mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-21 08:01:30 -07:00
Add hinting feature to Fifteen (press 'h' for a hint).
This is really an incremental solver. It alternates between solving rows and solving columns. Each row and column is solved one piece at a time. Except for some temporary trickery with the last two pieces in a row or column, once a piece is solved it is never moved again. (On non-square grids it first solves some rows or some columns until the unsolved part is a square, then starts alternating.)
This commit is contained in:

committed by
Simon Tatham

parent
5ddb011a57
commit
12fabc4add
214
fifteen.c
214
fifteen.c
@ -473,6 +473,217 @@ static int flip_cursor(int button)
|
|||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static void next_move_3x2(int ax, int ay, int bx, int by,
|
||||||
|
int gx, int gy, int *dx, int *dy)
|
||||||
|
{
|
||||||
|
/* When w = 3 and h = 2 and the tile going in the top left corner
|
||||||
|
* is at (ax, ay) and the tile going in the bottom left corner is
|
||||||
|
* at (bx, by) and the blank tile is at (gx, gy), how do you move? */
|
||||||
|
|
||||||
|
/* Hard-coded shortest solutions. Sorry. */
|
||||||
|
static const unsigned char move[120] = {
|
||||||
|
1,2,0,1,2,2,
|
||||||
|
2,0,0,2,0,0,
|
||||||
|
0,0,2,0,2,0,
|
||||||
|
0,0,0,2,0,2,
|
||||||
|
2,0,0,0,2,0,
|
||||||
|
|
||||||
|
0,3,0,1,1,1,
|
||||||
|
3,0,3,2,1,2,
|
||||||
|
2,1,1,0,1,0,
|
||||||
|
2,1,2,1,0,1,
|
||||||
|
1,2,0,2,1,2,
|
||||||
|
|
||||||
|
0,1,3,1,3,0,
|
||||||
|
1,3,1,3,0,3,
|
||||||
|
0,0,3,3,0,0,
|
||||||
|
0,0,0,1,2,1,
|
||||||
|
3,0,0,1,1,1,
|
||||||
|
|
||||||
|
3,1,1,1,3,0,
|
||||||
|
1,1,1,1,1,1,
|
||||||
|
1,3,1,1,3,0,
|
||||||
|
1,1,3,3,1,3,
|
||||||
|
1,3,0,0,0,0
|
||||||
|
};
|
||||||
|
static const struct { int dx, dy; } d[4] = {{+1,0},{-1,0},{0,+1},{0,-1}};
|
||||||
|
|
||||||
|
int ea = 3*ay + ax, eb = 3*by + bx, eg = 3*gy + gx, v;
|
||||||
|
if (eb > ea) --eb;
|
||||||
|
if (eg > ea) --eg;
|
||||||
|
if (eg > eb) --eg;
|
||||||
|
v = move[ea + eb*6 + eg*5*6];
|
||||||
|
*dx = d[v].dx;
|
||||||
|
*dy = d[v].dy;
|
||||||
|
}
|
||||||
|
|
||||||
|
static void next_move(int nx, int ny, int ox, int oy, int gx, int gy,
|
||||||
|
int tx, int ty, int w, int *dx, int *dy)
|
||||||
|
{
|
||||||
|
const int to_tile_x = (gx < nx ? +1 : -1);
|
||||||
|
const int to_goal_x = (gx < tx ? +1 : -1);
|
||||||
|
const int gap_x_on_goal_side = ((nx-tx) * (nx-gx) > 0);
|
||||||
|
|
||||||
|
assert (nx != tx || ny != ty); /* not already in place */
|
||||||
|
assert (nx != gx || ny != gy); /* not placing the gap */
|
||||||
|
assert (ty <= ny); /* because we're greedy (and flipping) */
|
||||||
|
assert (ty <= gy); /* because we're greedy (and flipping) */
|
||||||
|
|
||||||
|
/* TODO: define a termination function. Idea: 0 if solved, or
|
||||||
|
* the number of moves to solve the next piece plus the number of
|
||||||
|
* further unsolved pieces times an upper bound on the number of
|
||||||
|
* moves required to solve any piece. If such a function can be
|
||||||
|
* found, we have (termination && (termination => correctness)).
|
||||||
|
* The catch is our temporary disturbance of 2x3 corners. */
|
||||||
|
|
||||||
|
/* handles end-of-row, when 3 and 4 are in the top right 2x3 box */
|
||||||
|
if (tx == w - 2 &&
|
||||||
|
ny <= ty + 2 && (nx == tx || nx == tx + 1) &&
|
||||||
|
oy <= ty + 2 && (ox == tx || ox == tx + 1) &&
|
||||||
|
gy <= ty + 2 && (gx == tx || gx == tx + 1))
|
||||||
|
{
|
||||||
|
next_move_3x2(oy - ty, tx + 1 - ox,
|
||||||
|
ny - ty, tx + 1 - nx,
|
||||||
|
gy - ty, tx + 1 - gx, dy, dx);
|
||||||
|
*dx *= -1;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (tx == w - 1) {
|
||||||
|
if (ny <= ty + 2 && (nx == tx || nx == tx - 1) &&
|
||||||
|
gy <= ty + 2 && (gx == tx || gx == tx - 1)) {
|
||||||
|
next_move_3x2(ny - ty, tx - nx, 0, 1, gy - ty, tx - gx, dy, dx);
|
||||||
|
*dx *= -1;
|
||||||
|
} else if (gy == ty)
|
||||||
|
*dy = +1;
|
||||||
|
else if (nx != tx || ny != ty + 1) {
|
||||||
|
next_move((w - 1) - nx, ny, -1, -1, (w - 1) - gx, gy,
|
||||||
|
0, ty + 1, -1, dx, dy);
|
||||||
|
*dx *= -1;
|
||||||
|
} else if (gx == nx)
|
||||||
|
*dy = -1;
|
||||||
|
else
|
||||||
|
*dx = +1;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* note that *dy = -1 is unsafe when gy = ty + 1 and gx < tx */
|
||||||
|
if (gy < ny)
|
||||||
|
if (nx == gx || (gy == ty && gx == tx))
|
||||||
|
*dy = +1;
|
||||||
|
else if (!gap_x_on_goal_side)
|
||||||
|
*dx = to_tile_x;
|
||||||
|
else if (ny - ty > abs(nx - tx))
|
||||||
|
*dx = to_tile_x;
|
||||||
|
else *dy = +1;
|
||||||
|
|
||||||
|
else if (gy == ny)
|
||||||
|
if (nx == tx) /* then we know ny > ty */
|
||||||
|
if (gx > nx || ny > ty + 1)
|
||||||
|
*dy = -1; /* ... so this is safe */
|
||||||
|
else
|
||||||
|
*dy = +1;
|
||||||
|
else if (gap_x_on_goal_side)
|
||||||
|
*dx = to_tile_x;
|
||||||
|
else if (gy == ty || (gy == ty + 1 && gx < tx))
|
||||||
|
*dy = +1;
|
||||||
|
else
|
||||||
|
*dy = -1;
|
||||||
|
|
||||||
|
else if (nx == tx) /* gy > ny */
|
||||||
|
if (gx > nx)
|
||||||
|
*dy = -1;
|
||||||
|
else
|
||||||
|
*dx = +1;
|
||||||
|
else if (gx == nx)
|
||||||
|
*dx = to_goal_x;
|
||||||
|
else if (gap_x_on_goal_side)
|
||||||
|
if (gy == ty + 1 && gx < tx)
|
||||||
|
*dx = to_tile_x;
|
||||||
|
else
|
||||||
|
*dy = -1;
|
||||||
|
|
||||||
|
else if (ny - ty > abs(nx - tx))
|
||||||
|
*dy = -1;
|
||||||
|
else
|
||||||
|
*dx = to_tile_x;
|
||||||
|
}
|
||||||
|
|
||||||
|
static int compute_hint(const game_state *state, int *out_x, int *out_y)
|
||||||
|
{
|
||||||
|
/* The overall solving process is this:
|
||||||
|
* 1. Find the next piece to be put in its place
|
||||||
|
* 2. Move it diagonally towards its place
|
||||||
|
* 3. Move it horizontally or vertically towards its place
|
||||||
|
* (Modulo the last two tiles at the end of each row/column)
|
||||||
|
*/
|
||||||
|
|
||||||
|
int gx = X(state, state->gap_pos);
|
||||||
|
int gy = Y(state, state->gap_pos);
|
||||||
|
|
||||||
|
int tx, ty, nx, ny, ox, oy, /* {target,next,next2}_{x,y} */ i;
|
||||||
|
int dx = 0, dy = 0;
|
||||||
|
|
||||||
|
/* 1. Find the next piece
|
||||||
|
* if (there are no more unfinished columns than rows) {
|
||||||
|
* fill the top-most row, left to right
|
||||||
|
* } else { fill the left-most column, top to bottom }
|
||||||
|
*/
|
||||||
|
const int w = state->w, h = state->h, n = w*h;
|
||||||
|
int next_piece = 0, next_piece_2 = 0, solr = 0, solc = 0;
|
||||||
|
int unsolved_rows = h, unsolved_cols = w;
|
||||||
|
|
||||||
|
assert(out_x);
|
||||||
|
assert(out_y);
|
||||||
|
|
||||||
|
while (solr < h && solc < w) {
|
||||||
|
int start, step, stop;
|
||||||
|
if (unsolved_cols <= unsolved_rows)
|
||||||
|
start = solr*w + solc, step = 1, stop = unsolved_cols;
|
||||||
|
else
|
||||||
|
start = solr*w + solc, step = w, stop = unsolved_rows;
|
||||||
|
for (i = 0; i < stop; ++i) {
|
||||||
|
const int j = start + i*step;
|
||||||
|
if (state->tiles[j] != j + 1) {
|
||||||
|
next_piece = j + 1;
|
||||||
|
next_piece_2 = next_piece + step;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (i < stop) break;
|
||||||
|
|
||||||
|
(unsolved_cols <= unsolved_rows)
|
||||||
|
? (++solr, --unsolved_rows)
|
||||||
|
: (++solc, --unsolved_cols);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (next_piece == n)
|
||||||
|
return FALSE;
|
||||||
|
|
||||||
|
/* 2, 3. Move the next piece towards its place */
|
||||||
|
|
||||||
|
/* gx, gy already set */
|
||||||
|
tx = X(state, next_piece - 1); /* where we're going */
|
||||||
|
ty = Y(state, next_piece - 1);
|
||||||
|
for (i = 0; i < n && state->tiles[i] != next_piece; ++i);
|
||||||
|
nx = X(state, i); /* where we're at */
|
||||||
|
ny = Y(state, i);
|
||||||
|
for (i = 0; i < n && state->tiles[i] != next_piece_2; ++i);
|
||||||
|
ox = X(state, i);
|
||||||
|
oy = Y(state, i);
|
||||||
|
|
||||||
|
if (unsolved_cols <= unsolved_rows)
|
||||||
|
next_move(nx, ny, ox, oy, gx, gy, tx, ty, w, &dx, &dy);
|
||||||
|
else
|
||||||
|
next_move(ny, nx, oy, ox, gy, gx, ty, tx, h, &dy, &dx);
|
||||||
|
|
||||||
|
assert (dx || dy);
|
||||||
|
|
||||||
|
*out_x = gx + dx;
|
||||||
|
*out_y = gy + dy;
|
||||||
|
return TRUE;
|
||||||
|
}
|
||||||
|
|
||||||
static char *interpret_move(const game_state *state, game_ui *ui,
|
static char *interpret_move(const game_state *state, game_ui *ui,
|
||||||
const game_drawstate *ds,
|
const game_drawstate *ds,
|
||||||
int x, int y, int button)
|
int x, int y, int button)
|
||||||
@ -498,6 +709,9 @@ static char *interpret_move(const game_state *state, game_ui *ui,
|
|||||||
if (invert_cursor)
|
if (invert_cursor)
|
||||||
button = flip_cursor(button); /* undoes the first flip */
|
button = flip_cursor(button); /* undoes the first flip */
|
||||||
move_cursor(button, &nx, &ny, state->w, state->h, FALSE);
|
move_cursor(button, &nx, &ny, state->w, state->h, FALSE);
|
||||||
|
} else if ((button == 'h' || button == 'H') && !state->completed) {
|
||||||
|
if (!compute_hint(state, &nx, &ny))
|
||||||
|
return NULL; /* shouldn't happen, since ^^we^^checked^^ */
|
||||||
} else
|
} else
|
||||||
return NULL; /* no move */
|
return NULL; /* no move */
|
||||||
|
|
||||||
|
@ -617,6 +617,10 @@ mouse pointer.
|
|||||||
The arrow keys will move a tile adjacent to the space in the direction
|
The arrow keys will move a tile adjacent to the space in the direction
|
||||||
indicated (moving the space in the \e{opposite} direction).
|
indicated (moving the space in the \e{opposite} direction).
|
||||||
|
|
||||||
|
Pressing \q{h} will make a suggested move. Pressing \q{h} enough
|
||||||
|
times will solve the game, but it may scramble your progress while
|
||||||
|
doing so.
|
||||||
|
|
||||||
(All the actions described in \k{common-actions} are also available.)
|
(All the actions described in \k{common-actions} are also available.)
|
||||||
|
|
||||||
\H{fifteen-params} \I{parameters, for Fifteen}Fifteen parameters
|
\H{fifteen-params} \I{parameters, for Fifteen}Fifteen parameters
|
||||||
|
Reference in New Issue
Block a user