mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-21 08:01:30 -07:00
Another new puzzle! This one isn't particularly deep or complex
(solving it only requires matrix inversion over GF(2), whereas several of the other puzzles in this collection are NP-complete in principle), but it's a fun enough thing to play with and is non-trivial to do in your head - especially on the hardest preset. [originally from svn r5967]
This commit is contained in:
5
Recipe
5
Recipe
@ -18,9 +18,10 @@ COMMON = midend misc malloc random version
|
||||
NET = net tree234
|
||||
NETSLIDE = netslide tree234
|
||||
MINES = mines tree234
|
||||
FLIP = flip tree234
|
||||
|
||||
ALL = list NET NETSLIDE cube fifteen sixteen rect pattern solo twiddle
|
||||
+ MINES samegame
|
||||
+ MINES samegame FLIP
|
||||
|
||||
net : [X] gtk COMMON NET
|
||||
netslide : [X] gtk COMMON NETSLIDE
|
||||
@ -33,6 +34,7 @@ solo : [X] gtk COMMON solo
|
||||
twiddle : [X] gtk COMMON twiddle
|
||||
mines : [X] gtk COMMON MINES
|
||||
samegame : [X] gtk COMMON samegame
|
||||
flip : [X] gtk COMMON FLIP
|
||||
|
||||
# The Windows Net shouldn't be called `net.exe' since Windows
|
||||
# already has a reasonably important utility program by that name!
|
||||
@ -47,6 +49,7 @@ solo : [G] WINDOWS COMMON solo
|
||||
twiddle : [G] WINDOWS COMMON twiddle
|
||||
mines : [G] WINDOWS COMMON MINES
|
||||
samegame : [G] WINDOWS COMMON samegame
|
||||
flip : [G] WINDOWS COMMON FLIP
|
||||
|
||||
# Mac OS X unified application containing all the puzzles.
|
||||
Puzzles : [MX] osx osx.icns osx-info.plist COMMON ALL
|
||||
|
974
flip.c
Normal file
974
flip.c
Normal file
@ -0,0 +1,974 @@
|
||||
/*
|
||||
* flip.c: Puzzle involving lighting up all the squares on a grid,
|
||||
* where each click toggles an overlapping set of lights.
|
||||
*/
|
||||
|
||||
/*
|
||||
* TODO:
|
||||
*
|
||||
* - `Solve' could mark the squares you must click to solve
|
||||
* + infrastructure change: this would mean the Solve operation
|
||||
* must receive the current game_state as well as the initial
|
||||
* one, which I've been wondering about for a while
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <assert.h>
|
||||
#include <ctype.h>
|
||||
#include <math.h>
|
||||
|
||||
#include "puzzles.h"
|
||||
#include "tree234.h"
|
||||
|
||||
enum {
|
||||
COL_BACKGROUND,
|
||||
COL_WRONG,
|
||||
COL_RIGHT,
|
||||
COL_GRID,
|
||||
COL_DIAG,
|
||||
NCOLOURS
|
||||
};
|
||||
|
||||
#define PREFERRED_TILE_SIZE 48
|
||||
#define TILE_SIZE (ds->tilesize)
|
||||
#define BORDER (TILE_SIZE / 2)
|
||||
#define COORD(x) ( (x) * TILE_SIZE + BORDER )
|
||||
#define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 )
|
||||
|
||||
#define FLASH_FRAME 0.07F
|
||||
|
||||
/*
|
||||
* Possible ways to decide which lights are toggled by each click.
|
||||
* Essentially, each of these describes a means of inventing a
|
||||
* matrix over GF(2).
|
||||
*/
|
||||
enum {
|
||||
CROSSES, RANDOM
|
||||
};
|
||||
|
||||
struct game_params {
|
||||
int w, h;
|
||||
int matrix_type;
|
||||
};
|
||||
|
||||
/*
|
||||
* This structure is shared between all the game_states describing
|
||||
* a particular game, so it's reference-counted.
|
||||
*/
|
||||
struct matrix {
|
||||
int refcount;
|
||||
unsigned char *matrix; /* array of (w*h) by (w*h) */
|
||||
};
|
||||
|
||||
struct game_state {
|
||||
int w, h;
|
||||
int moves, completed;
|
||||
unsigned char *grid; /* array of w*h */
|
||||
struct matrix *matrix;
|
||||
};
|
||||
|
||||
static game_params *default_params(void)
|
||||
{
|
||||
game_params *ret = snew(game_params);
|
||||
|
||||
ret->w = ret->h = 5;
|
||||
ret->matrix_type = CROSSES;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static const struct game_params flip_presets[] = {
|
||||
{3, 3, CROSSES},
|
||||
{4, 4, CROSSES},
|
||||
{5, 5, CROSSES},
|
||||
{3, 3, RANDOM},
|
||||
{4, 4, RANDOM},
|
||||
{5, 5, RANDOM},
|
||||
};
|
||||
|
||||
static int game_fetch_preset(int i, char **name, game_params **params)
|
||||
{
|
||||
game_params *ret;
|
||||
char str[80];
|
||||
|
||||
if (i < 0 || i >= lenof(flip_presets))
|
||||
return FALSE;
|
||||
|
||||
ret = snew(game_params);
|
||||
*ret = flip_presets[i];
|
||||
|
||||
sprintf(str, "%dx%d %s", ret->w, ret->h,
|
||||
ret->matrix_type == CROSSES ? "Crosses" : "Random");
|
||||
|
||||
*name = dupstr(str);
|
||||
*params = ret;
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
static void free_params(game_params *params)
|
||||
{
|
||||
sfree(params);
|
||||
}
|
||||
|
||||
static game_params *dup_params(game_params *params)
|
||||
{
|
||||
game_params *ret = snew(game_params);
|
||||
*ret = *params; /* structure copy */
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void decode_params(game_params *ret, char const *string)
|
||||
{
|
||||
ret->w = ret->h = atoi(string);
|
||||
while (*string && isdigit(*string)) string++;
|
||||
if (*string == 'x') {
|
||||
string++;
|
||||
ret->h = atoi(string);
|
||||
while (*string && isdigit(*string)) string++;
|
||||
}
|
||||
if (*string == 'r') {
|
||||
string++;
|
||||
ret->matrix_type = RANDOM;
|
||||
} else if (*string == 'c') {
|
||||
string++;
|
||||
ret->matrix_type = CROSSES;
|
||||
}
|
||||
}
|
||||
|
||||
static char *encode_params(game_params *params, int full)
|
||||
{
|
||||
char data[256];
|
||||
|
||||
sprintf(data, "%dx%d%s", params->w, params->h,
|
||||
!full ? "" : params->matrix_type == CROSSES ? "c" : "r");
|
||||
|
||||
return dupstr(data);
|
||||
}
|
||||
|
||||
static config_item *game_configure(game_params *params)
|
||||
{
|
||||
config_item *ret = snewn(4, config_item);
|
||||
char buf[80];
|
||||
|
||||
ret[0].name = "Width";
|
||||
ret[0].type = C_STRING;
|
||||
sprintf(buf, "%d", params->w);
|
||||
ret[0].sval = dupstr(buf);
|
||||
ret[0].ival = 0;
|
||||
|
||||
ret[1].name = "Height";
|
||||
ret[1].type = C_STRING;
|
||||
sprintf(buf, "%d", params->h);
|
||||
ret[1].sval = dupstr(buf);
|
||||
ret[1].ival = 0;
|
||||
|
||||
ret[2].name = "Shape type";
|
||||
ret[2].type = C_CHOICES;
|
||||
ret[2].sval = ":Crosses:Random";
|
||||
ret[2].ival = params->matrix_type;
|
||||
|
||||
ret[3].name = NULL;
|
||||
ret[3].type = C_END;
|
||||
ret[3].sval = NULL;
|
||||
ret[3].ival = 0;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static game_params *custom_params(config_item *cfg)
|
||||
{
|
||||
game_params *ret = snew(game_params);
|
||||
|
||||
ret->w = atoi(cfg[0].sval);
|
||||
ret->h = atoi(cfg[1].sval);
|
||||
ret->matrix_type = cfg[2].ival;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static char *validate_params(game_params *params)
|
||||
{
|
||||
if (params->w <= 0 || params->h <= 0)
|
||||
return "Width and height must both be greater than zero";
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static char *encode_bitmap(unsigned char *bmp, int len)
|
||||
{
|
||||
int slen = (len + 3) / 4;
|
||||
char *ret;
|
||||
int i;
|
||||
|
||||
ret = snewn(slen + 1, char);
|
||||
for (i = 0; i < slen; i++) {
|
||||
int j, v;
|
||||
v = 0;
|
||||
for (j = 0; j < 4; j++)
|
||||
if (i*4+j < len && bmp[i*4+j])
|
||||
v |= 8 >> j;
|
||||
ret[i] = "0123456789abcdef"[v];
|
||||
}
|
||||
ret[slen] = '\0';
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void decode_bitmap(unsigned char *bmp, int len, char *hex)
|
||||
{
|
||||
int slen = (len + 3) / 4;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < slen; i++) {
|
||||
int j, v, c = hex[i];
|
||||
if (c >= '0' && c <= '9')
|
||||
v = c - '0';
|
||||
else if (c >= 'A' && c <= 'F')
|
||||
v = c - 'A' + 10;
|
||||
else if (c >= 'a' && c <= 'f')
|
||||
v = c - 'a' + 10;
|
||||
else
|
||||
v = 0; /* shouldn't happen */
|
||||
for (j = 0; j < 4; j++) {
|
||||
if (i*4+j < len) {
|
||||
if (v & (8 >> j))
|
||||
bmp[i*4+j] = 1;
|
||||
else
|
||||
bmp[i*4+j] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Structure used during random matrix generation, and a compare
|
||||
* function to permit storage in a tree234.
|
||||
*/
|
||||
struct sq {
|
||||
int cx, cy; /* coords of click square */
|
||||
int x, y; /* coords of output square */
|
||||
/*
|
||||
* Number of click squares which currently affect this output
|
||||
* square.
|
||||
*/
|
||||
int coverage;
|
||||
/*
|
||||
* Number of output squares currently affected by this click
|
||||
* square.
|
||||
*/
|
||||
int ominosize;
|
||||
};
|
||||
#define SORT(field) do { \
|
||||
if (a->field < b->field) \
|
||||
return -1; \
|
||||
else if (a->field > b->field) \
|
||||
return +1; \
|
||||
} while (0)
|
||||
/*
|
||||
* Compare function for choosing the next square to add. We must
|
||||
* sort by coverage, then by omino size, then everything else.
|
||||
*/
|
||||
static int sqcmp_pick(void *av, void *bv)
|
||||
{
|
||||
struct sq *a = (struct sq *)av;
|
||||
struct sq *b = (struct sq *)bv;
|
||||
SORT(coverage);
|
||||
SORT(ominosize);
|
||||
SORT(cy);
|
||||
SORT(cx);
|
||||
SORT(y);
|
||||
SORT(x);
|
||||
return 0;
|
||||
}
|
||||
/*
|
||||
* Compare function for adjusting the coverage figures after a
|
||||
* change. We sort first by coverage and output square, then by
|
||||
* everything else.
|
||||
*/
|
||||
static int sqcmp_cov(void *av, void *bv)
|
||||
{
|
||||
struct sq *a = (struct sq *)av;
|
||||
struct sq *b = (struct sq *)bv;
|
||||
SORT(coverage);
|
||||
SORT(y);
|
||||
SORT(x);
|
||||
SORT(ominosize);
|
||||
SORT(cy);
|
||||
SORT(cx);
|
||||
return 0;
|
||||
}
|
||||
/*
|
||||
* Compare function for adjusting the omino sizes after a change.
|
||||
* We sort first by omino size and input square, then by everything
|
||||
* else.
|
||||
*/
|
||||
static int sqcmp_osize(void *av, void *bv)
|
||||
{
|
||||
struct sq *a = (struct sq *)av;
|
||||
struct sq *b = (struct sq *)bv;
|
||||
SORT(ominosize);
|
||||
SORT(cy);
|
||||
SORT(cx);
|
||||
SORT(coverage);
|
||||
SORT(y);
|
||||
SORT(x);
|
||||
return 0;
|
||||
}
|
||||
static void addsq(tree234 *t, int w, int h, int cx, int cy,
|
||||
int x, int y, unsigned char *matrix)
|
||||
{
|
||||
int wh = w * h;
|
||||
struct sq *sq;
|
||||
int i;
|
||||
|
||||
if (x < 0 || x >= w || y < 0 || y >= h)
|
||||
return;
|
||||
if (abs(x-cx) > 1 || abs(y-cy) > 1)
|
||||
return;
|
||||
if (matrix[(cy*w+cx) * wh + y*w+x])
|
||||
return;
|
||||
|
||||
sq = snew(struct sq);
|
||||
sq->cx = cx;
|
||||
sq->cy = cy;
|
||||
sq->x = x;
|
||||
sq->y = y;
|
||||
sq->coverage = sq->ominosize = 0;
|
||||
for (i = 0; i < wh; i++) {
|
||||
if (matrix[i * wh + y*w+x])
|
||||
sq->coverage++;
|
||||
if (matrix[(cy*w+cx) * wh + i])
|
||||
sq->ominosize++;
|
||||
}
|
||||
|
||||
if (add234(t, sq) != sq)
|
||||
sfree(sq); /* already there */
|
||||
}
|
||||
static void addneighbours(tree234 *t, int w, int h, int cx, int cy,
|
||||
int x, int y, unsigned char *matrix)
|
||||
{
|
||||
addsq(t, w, h, cx, cy, x-1, y, matrix);
|
||||
addsq(t, w, h, cx, cy, x+1, y, matrix);
|
||||
addsq(t, w, h, cx, cy, x, y-1, matrix);
|
||||
addsq(t, w, h, cx, cy, x, y+1, matrix);
|
||||
}
|
||||
|
||||
static char *new_game_desc(game_params *params, random_state *rs,
|
||||
game_aux_info **aux, int interactive)
|
||||
{
|
||||
int w = params->w, h = params->h, wh = w * h;
|
||||
int i, j;
|
||||
unsigned char *matrix, *grid;
|
||||
char *mbmp, *gbmp, *ret;
|
||||
|
||||
matrix = snewn(wh * wh, unsigned char);
|
||||
grid = snewn(wh, unsigned char);
|
||||
|
||||
/*
|
||||
* First set up the matrix.
|
||||
*/
|
||||
switch (params->matrix_type) {
|
||||
case CROSSES:
|
||||
for (i = 0; i < wh; i++) {
|
||||
int ix = i % w, iy = i / w;
|
||||
for (j = 0; j < wh; j++) {
|
||||
int jx = j % w, jy = j / w;
|
||||
if (abs(jx - ix) + abs(jy - iy) <= 1)
|
||||
matrix[i*wh+j] = 1;
|
||||
else
|
||||
matrix[i*wh+j] = 0;
|
||||
}
|
||||
}
|
||||
break;
|
||||
case RANDOM:
|
||||
while (1) {
|
||||
tree234 *pick, *cov, *osize;
|
||||
int limit;
|
||||
|
||||
pick = newtree234(sqcmp_pick);
|
||||
cov = newtree234(sqcmp_cov);
|
||||
osize = newtree234(sqcmp_osize);
|
||||
|
||||
memset(matrix, 0, wh * wh);
|
||||
for (i = 0; i < wh; i++) {
|
||||
matrix[i*wh+i] = 1;
|
||||
}
|
||||
|
||||
for (i = 0; i < wh; i++) {
|
||||
int ix = i % w, iy = i / w;
|
||||
addneighbours(pick, w, h, ix, iy, ix, iy, matrix);
|
||||
addneighbours(cov, w, h, ix, iy, ix, iy, matrix);
|
||||
addneighbours(osize, w, h, ix, iy, ix, iy, matrix);
|
||||
}
|
||||
|
||||
/*
|
||||
* Repeatedly choose a square to add to the matrix,
|
||||
* until we have enough. I'll arbitrarily choose our
|
||||
* limit to be the same as the total number of set bits
|
||||
* in the crosses matrix.
|
||||
*/
|
||||
limit = 4*wh - 2*(w+h); /* centre squares already present */
|
||||
|
||||
while (limit-- > 0) {
|
||||
struct sq *sq, *sq2, sqlocal;
|
||||
int k;
|
||||
|
||||
/*
|
||||
* Find the lowest element in the pick tree.
|
||||
*/
|
||||
sq = index234(pick, 0);
|
||||
|
||||
/*
|
||||
* Find the highest element with the same coverage
|
||||
* and omino size, by setting all other elements to
|
||||
* lots.
|
||||
*/
|
||||
sqlocal = *sq;
|
||||
sqlocal.cx = sqlocal.cy = sqlocal.x = sqlocal.y = wh;
|
||||
sq = findrelpos234(pick, &sqlocal, NULL, REL234_LT, &k);
|
||||
assert(sq != 0);
|
||||
|
||||
/*
|
||||
* Pick at random from all elements up to k of the
|
||||
* pick tree.
|
||||
*/
|
||||
k = random_upto(rs, k+1);
|
||||
sq = delpos234(pick, k);
|
||||
del234(cov, sq);
|
||||
del234(osize, sq);
|
||||
|
||||
/*
|
||||
* Add this square to the matrix.
|
||||
*/
|
||||
matrix[(sq->cy * w + sq->cx) * wh + (sq->y * w + sq->x)] = 1;
|
||||
|
||||
/*
|
||||
* Correct the matrix coverage field of any sq
|
||||
* which points at this output square.
|
||||
*/
|
||||
sqlocal = *sq;
|
||||
sqlocal.cx = sqlocal.cy = sqlocal.ominosize = -1;
|
||||
while ((sq2 = findrel234(cov, &sqlocal, NULL,
|
||||
REL234_GT)) != NULL &&
|
||||
sq2->coverage == sq->coverage &&
|
||||
sq2->x == sq->x && sq2->y == sq->y) {
|
||||
del234(pick, sq2);
|
||||
del234(cov, sq2);
|
||||
del234(osize, sq2);
|
||||
sq2->coverage++;
|
||||
add234(pick, sq2);
|
||||
add234(cov, sq2);
|
||||
add234(osize, sq2);
|
||||
}
|
||||
|
||||
/*
|
||||
* Correct the omino size field of any sq which
|
||||
* points at this input square.
|
||||
*/
|
||||
sqlocal = *sq;
|
||||
sqlocal.x = sqlocal.y = sqlocal.coverage = -1;
|
||||
while ((sq2 = findrel234(osize, &sqlocal, NULL,
|
||||
REL234_GT)) != NULL &&
|
||||
sq2->ominosize == sq->ominosize &&
|
||||
sq2->cx == sq->cx && sq2->cy == sq->cy) {
|
||||
del234(pick, sq2);
|
||||
del234(cov, sq2);
|
||||
del234(osize, sq2);
|
||||
sq2->ominosize++;
|
||||
add234(pick, sq2);
|
||||
add234(cov, sq2);
|
||||
add234(osize, sq2);
|
||||
}
|
||||
|
||||
/*
|
||||
* The sq we actually picked out of the tree is
|
||||
* finished with; but its neighbours now need to
|
||||
* appear.
|
||||
*/
|
||||
addneighbours(pick, w,h, sq->cx,sq->cy, sq->x,sq->y, matrix);
|
||||
addneighbours(cov, w,h, sq->cx,sq->cy, sq->x,sq->y, matrix);
|
||||
addneighbours(osize, w,h, sq->cx,sq->cy, sq->x,sq->y, matrix);
|
||||
sfree(sq);
|
||||
}
|
||||
|
||||
/*
|
||||
* Free all remaining sq structures.
|
||||
*/
|
||||
{
|
||||
struct sq *sq;
|
||||
while ((sq = delpos234(pick, 0)) != NULL)
|
||||
sfree(sq);
|
||||
}
|
||||
freetree234(pick);
|
||||
freetree234(cov);
|
||||
freetree234(osize);
|
||||
|
||||
/*
|
||||
* Finally, check to see if any two matrix rows are
|
||||
* exactly identical. If so, this is not an acceptable
|
||||
* matrix, and we give up and go round again.
|
||||
*
|
||||
* I haven't been immediately able to think of a
|
||||
* plausible means of algorithmically avoiding this
|
||||
* situation (by, say, making a small perturbation to
|
||||
* an offending matrix), so for the moment I'm just
|
||||
* going to deal with it by throwing the whole thing
|
||||
* away. I suspect this will lead to scalability
|
||||
* problems (since most of the things happening in
|
||||
* these matrices are local, the chance of _some_
|
||||
* neighbourhood having two identical regions will
|
||||
* increase with the grid area), but so far this puzzle
|
||||
* seems to be really hard at large sizes so I'm not
|
||||
* massively worried yet. Anyone needs this done
|
||||
* better, they're welcome to submit a patch.
|
||||
*/
|
||||
for (i = 0; i < wh; i++) {
|
||||
for (j = 0; j < wh; j++)
|
||||
if (i != j &&
|
||||
!memcmp(matrix + i * wh, matrix + j * wh, wh))
|
||||
break;
|
||||
if (j < wh)
|
||||
break;
|
||||
}
|
||||
if (i == wh)
|
||||
break; /* no matches found */
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
/*
|
||||
* Now invent a random initial set of lights.
|
||||
*
|
||||
* At first glance it looks as if it might be quite difficult
|
||||
* to choose equiprobably from all soluble light sets. After
|
||||
* all, soluble light sets are those in the image space of the
|
||||
* transformation matrix; so first we'd have to identify that
|
||||
* space and its dimension, then pick a random coordinate for
|
||||
* each basis vector and recombine. Lot of fiddly matrix
|
||||
* algebra there.
|
||||
*
|
||||
* However, vector spaces are nicely orthogonal and relieve us
|
||||
* of all that difficulty. For every point in the image space,
|
||||
* there are precisely as many points in the input space that
|
||||
* map to it as there are elements in the kernel of the
|
||||
* transformation matrix (because adding any kernel element to
|
||||
* the input does not change the output, and because any two
|
||||
* inputs mapping to the same output must differ by an element
|
||||
* of the kernel because that's what the kernel _is_); and
|
||||
* these cosets are all disjoint (obviously, since no input
|
||||
* point can map to more than one output point) and cover the
|
||||
* whole space (equally obviously, because no input point can
|
||||
* map to fewer than one output point!).
|
||||
*
|
||||
* So the input space contains the same number of points for
|
||||
* each point in the output space; thus, we can simply choose
|
||||
* equiprobably from elements of the _input_ space, and filter
|
||||
* the result through the transformation matrix in the obvious
|
||||
* way, and we thereby guarantee to choose equiprobably from
|
||||
* all the output points. Phew!
|
||||
*/
|
||||
while (1) {
|
||||
memset(grid, 0, wh);
|
||||
for (i = 0; i < wh; i++) {
|
||||
int v = random_upto(rs, 2);
|
||||
if (v) {
|
||||
for (j = 0; j < wh; j++)
|
||||
grid[j] ^= matrix[i*wh+j];
|
||||
}
|
||||
}
|
||||
/*
|
||||
* Ensure we don't have the starting state already!
|
||||
*/
|
||||
for (i = 0; i < wh; i++)
|
||||
if (grid[i])
|
||||
break;
|
||||
if (i < wh)
|
||||
break;
|
||||
}
|
||||
|
||||
/*
|
||||
* Now encode the matrix and the starting grid as a game
|
||||
* description. We'll do this by concatenating two great big
|
||||
* hex bitmaps.
|
||||
*/
|
||||
mbmp = encode_bitmap(matrix, wh*wh);
|
||||
gbmp = encode_bitmap(grid, wh);
|
||||
ret = snewn(strlen(mbmp) + strlen(gbmp) + 2, char);
|
||||
sprintf(ret, "%s,%s", mbmp, gbmp);
|
||||
sfree(mbmp);
|
||||
sfree(gbmp);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void game_free_aux_info(game_aux_info *aux)
|
||||
{
|
||||
assert(!"Shouldn't happen");
|
||||
}
|
||||
|
||||
static char *validate_desc(game_params *params, char *desc)
|
||||
{
|
||||
int w = params->w, h = params->h, wh = w * h;
|
||||
int mlen = (wh*wh+3)/4, glen = (wh+3)/4;
|
||||
|
||||
if (strspn(desc, "0123456789abcdefABCDEF") != mlen)
|
||||
return "Matrix description is wrong length";
|
||||
if (desc[mlen] != ',')
|
||||
return "Expected comma after matrix description";
|
||||
if (strspn(desc+mlen+1, "0123456789abcdefABCDEF") != glen)
|
||||
return "Grid description is wrong length";
|
||||
if (desc[mlen+1+glen])
|
||||
return "Unexpected data after grid description";
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static game_state *new_game(midend_data *me, game_params *params, char *desc)
|
||||
{
|
||||
int w = params->w, h = params->h, wh = w * h;
|
||||
int mlen = (wh*wh+3)/4;
|
||||
|
||||
game_state *state = snew(game_state);
|
||||
|
||||
state->w = w;
|
||||
state->h = h;
|
||||
state->completed = FALSE;
|
||||
state->moves = 0;
|
||||
state->matrix = snew(struct matrix);
|
||||
state->matrix->refcount = 1;
|
||||
state->matrix->matrix = snewn(wh*wh, unsigned char);
|
||||
decode_bitmap(state->matrix->matrix, wh*wh, desc);
|
||||
state->grid = snewn(wh, unsigned char);
|
||||
decode_bitmap(state->grid, wh, desc + mlen + 1);
|
||||
|
||||
return state;
|
||||
}
|
||||
|
||||
static game_state *dup_game(game_state *state)
|
||||
{
|
||||
game_state *ret = snew(game_state);
|
||||
|
||||
ret->w = state->w;
|
||||
ret->h = state->h;
|
||||
ret->completed = state->completed;
|
||||
ret->moves = state->moves;
|
||||
ret->matrix = state->matrix;
|
||||
state->matrix->refcount++;
|
||||
ret->grid = snewn(ret->w * ret->h, unsigned char);
|
||||
memcpy(ret->grid, state->grid, ret->w * ret->h);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void free_game(game_state *state)
|
||||
{
|
||||
sfree(state->grid);
|
||||
if (--state->matrix->refcount <= 0) {
|
||||
sfree(state->matrix->matrix);
|
||||
sfree(state->matrix);
|
||||
}
|
||||
sfree(state);
|
||||
}
|
||||
|
||||
static game_state *solve_game(game_state *state, game_aux_info *aux,
|
||||
char **error)
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static char *game_text_format(game_state *state)
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static game_ui *new_ui(game_state *state)
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static void free_ui(game_ui *ui)
|
||||
{
|
||||
}
|
||||
|
||||
static void game_changed_state(game_ui *ui, game_state *oldstate,
|
||||
game_state *newstate)
|
||||
{
|
||||
}
|
||||
|
||||
struct game_drawstate {
|
||||
int w, h, started;
|
||||
unsigned char *tiles;
|
||||
int tilesize;
|
||||
};
|
||||
|
||||
static game_state *make_move(game_state *from, game_ui *ui, game_drawstate *ds,
|
||||
int x, int y, int button)
|
||||
{
|
||||
int w = from->w, h = from->h, wh = w * h;
|
||||
game_state *ret;
|
||||
|
||||
if (button == LEFT_BUTTON) {
|
||||
int tx = FROMCOORD(x), ty = FROMCOORD(y);
|
||||
if (tx >= 0 && tx < w && ty >= 0 && ty < h) {
|
||||
int i, j, done;
|
||||
|
||||
ret = dup_game(from);
|
||||
|
||||
if (!ret->completed)
|
||||
ret->moves++;
|
||||
|
||||
i = ty * w + tx;
|
||||
|
||||
done = TRUE;
|
||||
for (j = 0; j < wh; j++) {
|
||||
ret->grid[j] ^= ret->matrix->matrix[i*wh+j];
|
||||
if (ret->grid[j] & 1)
|
||||
done = FALSE;
|
||||
}
|
||||
if (done)
|
||||
ret->completed = TRUE;
|
||||
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Drawing routines.
|
||||
*/
|
||||
|
||||
static void game_size(game_params *params, game_drawstate *ds,
|
||||
int *x, int *y, int expand)
|
||||
{
|
||||
int tsx, tsy, ts;
|
||||
/*
|
||||
* Each window dimension equals the tile size times one more
|
||||
* than the grid dimension (the border is half the width of the
|
||||
* tiles).
|
||||
*/
|
||||
tsx = *x / (params->w + 1);
|
||||
tsy = *y / (params->h + 1);
|
||||
ts = min(tsx, tsy);
|
||||
if (expand)
|
||||
ds->tilesize = ts;
|
||||
else
|
||||
ds->tilesize = min(ts, PREFERRED_TILE_SIZE);
|
||||
|
||||
*x = TILE_SIZE * params->w + 2 * BORDER;
|
||||
*y = TILE_SIZE * params->h + 2 * BORDER;
|
||||
}
|
||||
|
||||
static float *game_colours(frontend *fe, game_state *state, int *ncolours)
|
||||
{
|
||||
float *ret = snewn(3 * NCOLOURS, float);
|
||||
|
||||
frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
|
||||
|
||||
ret[COL_WRONG * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] / 3;
|
||||
ret[COL_WRONG * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] / 3;
|
||||
ret[COL_WRONG * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] / 3;
|
||||
|
||||
ret[COL_RIGHT * 3 + 0] = 1.0F;
|
||||
ret[COL_RIGHT * 3 + 1] = 1.0F;
|
||||
ret[COL_RIGHT * 3 + 2] = 1.0F;
|
||||
|
||||
ret[COL_GRID * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] / 1.5F;
|
||||
ret[COL_GRID * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] / 1.5F;
|
||||
ret[COL_GRID * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] / 1.5F;
|
||||
|
||||
ret[COL_DIAG * 3 + 0] = ret[COL_GRID * 3 + 0];
|
||||
ret[COL_DIAG * 3 + 1] = ret[COL_GRID * 3 + 1];
|
||||
ret[COL_DIAG * 3 + 2] = ret[COL_GRID * 3 + 2];
|
||||
|
||||
*ncolours = NCOLOURS;
|
||||
return ret;
|
||||
}
|
||||
|
||||
static game_drawstate *game_new_drawstate(game_state *state)
|
||||
{
|
||||
struct game_drawstate *ds = snew(struct game_drawstate);
|
||||
int i;
|
||||
|
||||
ds->started = FALSE;
|
||||
ds->w = state->w;
|
||||
ds->h = state->h;
|
||||
ds->tiles = snewn(ds->w*ds->h, unsigned char);
|
||||
ds->tilesize = 0; /* haven't decided yet */
|
||||
for (i = 0; i < ds->w*ds->h; i++)
|
||||
ds->tiles[i] = -1;
|
||||
|
||||
return ds;
|
||||
}
|
||||
|
||||
static void game_free_drawstate(game_drawstate *ds)
|
||||
{
|
||||
sfree(ds->tiles);
|
||||
sfree(ds);
|
||||
}
|
||||
|
||||
static void draw_tile(frontend *fe, game_drawstate *ds,
|
||||
game_state *state, int x, int y, int tile)
|
||||
{
|
||||
int w = ds->w, h = ds->h, wh = w * h;
|
||||
int bx = x * TILE_SIZE + BORDER, by = y * TILE_SIZE + BORDER;
|
||||
int i, j;
|
||||
|
||||
clip(fe, bx+1, by+1, TILE_SIZE-1, TILE_SIZE-1);
|
||||
|
||||
draw_rect(fe, bx+1, by+1, TILE_SIZE-1, TILE_SIZE-1,
|
||||
tile == 1 ? COL_WRONG : COL_RIGHT);
|
||||
|
||||
/*
|
||||
* Draw a little diagram in the tile which indicates which
|
||||
* surrounding tiles flip when this one is clicked.
|
||||
*/
|
||||
for (i = 0; i < h; i++)
|
||||
for (j = 0; j < w; j++)
|
||||
if (state->matrix->matrix[(y*w+x)*wh + i*w+j]) {
|
||||
int ox = j - x, oy = i - y;
|
||||
int td = TILE_SIZE / 16;
|
||||
int cx = (bx + TILE_SIZE/2) + (2 * ox - 1) * td;
|
||||
int cy = (by + TILE_SIZE/2) + (2 * oy - 1) * td;
|
||||
if (ox == 0 && oy == 0)
|
||||
draw_rect(fe, cx, cy, 2*td+1, 2*td+1, COL_DIAG);
|
||||
else {
|
||||
draw_line(fe, cx, cy, cx+2*td, cy, COL_DIAG);
|
||||
draw_line(fe, cx, cy+2*td, cx+2*td, cy+2*td, COL_DIAG);
|
||||
draw_line(fe, cx, cy, cx, cy+2*td, COL_DIAG);
|
||||
draw_line(fe, cx+2*td, cy, cx+2*td, cy+2*td, COL_DIAG);
|
||||
}
|
||||
}
|
||||
|
||||
unclip(fe);
|
||||
|
||||
draw_update(fe, bx+1, by+1, TILE_SIZE-1, TILE_SIZE-1);
|
||||
}
|
||||
|
||||
static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
|
||||
game_state *state, int dir, game_ui *ui,
|
||||
float animtime, float flashtime)
|
||||
{
|
||||
int w = ds->w, h = ds->h, wh = w * h;
|
||||
int i, flashframe;
|
||||
|
||||
if (!ds->started) {
|
||||
draw_rect(fe, 0, 0, TILE_SIZE * w + 2 * BORDER,
|
||||
TILE_SIZE * h + 2 * BORDER, COL_BACKGROUND);
|
||||
|
||||
/*
|
||||
* Draw the grid lines.
|
||||
*/
|
||||
for (i = 0; i <= w; i++)
|
||||
draw_line(fe, i * TILE_SIZE + BORDER, BORDER,
|
||||
i * TILE_SIZE + BORDER, h * TILE_SIZE + BORDER,
|
||||
COL_GRID);
|
||||
for (i = 0; i <= h; i++)
|
||||
draw_line(fe, BORDER, i * TILE_SIZE + BORDER,
|
||||
w * TILE_SIZE + BORDER, i * TILE_SIZE + BORDER,
|
||||
COL_GRID);
|
||||
|
||||
draw_update(fe, 0, 0, TILE_SIZE * w + 2 * BORDER,
|
||||
TILE_SIZE * h + 2 * BORDER);
|
||||
|
||||
ds->started = TRUE;
|
||||
}
|
||||
|
||||
if (flashtime)
|
||||
flashframe = flashtime / FLASH_FRAME;
|
||||
else
|
||||
flashframe = -1;
|
||||
|
||||
for (i = 0; i < wh; i++) {
|
||||
int x = i % w, y = i / w;
|
||||
int fx, fy, fd;
|
||||
int v = state->grid[i];
|
||||
|
||||
if (flashframe >= 0) {
|
||||
fx = (w+1)/2 - min(x+1, w-x);
|
||||
fy = (h+1)/2 - min(y+1, h-y);
|
||||
fd = max(fx, fy);
|
||||
if (fd == flashframe)
|
||||
v |= 1;
|
||||
else if (fd == flashframe - 1)
|
||||
v &= ~1;
|
||||
}
|
||||
|
||||
if (ds->tiles[i] != v) {
|
||||
draw_tile(fe, ds, state, x, y, v);
|
||||
ds->tiles[i] = v;
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
char buf[256];
|
||||
|
||||
sprintf(buf, "%sMoves: %d", state->completed ? "COMPLETED! " : "",
|
||||
state->moves);
|
||||
|
||||
status_bar(fe, buf);
|
||||
}
|
||||
}
|
||||
|
||||
static float game_anim_length(game_state *oldstate, game_state *newstate,
|
||||
int dir, game_ui *ui)
|
||||
{
|
||||
return 0.0F;
|
||||
}
|
||||
|
||||
static float game_flash_length(game_state *oldstate, game_state *newstate,
|
||||
int dir, game_ui *ui)
|
||||
{
|
||||
if (!oldstate->completed && newstate->completed)
|
||||
return FLASH_FRAME * (max((newstate->w+1)/2, (newstate->h+1)/2)+1);
|
||||
|
||||
return 0.0F;
|
||||
}
|
||||
|
||||
static int game_wants_statusbar(void)
|
||||
{
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
static int game_timing_state(game_state *state)
|
||||
{
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
#ifdef COMBINED
|
||||
#define thegame flip
|
||||
#endif
|
||||
|
||||
const struct game thegame = {
|
||||
"Flip", NULL,
|
||||
default_params,
|
||||
game_fetch_preset,
|
||||
decode_params,
|
||||
encode_params,
|
||||
free_params,
|
||||
dup_params,
|
||||
TRUE, game_configure, custom_params,
|
||||
validate_params,
|
||||
new_game_desc,
|
||||
game_free_aux_info,
|
||||
validate_desc,
|
||||
new_game,
|
||||
dup_game,
|
||||
free_game,
|
||||
FALSE, solve_game,
|
||||
FALSE, game_text_format,
|
||||
new_ui,
|
||||
free_ui,
|
||||
game_changed_state,
|
||||
make_move,
|
||||
game_size,
|
||||
game_colours,
|
||||
game_new_drawstate,
|
||||
game_free_drawstate,
|
||||
game_redraw,
|
||||
game_anim_length,
|
||||
game_flash_length,
|
||||
game_wants_statusbar,
|
||||
FALSE, game_timing_state,
|
||||
0, /* mouse_priorities */
|
||||
};
|
2
list.c
2
list.c
@ -19,6 +19,7 @@ echo -e '};\n\nconst int gamecount = lenof(gamelist);'
|
||||
|
||||
extern const game cube;
|
||||
extern const game fifteen;
|
||||
extern const game flip;
|
||||
extern const game mines;
|
||||
extern const game net;
|
||||
extern const game netslide;
|
||||
@ -32,6 +33,7 @@ extern const game twiddle;
|
||||
const game *gamelist[] = {
|
||||
&cube,
|
||||
&fifteen,
|
||||
&flip,
|
||||
&mines,
|
||||
&net,
|
||||
&netslide,
|
||||
|
41
puzzles.but
41
puzzles.but
@ -992,6 +992,47 @@ any points at all. With the alternative \q{(n-1)^2} system, regions of
|
||||
two squares score a point each, and larger regions score relatively
|
||||
more points.
|
||||
|
||||
|
||||
\C{flip} \i{Flip}
|
||||
|
||||
\cfg{winhelp-topic}{games.flip}
|
||||
|
||||
You have a grid of squares, some light and some dark. Your aim is to
|
||||
light all the squares up at the same time. You can choose any square
|
||||
and flip its state from light to dark or dark to light, but when you
|
||||
do so, other squares around it change state as well.
|
||||
|
||||
Each square contains a small diagram showing which other squares
|
||||
change when you flip it.
|
||||
|
||||
\C{flip-controls} \i{Flip controls}
|
||||
|
||||
\IM{Flip controls} controls, for Flip
|
||||
\IM{Flip controls} keys, for Flip
|
||||
\IM{Flip controls} shortcuts (keyboard), for Flip
|
||||
|
||||
Left-click in a square to flip it and its associated squares. That's
|
||||
all!
|
||||
|
||||
\H{flip-parameters} \I{parameters, for flip}Flip parameters
|
||||
|
||||
These parameters are available from the \q{Custom...} option on the
|
||||
\q{Type} menu.
|
||||
|
||||
\dt \e{Width}, \e{Height}
|
||||
|
||||
\dd Size of grid in squares.
|
||||
|
||||
\dt \e{Shape type}
|
||||
|
||||
\dd This control determines the shape of the region which is flipped
|
||||
by clicking in any given square. The default setting, \q{Crosses},
|
||||
causes every square to flip itself and its four immediate neighbours
|
||||
(or three or two if it's at an edge or corner). The other setting,
|
||||
\q{Random}, causes a random shape to be chosen for every square, so
|
||||
the game is different every time.
|
||||
|
||||
|
||||
\A{licence} \I{MIT licence}\ii{Licence}
|
||||
|
||||
This software is \i{copyright} 2004-2005 Simon Tatham.
|
||||
|
Reference in New Issue
Block a user