|
||||
unsigned char *visible;
|
||||
};
|
||||
|
||||
void game_size(game_params *params, int *x, int *y)
|
||||
{
|
||||
*x = SIZE(params->w);
|
||||
*y = SIZE(params->h);
|
||||
}
|
||||
|
||||
float *game_colours(frontend *fe, game_state *state, int *ncolours)
|
||||
{
|
||||
float *ret = snewn(3 * NCOLOURS, float);
|
||||
|
||||
frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
|
||||
|
||||
ret[COL_GRID * 3 + 0] = 0.3F;
|
||||
ret[COL_GRID * 3 + 1] = 0.3F;
|
||||
ret[COL_GRID * 3 + 2] = 0.3F;
|
||||
|
||||
ret[COL_UNKNOWN * 3 + 0] = 0.5F;
|
||||
ret[COL_UNKNOWN * 3 + 1] = 0.5F;
|
||||
ret[COL_UNKNOWN * 3 + 2] = 0.5F;
|
||||
|
||||
ret[COL_FULL * 3 + 0] = 0.0F;
|
||||
ret[COL_FULL * 3 + 1] = 0.0F;
|
||||
ret[COL_FULL * 3 + 2] = 0.0F;
|
||||
|
||||
ret[COL_EMPTY * 3 + 0] = 1.0F;
|
||||
ret[COL_EMPTY * 3 + 1] = 1.0F;
|
||||
ret[COL_EMPTY * 3 + 2] = 1.0F;
|
||||
|
||||
*ncolours = NCOLOURS;
|
||||
return ret;
|
||||
}
|
||||
|
||||
game_drawstate *game_new_drawstate(game_state *state)
|
||||
{
|
||||
struct game_drawstate *ds = snew(struct game_drawstate);
|
||||
|
||||
ds->started = FALSE;
|
||||
ds->w = state->w;
|
||||
ds->h = state->h;
|
||||
ds->visible = snewn(ds->w * ds->h, unsigned char);
|
||||
memset(ds->visible, 255, ds->w * ds->h);
|
||||
|
||||
return ds;
|
||||
}
|
||||
|
||||
void game_free_drawstate(game_drawstate *ds)
|
||||
{
|
||||
sfree(ds->visible);
|
||||
sfree(ds);
|
||||
}
|
||||
|
||||
static void grid_square(frontend *fe, game_drawstate *ds,
|
||||
int y, int x, int state)
|
||||
{
|
||||
int xl, xr, yt, yb;
|
||||
|
||||
draw_rect(fe, TOCOORD(ds->w, x), TOCOORD(ds->h, y),
|
||||
TILE_SIZE, TILE_SIZE, COL_GRID);
|
||||
|
||||
xl = (x % 5 == 0 ? 1 : 0);
|
||||
yt = (y % 5 == 0 ? 1 : 0);
|
||||
xr = (x % 5 == 4 || x == ds->w-1 ? 1 : 0);
|
||||
yb = (y % 5 == 4 || y == ds->h-1 ? 1 : 0);
|
||||
|
||||
draw_rect(fe, TOCOORD(ds->w, x) + 1 + xl, TOCOORD(ds->h, y) + 1 + yt,
|
||||
TILE_SIZE - xl - xr - 1, TILE_SIZE - yt - yb - 1,
|
||||
(state == GRID_FULL ? COL_FULL :
|
||||
state == GRID_EMPTY ? COL_EMPTY : COL_UNKNOWN));
|
||||
|
||||
draw_update(fe, TOCOORD(ds->w, x), TOCOORD(ds->h, y),
|
||||
TILE_SIZE, TILE_SIZE);
|
||||
}
|
||||
|
||||
void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
|
||||
game_state *state, int dir, game_ui *ui,
|
||||
float animtime, float flashtime)
|
||||
{
|
||||
int i, j;
|
||||
int x1, x2, y1, y2;
|
||||
|
||||
if (!ds->started) {
|
||||
/*
|
||||
* The initial contents of the window are not guaranteed
|
||||
* and can vary with front ends. To be on the safe side,
|
||||
* all games should start by drawing a big background-
|
||||
* colour rectangle covering the whole window.
|
||||
*/
|
||||
draw_rect(fe, 0, 0, SIZE(ds->w), SIZE(ds->h), COL_BACKGROUND);
|
||||
|
||||
/*
|
||||
* Draw the numbers.
|
||||
*/
|
||||
for (i = 0; i < ds->w + ds->h; i++) {
|
||||
int rowlen = state->rowlen[i];
|
||||
int *rowdata = state->rowdata + state->rowsize * i;
|
||||
int nfit;
|
||||
|
||||
/*
|
||||
* Normally I space the numbers out by the same
|
||||
* distance as the tile size. However, if there are
|
||||
* more numbers than available spaces, I have to squash
|
||||
* them up a bit.
|
||||
*/
|
||||
nfit = max(rowlen, TLBORDER(ds->h))-1;
|
||||
assert(nfit > 0);
|
||||
|
||||
for (j = 0; j < rowlen; j++) {
|
||||
int x, y;
|
||||
char str[80];
|
||||
|
||||
if (i < ds->w) {
|
||||
x = TOCOORD(ds->w, i);
|
||||
y = BORDER + TILE_SIZE * (TLBORDER(ds->h)-1);
|
||||
y -= ((rowlen-j-1)*TILE_SIZE) * (TLBORDER(ds->h)-1) / nfit;
|
||||
} else {
|
||||
y = TOCOORD(ds->h, i - ds->w);
|
||||
x = BORDER + TILE_SIZE * (TLBORDER(ds->w)-1);
|
||||
x -= ((rowlen-j-1)*TILE_SIZE) * (TLBORDER(ds->h)-1) / nfit;
|
||||
}
|
||||
|
||||
sprintf(str, "%d", rowdata[j]);
|
||||
draw_text(fe, x+TILE_SIZE/2, y+TILE_SIZE/2, FONT_VARIABLE,
|
||||
TILE_SIZE/2, ALIGN_HCENTRE | ALIGN_VCENTRE,
|
||||
COL_FULL, str); /* FIXME: COL_TEXT */
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Draw the grid outline.
|
||||
*/
|
||||
draw_rect(fe, TOCOORD(ds->w, 0) - 1, TOCOORD(ds->h, 0) - 1,
|
||||
ds->w * TILE_SIZE + 2, ds->h * TILE_SIZE + 2,
|
||||
COL_GRID);
|
||||
|
||||
ds->started = TRUE;
|
||||
|
||||
draw_update(fe, 0, 0, SIZE(ds->w), SIZE(ds->h));
|
||||
}
|
||||
|
||||
if (ui->dragging) {
|
||||
x1 = min(ui->drag_start_x, ui->drag_end_x);
|
||||
x2 = max(ui->drag_start_x, ui->drag_end_x);
|
||||
y1 = min(ui->drag_start_y, ui->drag_end_y);
|
||||
y2 = max(ui->drag_start_y, ui->drag_end_y);
|
||||
} else {
|
||||
x1 = x2 = y1 = y2 = -1; /* placate gcc warnings */
|
||||
}
|
||||
|
||||
/*
|
||||
* Now draw any grid squares which have changed since last
|
||||
* redraw.
|
||||
*/
|
||||
for (i = 0; i < ds->h; i++) {
|
||||
for (j = 0; j < ds->w; j++) {
|
||||
int val;
|
||||
|
||||
/*
|
||||
* Work out what state this square should be drawn in,
|
||||
* taking any current drag operation into account.
|
||||
*/
|
||||
if (ui->dragging && x1 <= j && j <= x2 && y1 <= i && i <= y2)
|
||||
val = ui->state;
|
||||
else
|
||||
val = state->grid[i * state->w + j];
|
||||
|
||||
/*
|
||||
* Briefly invert everything twice during a completion
|
||||
* flash.
|
||||
*/
|
||||
if (flashtime > 0 &&
|
||||
(flashtime <= FLASH_TIME/3 || flashtime >= FLASH_TIME*2/3) &&
|
||||
val != GRID_UNKNOWN)
|
||||
val = (GRID_FULL ^ GRID_EMPTY) ^ val;
|
||||
|
||||
if (ds->visible[i * ds->w + j] != val) {
|
||||
grid_square(fe, ds, i, j, val);
|
||||
ds->visible[i * ds->w + j] = val;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
float game_anim_length(game_state *oldstate, game_state *newstate, int dir)
|
||||
{
|
||||
return 0.0F;
|
||||
}
|
||||
|
||||
float game_flash_length(game_state *oldstate, game_state *newstate, int dir)
|
||||
{
|
||||
if (!oldstate->completed && newstate->completed)
|
||||
return FLASH_TIME;
|
||||
return 0.0F;
|
||||
}
|
||||
|
||||
int game_wants_statusbar(void)
|
||||
{
|
||||
return FALSE;
|
||||
}
|
44
puzzles.but
44
puzzles.but
@ -22,7 +22,7 @@ This is a collection of small one-player puzzle games.
|
||||
reserved. You may distribute this documentation under the MIT licence.
|
||||
See \k{licence} for the licence text in full.
|
||||
|
||||
\versionid $Id: puzzles.but,v 1.3 2004/08/16 13:17:40 simon Exp $
|
||||
\versionid $Id$
|
||||
|
||||
|
||||
\C{intro} Introduction
|
||||
@ -467,13 +467,53 @@ generation of Net (see \k{net}) with the movement of Sixteen (see
|
||||
into place you have to slide them into place by moving a whole row at
|
||||
a time.
|
||||
|
||||
|
||||
As in Sixteen, \I{controls, for Netslide}control is with the mouse.
|
||||
See \k{sixteen-controls}.
|
||||
|
||||
\I{parameters, for Netslide}Game parameters are the same as for Net
|
||||
(see \k{net-params}).
|
||||
|
||||
\C{pattern} \i{Pattern}
|
||||
|
||||
\cfg{winhelp-topic}{games.pattern}
|
||||
|
||||
You have a grid of squares, which must all be filled in either black
|
||||
or white. Beside each row of the grid are listed the lengths of the
|
||||
runs of black squares on that row; above each column are listed the
|
||||
lengths of the runs of black squares in that column. Your aim is to
|
||||
fill in the entire grid black or white.
|
||||
|
||||
I first saw this puzzle form around 1995, under the name
|
||||
\q{nonograms}. I've seen it in various places since then, under
|
||||
different names.
|
||||
|
||||
Normally, puzzles of this type turn out to be a meaningful picture
|
||||
of something once you've solved them. However, since this version
|
||||
generates the puzzles automatically, they will just look like random
|
||||
groupings of squares. (One user has suggested that this is actually
|
||||
a \e{good} thing, since it prevents you from guessing the colour of
|
||||
squares based on the picture, and forces you to use logic instead.)
|
||||
The advantage, though, is that you never run out of them.
|
||||
|
||||
\H{pattern-controls} \i{Pattern controls}
|
||||
|
||||
This game is played with the mouse.
|
||||
|
||||
Left-click in a square to colour it black. Right-click to colour it
|
||||
white. If you make a mistake, you can middle-click, or hold down
|
||||
Shift while clicking with any button, to colour the square in the
|
||||
default grey (meaning \q{undecided}) again.
|
||||
|
||||
You can click and drag with the left or right mouse button to colour
|
||||
a vertical or horizontal line of squares black or white at a time
|
||||
(respectively). If you click and drag with the middle button, or
|
||||
with Shift held down, you can colour a whole rectangle of squares
|
||||
grey.
|
||||
|
||||
\H{pattern-parameters} \I{parameters, for Pattern}Pattern parameters
|
||||
|
||||
The only options available from the \q{Custom...} option on the \q{Type}
|
||||
menu are \e{Width} and \e{Height}, which are self-explanatory.
|
||||
|
||||
\A{licence} \I{MIT licence}\ii{Licence}
|
||||
|
||||
|
Reference in New Issue
Block a user