mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-21 08:01:30 -07:00
James H has helpfully provided yet more silly operators for the -A
mode. I think some user-defined ruleset configuration options are now required... [originally from svn r8092]
This commit is contained in:
@ -130,7 +130,7 @@ struct sets {
|
||||
#define OPFLAG_NEEDS_CONCAT 1
|
||||
#define OPFLAG_KEEPS_CONCAT 2
|
||||
#define OPFLAG_UNARY 4
|
||||
#define OPFLAG_UNARYPFX 8
|
||||
#define OPFLAG_UNARYPREFIX 8
|
||||
|
||||
struct operation {
|
||||
/*
|
||||
@ -308,6 +308,26 @@ static int perform_exact_div(int *a, int *b, int *output)
|
||||
return (output[1] == 1);
|
||||
}
|
||||
|
||||
static int max_p10(int n, int *p10_r)
|
||||
{
|
||||
/*
|
||||
* Find the smallest power of ten strictly greater than n.
|
||||
*
|
||||
* Special case: we must return at least 10, even if n is
|
||||
* zero. (This is because this function is used for finding
|
||||
* the power of ten by which to multiply a number being
|
||||
* concatenated to the front of n, and concatenating 1 to 0
|
||||
* should yield 10 and not 1.)
|
||||
*/
|
||||
int p10 = 10;
|
||||
while (p10 <= (INT_MAX/10) && p10 <= n)
|
||||
p10 *= 10;
|
||||
if (p10 > INT_MAX/10)
|
||||
return FALSE; /* integer overflow */
|
||||
*p10_r = p10;
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
static int perform_concat(int *a, int *b, int *output)
|
||||
{
|
||||
int t1, t2, p10;
|
||||
@ -338,18 +358,8 @@ static int perform_concat(int *a, int *b, int *output)
|
||||
if (a[0] == 0)
|
||||
return FALSE;
|
||||
|
||||
/*
|
||||
* Find the smallest power of ten strictly greater than b. This
|
||||
* is the power of ten by which we'll multiply a.
|
||||
*
|
||||
* Special case: we must multiply a by at least 10, even if b
|
||||
* is zero.
|
||||
*/
|
||||
p10 = 10;
|
||||
while (p10 <= (INT_MAX/10) && p10 <= b[0])
|
||||
p10 *= 10;
|
||||
if (p10 > INT_MAX/10)
|
||||
return FALSE; /* integer overflow */
|
||||
if (!max_p10(b[0], &p10)) return FALSE;
|
||||
|
||||
MUL(t1, p10, a[0]);
|
||||
ADD(t2, t1, b[0]);
|
||||
OUT(output, t2, 1);
|
||||
@ -370,7 +380,7 @@ static int perform_concat(int *a, int *b, int *output)
|
||||
|
||||
static int perform_exp(int *a, int *b, int *output)
|
||||
{
|
||||
int an, ad, xn, xd, limit, t, i;
|
||||
int an, ad, xn, xd;
|
||||
|
||||
/*
|
||||
* Exponentiation is permitted if the result is rational. This
|
||||
@ -384,8 +394,8 @@ static int perform_exp(int *a, int *b, int *output)
|
||||
* - then we multiply by itself (numerator-of-b) times.
|
||||
*/
|
||||
if (b[1] > 1) {
|
||||
an = 0.5 + pow(a[0], 1.0/b[1]);
|
||||
ad = 0.5 + pow(a[1], 1.0/b[1]);
|
||||
an = (int)(0.5 + pow(a[0], 1.0/b[1]));
|
||||
ad = (int)(0.5 + pow(a[1], 1.0/b[1]));
|
||||
IPOW(xn, an, b[1]);
|
||||
IPOW(xd, ad, b[1]);
|
||||
if (xn != a[0] || xd != a[1])
|
||||
@ -435,6 +445,72 @@ static int perform_factorial(int *a, int *b, int *output)
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
static int perform_decimal(int *a, int *b, int *output)
|
||||
{
|
||||
int p10;
|
||||
|
||||
/*
|
||||
* Add a decimal digit to the front of a number;
|
||||
* fail if it's not an integer.
|
||||
* So, 1 --> 0.1, 15 --> 0.15,
|
||||
* or, rather, 1 --> 1/10, 15 --> 15/100,
|
||||
* x --> x / (smallest power of 10 > than x)
|
||||
*
|
||||
*/
|
||||
if (a[1] != 1) return FALSE;
|
||||
|
||||
if (!max_p10(a[0], &p10)) return FALSE;
|
||||
|
||||
OUT(output, a[0], p10);
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
static int perform_recur(int *a, int *b, int *output)
|
||||
{
|
||||
int p10, tn, bn;
|
||||
|
||||
/*
|
||||
* This converts a number like .4 to .44444..., or .45 to .45454...
|
||||
* The input number must be -1 < a < 1.
|
||||
*
|
||||
* Calculate the smallest power of 10 that divides the denominator exactly,
|
||||
* returning if no such power of 10 exists. Then multiply the numerator
|
||||
* up accordingly, and the new denominator becomes that power of 10 - 1.
|
||||
*/
|
||||
if (abs(a[0]) >= abs(a[1])) return FALSE; /* -1 < a < 1 */
|
||||
|
||||
p10 = 10;
|
||||
while (p10 <= (INT_MAX/10)) {
|
||||
if ((a[1] <= p10) && (p10 % a[1]) == 0) goto found;
|
||||
p10 *= 10;
|
||||
}
|
||||
return FALSE;
|
||||
found:
|
||||
tn = a[0] * (p10 / a[1]);
|
||||
bn = p10 - 1;
|
||||
|
||||
OUT(output, tn, bn);
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
static int perform_root(int *a, int *b, int *output)
|
||||
{
|
||||
/*
|
||||
* A root B is: 1 iff a == 0
|
||||
* B ^ (1/A) otherwise
|
||||
*/
|
||||
int ainv[2], res;
|
||||
|
||||
if (a[0] == 0) {
|
||||
OUT(output, 1, 1);
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
OUT(ainv, a[1], a[0]);
|
||||
res = perform_exp(b, ainv, output);
|
||||
return res;
|
||||
}
|
||||
|
||||
const static struct operation op_add = {
|
||||
TRUE, "+", "+", 0, 10, 0, TRUE, perform_add
|
||||
};
|
||||
@ -460,6 +536,15 @@ const static struct operation op_exp = {
|
||||
const static struct operation op_factorial = {
|
||||
TRUE, "!", "!", OPFLAG_UNARY, 40, 0, FALSE, perform_factorial
|
||||
};
|
||||
const static struct operation op_decimal = {
|
||||
TRUE, ".", ".", OPFLAG_UNARY | OPFLAG_UNARYPREFIX | OPFLAG_NEEDS_CONCAT | OPFLAG_KEEPS_CONCAT, 50, 0, FALSE, perform_decimal
|
||||
};
|
||||
const static struct operation op_recur = {
|
||||
TRUE, "...", "recur", OPFLAG_UNARY | OPFLAG_NEEDS_CONCAT, 45, 2, FALSE, perform_recur
|
||||
};
|
||||
const static struct operation op_root = {
|
||||
TRUE, "v~", "root", 0, 30, 1, FALSE, perform_root
|
||||
};
|
||||
|
||||
/*
|
||||
* In Countdown, divisions resulting in fractions are disallowed.
|
||||
@ -500,7 +585,8 @@ const static struct rules rules_four4s = {
|
||||
* exponentiation, and also silly unary operators like factorials.
|
||||
*/
|
||||
const static struct operation *const ops_anythinggoes[] = {
|
||||
&op_add, &op_mul, &op_sub, &op_div, &op_concat, &op_exp, &op_factorial, NULL
|
||||
&op_add, &op_mul, &op_sub, &op_div, &op_concat, &op_exp, &op_factorial,
|
||||
&op_decimal, &op_recur, &op_root, NULL
|
||||
};
|
||||
const static struct rules rules_anythinggoes = {
|
||||
ops_anythinggoes, TRUE
|
||||
@ -744,7 +830,7 @@ static struct sets *do_search(int ninputs, int *inputs,
|
||||
for (i = 0; i < ss->nnumbers; i++) {
|
||||
printf(" %d", ss->numbers[2*i]);
|
||||
if (ss->numbers[2*i+1] != 1)
|
||||
printf("/%d", ss->numbers[2*i]+1);
|
||||
printf("/%d", ss->numbers[2*i+1]);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
@ -809,11 +895,16 @@ static struct sets *do_search(int ninputs, int *inputs,
|
||||
addset(s, sn, multiple, ss, pa, po, pb, pr);
|
||||
if (debug) {
|
||||
int i;
|
||||
printf(" %d %s %d ->", pa, ops[po]->dbgtext, pb);
|
||||
if (ops[k]->flags & OPFLAG_UNARYPREFIX)
|
||||
printf(" %s %d ->", ops[po]->dbgtext, pa);
|
||||
else if (ops[k]->flags & OPFLAG_UNARY)
|
||||
printf(" %d %s ->", pa, ops[po]->dbgtext);
|
||||
else
|
||||
printf(" %d %s %d ->", pa, ops[po]->dbgtext, pb);
|
||||
for (i = 0; i < sn->nnumbers; i++) {
|
||||
printf(" %d", sn->numbers[2*i]);
|
||||
if (sn->numbers[2*i+1] != 1)
|
||||
printf("/%d", sn->numbers[2*i]+1);
|
||||
printf("/%d", sn->numbers[2*i+1]);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
@ -895,13 +986,13 @@ void print_recurse_inner(struct sets *s, struct set *ss,
|
||||
if (parens)
|
||||
putchar('(');
|
||||
|
||||
if (s->ops[a->po]->flags & OPFLAG_UNARYPFX)
|
||||
if (s->ops[a->po]->flags & OPFLAG_UNARYPREFIX)
|
||||
for (op = s->ops[a->po]->text; *op; op++)
|
||||
putchar(*op);
|
||||
|
||||
print_recurse(s, a->prev, pathindex, a->pa, thispri, thisassoc, 1);
|
||||
|
||||
if (!(s->ops[a->po]->flags & OPFLAG_UNARYPFX))
|
||||
if (!(s->ops[a->po]->flags & OPFLAG_UNARYPREFIX))
|
||||
for (op = s->ops[a->po]->text; *op; op++)
|
||||
putchar(*op);
|
||||
|
||||
|
Reference in New Issue
Block a user