mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-21 16:05:44 -07:00
Solver for Flip.
[originally from svn r5970]
This commit is contained in:
227
flip.c
227
flip.c
@ -3,15 +3,6 @@
|
|||||||
* where each click toggles an overlapping set of lights.
|
* where each click toggles an overlapping set of lights.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
/*
|
|
||||||
* TODO:
|
|
||||||
*
|
|
||||||
* - `Solve' could mark the squares you must click to solve
|
|
||||||
* + infrastructure change: this would mean the Solve operation
|
|
||||||
* must receive the current game_state as well as the initial
|
|
||||||
* one, which I've been wondering about for a while
|
|
||||||
*/
|
|
||||||
|
|
||||||
#include <stdio.h>
|
#include <stdio.h>
|
||||||
#include <stdlib.h>
|
#include <stdlib.h>
|
||||||
#include <string.h>
|
#include <string.h>
|
||||||
@ -28,6 +19,7 @@ enum {
|
|||||||
COL_RIGHT,
|
COL_RIGHT,
|
||||||
COL_GRID,
|
COL_GRID,
|
||||||
COL_DIAG,
|
COL_DIAG,
|
||||||
|
COL_HINT,
|
||||||
NCOLOURS
|
NCOLOURS
|
||||||
};
|
};
|
||||||
|
|
||||||
@ -65,7 +57,7 @@ struct matrix {
|
|||||||
|
|
||||||
struct game_state {
|
struct game_state {
|
||||||
int w, h;
|
int w, h;
|
||||||
int moves, completed;
|
int moves, completed, cheated, hints_active;
|
||||||
unsigned char *grid; /* array of w*h */
|
unsigned char *grid; /* array of w*h */
|
||||||
struct matrix *matrix;
|
struct matrix *matrix;
|
||||||
};
|
};
|
||||||
@ -633,6 +625,8 @@ static game_state *new_game(midend_data *me, game_params *params, char *desc)
|
|||||||
state->w = w;
|
state->w = w;
|
||||||
state->h = h;
|
state->h = h;
|
||||||
state->completed = FALSE;
|
state->completed = FALSE;
|
||||||
|
state->cheated = FALSE;
|
||||||
|
state->hints_active = FALSE;
|
||||||
state->moves = 0;
|
state->moves = 0;
|
||||||
state->matrix = snew(struct matrix);
|
state->matrix = snew(struct matrix);
|
||||||
state->matrix->refcount = 1;
|
state->matrix->refcount = 1;
|
||||||
@ -651,6 +645,8 @@ static game_state *dup_game(game_state *state)
|
|||||||
ret->w = state->w;
|
ret->w = state->w;
|
||||||
ret->h = state->h;
|
ret->h = state->h;
|
||||||
ret->completed = state->completed;
|
ret->completed = state->completed;
|
||||||
|
ret->cheated = state->cheated;
|
||||||
|
ret->hints_active = state->hints_active;
|
||||||
ret->moves = state->moves;
|
ret->moves = state->moves;
|
||||||
ret->matrix = state->matrix;
|
ret->matrix = state->matrix;
|
||||||
state->matrix->refcount++;
|
state->matrix->refcount++;
|
||||||
@ -670,11 +666,195 @@ static void free_game(game_state *state)
|
|||||||
sfree(state);
|
sfree(state);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static void rowxor(unsigned char *row1, unsigned char *row2, int len)
|
||||||
|
{
|
||||||
|
int i;
|
||||||
|
for (i = 0; i < len; i++)
|
||||||
|
row1[i] ^= row2[i];
|
||||||
|
}
|
||||||
|
|
||||||
static game_state *solve_game(game_state *state, game_state *currstate,
|
static game_state *solve_game(game_state *state, game_state *currstate,
|
||||||
game_aux_info *aux, char **error)
|
game_aux_info *aux, char **error)
|
||||||
{
|
{
|
||||||
|
int w = state->w, h = state->h, wh = w * h;
|
||||||
|
unsigned char *equations, *solution, *shortest;
|
||||||
|
int *und, nund;
|
||||||
|
int rowsdone, colsdone;
|
||||||
|
int i, j, k, len, bestlen;
|
||||||
|
game_state *ret;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Set up a list of simultaneous equations. Each one is of
|
||||||
|
* length (wh+1) and has wh coefficients followed by a value.
|
||||||
|
*/
|
||||||
|
equations = snewn((wh + 1) * wh, unsigned char);
|
||||||
|
for (i = 0; i < wh; i++) {
|
||||||
|
for (j = 0; j < wh; j++)
|
||||||
|
equations[i * (wh+1) + j] = currstate->matrix->matrix[j*wh+i];
|
||||||
|
equations[i * (wh+1) + wh] = currstate->grid[i] & 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Perform Gaussian elimination over GF(2).
|
||||||
|
*/
|
||||||
|
rowsdone = colsdone = 0;
|
||||||
|
nund = 0;
|
||||||
|
und = snewn(wh, int);
|
||||||
|
do {
|
||||||
|
/*
|
||||||
|
* Find the leftmost column which has a 1 in it somewhere
|
||||||
|
* outside the first `rowsdone' rows.
|
||||||
|
*/
|
||||||
|
j = -1;
|
||||||
|
for (i = colsdone; i < wh; i++) {
|
||||||
|
for (j = rowsdone; j < wh; j++)
|
||||||
|
if (equations[j * (wh+1) + i])
|
||||||
|
break;
|
||||||
|
if (j < wh)
|
||||||
|
break; /* found one */
|
||||||
|
/*
|
||||||
|
* This is a column which will not have an equation
|
||||||
|
* controlling it. Mark it as undetermined.
|
||||||
|
*/
|
||||||
|
und[nund++] = i;
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* If there wasn't one, then we've finished: all remaining
|
||||||
|
* equations are of the form 0 = constant. Check to see if
|
||||||
|
* any of them wants 0 to be equal to 1; this is the
|
||||||
|
* condition which indicates an insoluble problem
|
||||||
|
* (therefore _hopefully_ one typed in by a user!).
|
||||||
|
*/
|
||||||
|
if (i == wh) {
|
||||||
|
for (j = rowsdone; j < wh; j++)
|
||||||
|
if (equations[j * (wh+1) + wh]) {
|
||||||
|
*error = "No solution exists for this position";
|
||||||
|
sfree(equations);
|
||||||
return NULL;
|
return NULL;
|
||||||
}
|
}
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* We've found a 1. It's in column i, and the topmost 1 in
|
||||||
|
* that column is in row j. Do a row-XOR to move it up to
|
||||||
|
* the topmost row if it isn't already there.
|
||||||
|
*/
|
||||||
|
assert(j != -1);
|
||||||
|
if (j > rowsdone)
|
||||||
|
rowxor(equations + rowsdone*(wh+1), equations + j*(wh+1), wh+1);
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Do row-XORs to eliminate that 1 from all rows below the
|
||||||
|
* topmost row.
|
||||||
|
*/
|
||||||
|
for (j = rowsdone + 1; j < wh; j++)
|
||||||
|
if (equations[j*(wh+1) + i])
|
||||||
|
rowxor(equations + j*(wh+1),
|
||||||
|
equations + rowsdone*(wh+1), wh+1);
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Mark this row and column as done.
|
||||||
|
*/
|
||||||
|
rowsdone++;
|
||||||
|
colsdone = i+1;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* If we've done all the rows, terminate.
|
||||||
|
*/
|
||||||
|
} while (rowsdone < wh);
|
||||||
|
|
||||||
|
/*
|
||||||
|
* If we reach here, we have the ability to produce a solution.
|
||||||
|
* So we go through _all_ possible solutions (each
|
||||||
|
* corresponding to a set of arbitrary choices of those
|
||||||
|
* components not directly determined by an equation), and pick
|
||||||
|
* one requiring the smallest number of flips.
|
||||||
|
*/
|
||||||
|
solution = snewn(wh, unsigned char);
|
||||||
|
shortest = snewn(wh, unsigned char);
|
||||||
|
memset(solution, 0, wh);
|
||||||
|
bestlen = wh + 1;
|
||||||
|
while (1) {
|
||||||
|
/*
|
||||||
|
* Find a solution based on the current values of the
|
||||||
|
* undetermined variables.
|
||||||
|
*/
|
||||||
|
for (j = rowsdone; j-- ;) {
|
||||||
|
int v;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Find the leftmost set bit in this equation.
|
||||||
|
*/
|
||||||
|
for (i = 0; i < wh; i++)
|
||||||
|
if (equations[j * (wh+1) + i])
|
||||||
|
break;
|
||||||
|
assert(i < wh); /* there must have been one! */
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Compute this variable using the rest.
|
||||||
|
*/
|
||||||
|
v = equations[j * (wh+1) + wh];
|
||||||
|
for (k = i+1; k < wh; k++)
|
||||||
|
if (equations[j * (wh+1) + k])
|
||||||
|
v ^= solution[k];
|
||||||
|
|
||||||
|
solution[i] = v;
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Compare this solution to the current best one, and
|
||||||
|
* replace the best one if this one is shorter.
|
||||||
|
*/
|
||||||
|
len = 0;
|
||||||
|
for (i = 0; i < wh; i++)
|
||||||
|
if (solution[i])
|
||||||
|
len++;
|
||||||
|
if (len < bestlen) {
|
||||||
|
bestlen = len;
|
||||||
|
memcpy(shortest, solution, wh);
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Now increment the binary number given by the
|
||||||
|
* undetermined variables: turn all 1s into 0s until we see
|
||||||
|
* a 0, at which point we turn it into a 1.
|
||||||
|
*/
|
||||||
|
for (i = 0; i < nund; i++) {
|
||||||
|
solution[und[i]] = !solution[und[i]];
|
||||||
|
if (solution[und[i]])
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* If we didn't find a 0 at any point, we have wrapped
|
||||||
|
* round and are back at the start, i.e. we have enumerated
|
||||||
|
* all solutions.
|
||||||
|
*/
|
||||||
|
if (i == nund)
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* We have a solution. Produce a game state with the solution
|
||||||
|
* marked in annotations.
|
||||||
|
*/
|
||||||
|
ret = dup_game(currstate);
|
||||||
|
ret->hints_active = TRUE;
|
||||||
|
ret->cheated = TRUE;
|
||||||
|
for (i = 0; i < wh; i++) {
|
||||||
|
ret->grid[i] &= ~2;
|
||||||
|
if (shortest[i])
|
||||||
|
ret->grid[i] |= 2;
|
||||||
|
}
|
||||||
|
|
||||||
|
sfree(shortest);
|
||||||
|
sfree(solution);
|
||||||
|
sfree(equations);
|
||||||
|
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
static char *game_text_format(game_state *state)
|
static char *game_text_format(game_state *state)
|
||||||
{
|
{
|
||||||
@ -725,8 +905,11 @@ static game_state *make_move(game_state *from, game_ui *ui, game_drawstate *ds,
|
|||||||
if (ret->grid[j] & 1)
|
if (ret->grid[j] & 1)
|
||||||
done = FALSE;
|
done = FALSE;
|
||||||
}
|
}
|
||||||
if (done)
|
ret->grid[i] ^= 2; /* toggle hint */
|
||||||
|
if (done) {
|
||||||
ret->completed = TRUE;
|
ret->completed = TRUE;
|
||||||
|
ret->hints_active = FALSE;
|
||||||
|
}
|
||||||
|
|
||||||
return ret;
|
return ret;
|
||||||
}
|
}
|
||||||
@ -782,6 +965,10 @@ static float *game_colours(frontend *fe, game_state *state, int *ncolours)
|
|||||||
ret[COL_DIAG * 3 + 1] = ret[COL_GRID * 3 + 1];
|
ret[COL_DIAG * 3 + 1] = ret[COL_GRID * 3 + 1];
|
||||||
ret[COL_DIAG * 3 + 2] = ret[COL_GRID * 3 + 2];
|
ret[COL_DIAG * 3 + 2] = ret[COL_GRID * 3 + 2];
|
||||||
|
|
||||||
|
ret[COL_HINT * 3 + 0] = 1.0F;
|
||||||
|
ret[COL_HINT * 3 + 1] = 0.0F;
|
||||||
|
ret[COL_HINT * 3 + 2] = 0.0F;
|
||||||
|
|
||||||
*ncolours = NCOLOURS;
|
*ncolours = NCOLOURS;
|
||||||
return ret;
|
return ret;
|
||||||
}
|
}
|
||||||
@ -865,6 +1052,14 @@ static void draw_tile(frontend *fe, game_drawstate *ds,
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Draw a hint blob if required.
|
||||||
|
*/
|
||||||
|
if (tile & 2) {
|
||||||
|
draw_rect(fe, bx + TILE_SIZE/20, by + TILE_SIZE / 20,
|
||||||
|
TILE_SIZE / 6, TILE_SIZE / 6, COL_HINT);
|
||||||
|
}
|
||||||
|
|
||||||
unclip(fe);
|
unclip(fe);
|
||||||
|
|
||||||
draw_update(fe, bx+1, by+1, TILE_SIZE-1, TILE_SIZE-1);
|
draw_update(fe, bx+1, by+1, TILE_SIZE-1, TILE_SIZE-1);
|
||||||
@ -922,6 +1117,9 @@ static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
|
|||||||
v &= ~1;
|
v &= ~1;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if (!state->hints_active)
|
||||||
|
v &= ~2;
|
||||||
|
|
||||||
if (oldstate && state->grid[i] != oldstate->grid[i])
|
if (oldstate && state->grid[i] != oldstate->grid[i])
|
||||||
vv = 255; /* means `animated' */
|
vv = 255; /* means `animated' */
|
||||||
else
|
else
|
||||||
@ -936,7 +1134,10 @@ static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
|
|||||||
{
|
{
|
||||||
char buf[256];
|
char buf[256];
|
||||||
|
|
||||||
sprintf(buf, "%sMoves: %d", state->completed ? "COMPLETED! " : "",
|
sprintf(buf, "%sMoves: %d",
|
||||||
|
(state->completed ?
|
||||||
|
(state->cheated ? "Auto-solved. " : "COMPLETED! ") :
|
||||||
|
(state->cheated ? "Auto-solver used. " : "")),
|
||||||
state->moves);
|
state->moves);
|
||||||
|
|
||||||
status_bar(fe, buf);
|
status_bar(fe, buf);
|
||||||
@ -988,7 +1189,7 @@ const struct game thegame = {
|
|||||||
new_game,
|
new_game,
|
||||||
dup_game,
|
dup_game,
|
||||||
free_game,
|
free_game,
|
||||||
FALSE, solve_game,
|
TRUE, solve_game,
|
||||||
FALSE, game_text_format,
|
FALSE, game_text_format,
|
||||||
new_ui,
|
new_ui,
|
||||||
free_ui,
|
free_ui,
|
||||||
|
10
puzzles.but
10
puzzles.but
@ -1011,8 +1011,14 @@ change when you flip it.
|
|||||||
\IM{Flip controls} keys, for Flip
|
\IM{Flip controls} keys, for Flip
|
||||||
\IM{Flip controls} shortcuts (keyboard), for Flip
|
\IM{Flip controls} shortcuts (keyboard), for Flip
|
||||||
|
|
||||||
Left-click in a square to flip it and its associated squares. That's
|
Left-click in a square to flip it and its associated squares.
|
||||||
all!
|
|
||||||
|
If you use the \q{Solve} function on this game, it will highlight
|
||||||
|
some of the squares with red blobs. If you click once in every
|
||||||
|
square with a red blob, the game should be solved. (If you click in
|
||||||
|
a square \e{without} a red blob, a red blob will appear in it to
|
||||||
|
indicate that you will need to reverse that operation to reach the
|
||||||
|
solution.)
|
||||||
|
|
||||||
\H{flip-parameters} \I{parameters, for flip}Flip parameters
|
\H{flip-parameters} \I{parameters, for flip}Flip parameters
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user