mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-20 23:51:29 -07:00
From James Harvey (via a period of collaborative polishing), a patch
to add two kinds of Penrose tiling to the grid types supported by Loopy. This has involved a certain amount of infrastructure work, because of course the whole point of Penrose tilings is that they don't have to be the same every time: so now grid.c has grown the capacity to describe its grids as strings, and reconstitute them from those string descriptions. Hence a Penrose Loopy game description consists of a string identifying a particular piece of Penrose tiling, followed by the normal Loopy clue encoding. All the existing grid types decline to provide a grid description string, so their Loopy game descriptions have not changed encoding. [originally from svn r9159]
This commit is contained in:
626
penrose.c
Normal file
626
penrose.c
Normal file
@ -0,0 +1,626 @@
|
||||
/* penrose.c
|
||||
*
|
||||
* Penrose tile generator.
|
||||
*
|
||||
* Uses half-tile technique outlined on:
|
||||
*
|
||||
* http://tartarus.org/simon/20110412-penrose/penrose.xhtml
|
||||
*/
|
||||
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#include "puzzles.h" /* for malloc routines, and PI */
|
||||
#include "penrose.h"
|
||||
|
||||
/* -------------------------------------------------------
|
||||
* 36-degree basis vector arithmetic routines.
|
||||
*/
|
||||
|
||||
/* Imagine drawing a
|
||||
* ten-point 'clock face' like this:
|
||||
*
|
||||
* -E
|
||||
* -D | A
|
||||
* \ | /
|
||||
* -C. \ | / ,B
|
||||
* `-._\|/_,-'
|
||||
* ,-' /|\ `-.
|
||||
* -B' / | \ `C
|
||||
* / | \
|
||||
* -A | D
|
||||
* E
|
||||
*
|
||||
* In case the ASCII art isn't clear, those are supposed to be ten
|
||||
* vectors of length 1, all sticking out from the origin at equal
|
||||
* angular spacing (hence 36 degrees). Our basis vectors are A,B,C,D (I
|
||||
* choose them to be symmetric about the x-axis so that the final
|
||||
* translation into 2d coordinates will also be symmetric, which I
|
||||
* think will avoid minor rounding uglinesses), so our vector
|
||||
* representation sets
|
||||
*
|
||||
* A = (1,0,0,0)
|
||||
* B = (0,1,0,0)
|
||||
* C = (0,0,1,0)
|
||||
* D = (0,0,0,1)
|
||||
*
|
||||
* The fifth vector E looks at first glance as if it needs to be
|
||||
* another basis vector, but in fact it doesn't, because it can be
|
||||
* represented in terms of the other four. Imagine starting from the
|
||||
* origin and following the path -A, +B, -C, +D: you'll find you've
|
||||
* traced four sides of a pentagram, and ended up one E-vector away
|
||||
* from the origin. So we have
|
||||
*
|
||||
* E = (-1,1,-1,1)
|
||||
*
|
||||
* This tells us that we can rotate any vector in this system by 36
|
||||
* degrees: if we start with a*A + b*B + c*C + d*D, we want to end up
|
||||
* with a*B + b*C + c*D + d*E, and we substitute our identity for E to
|
||||
* turn that into a*B + b*C + c*D + d*(-A+B-C+D). In other words,
|
||||
*
|
||||
* rotate_one_notch_clockwise(a,b,c,d) = (-d, d+a, -d+b, d+c)
|
||||
*
|
||||
* and you can verify for yourself that applying that operation
|
||||
* repeatedly starting with (1,0,0,0) cycles round ten vectors and
|
||||
* comes back to where it started.
|
||||
*
|
||||
* The other operation that may be required is to construct vectors
|
||||
* with lengths that are multiples of phi. That can be done by
|
||||
* observing that the vector C-B is parallel to E and has length 1/phi,
|
||||
* and the vector D-A is parallel to E and has length phi. So this
|
||||
* tells us that given any vector, we can construct one which points in
|
||||
* the same direction and is 1/phi or phi times its length, like this:
|
||||
*
|
||||
* divide_by_phi(vector) = rotate(vector, 2) - rotate(vector, 3)
|
||||
* multiply_by_phi(vector) = rotate(vector, 1) - rotate(vector, 4)
|
||||
*
|
||||
* where rotate(vector, n) means applying the above
|
||||
* rotate_one_notch_clockwise primitive n times. Expanding out the
|
||||
* applications of rotate gives the following direct representation in
|
||||
* terms of the vector coordinates:
|
||||
*
|
||||
* divide_by_phi(a,b,c,d) = (b-d, c+d-b, a+b-c, c-a)
|
||||
* multiply_by_phi(a,b,c,d) = (a+b-d, c+d, a+b, c+d-a)
|
||||
*
|
||||
* and you can verify for yourself that those two operations are
|
||||
* inverses of each other (as you'd hope!).
|
||||
*
|
||||
* Having done all of this, testing for equality between two vectors is
|
||||
* a trivial matter of comparing the four integer coordinates. (Which
|
||||
* it _wouldn't_ have been if we'd kept E as a fifth basis vector,
|
||||
* because then (-1,1,-1,1,0) and (0,0,0,0,1) would have had to be
|
||||
* considered identical. So leaving E out is vital.)
|
||||
*/
|
||||
|
||||
struct vector { int a, b, c, d; };
|
||||
|
||||
static vector v_origin()
|
||||
{
|
||||
vector v;
|
||||
v.a = v.b = v.c = v.d = 0;
|
||||
return v;
|
||||
}
|
||||
|
||||
/* We start with a unit vector of B: this means we can easily
|
||||
* draw an isoceles triangle centred on the X axis. */
|
||||
#ifdef TEST_VECTORS
|
||||
|
||||
static vector v_unit()
|
||||
{
|
||||
vector v;
|
||||
|
||||
v.b = 1;
|
||||
v.a = v.c = v.d = 0;
|
||||
return v;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#define COS54 0.5877852
|
||||
#define SIN54 0.8090169
|
||||
#define COS18 0.9510565
|
||||
#define SIN18 0.3090169
|
||||
|
||||
/* These two are a bit rough-and-ready for now. Note that B/C are
|
||||
* 18 degrees from the x-axis, and A/D are 54 degrees. */
|
||||
double v_x(vector *vs, int i)
|
||||
{
|
||||
return (vs[i].a + vs[i].d) * COS54 +
|
||||
(vs[i].b + vs[i].c) * COS18;
|
||||
}
|
||||
|
||||
double v_y(vector *vs, int i)
|
||||
{
|
||||
return (vs[i].a - vs[i].d) * SIN54 +
|
||||
(vs[i].b - vs[i].c) * SIN18;
|
||||
|
||||
}
|
||||
|
||||
static vector v_trans(vector v, vector trans)
|
||||
{
|
||||
v.a += trans.a;
|
||||
v.b += trans.b;
|
||||
v.c += trans.c;
|
||||
v.d += trans.d;
|
||||
return v;
|
||||
}
|
||||
|
||||
static vector v_rotate_36(vector v)
|
||||
{
|
||||
vector vv;
|
||||
vv.a = -v.d;
|
||||
vv.b = v.d + v.a;
|
||||
vv.c = -v.d + v.b;
|
||||
vv.d = v.d + v.c;
|
||||
return vv;
|
||||
}
|
||||
|
||||
static vector v_rotate(vector v, int ang)
|
||||
{
|
||||
int i;
|
||||
|
||||
assert((ang % 36) == 0);
|
||||
while (ang < 0) ang += 360;
|
||||
ang = 360-ang;
|
||||
for (i = 0; i < (ang/36); i++)
|
||||
v = v_rotate_36(v);
|
||||
return v;
|
||||
}
|
||||
|
||||
#ifdef TEST_VECTORS
|
||||
|
||||
static vector v_scale(vector v, int sc)
|
||||
{
|
||||
v.a *= sc;
|
||||
v.b *= sc;
|
||||
v.c *= sc;
|
||||
v.d *= sc;
|
||||
return v;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
static vector v_growphi(vector v)
|
||||
{
|
||||
vector vv;
|
||||
vv.a = v.a + v.b - v.d;
|
||||
vv.b = v.c + v.d;
|
||||
vv.c = v.a + v.b;
|
||||
vv.d = v.c + v.d - v.a;
|
||||
return vv;
|
||||
}
|
||||
|
||||
static vector v_shrinkphi(vector v)
|
||||
{
|
||||
vector vv;
|
||||
vv.a = v.b - v.d;
|
||||
vv.b = v.c + v.d - v.b;
|
||||
vv.c = v.a + v.b - v.c;
|
||||
vv.d = v.c - v.a;
|
||||
return vv;
|
||||
}
|
||||
|
||||
#ifdef TEST_VECTORS
|
||||
|
||||
static const char *v_debug(vector v)
|
||||
{
|
||||
static char buf[255];
|
||||
sprintf(buf,
|
||||
"(%d,%d,%d,%d)[%2.2f,%2.2f]",
|
||||
v.a, v.b, v.c, v.d, v_x(&v,0), v_y(&v,0));
|
||||
return buf;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* -------------------------------------------------------
|
||||
* Tiling routines.
|
||||
*/
|
||||
|
||||
vector xform_coord(vector vo, int shrink, vector vtrans, int ang)
|
||||
{
|
||||
if (shrink < 0)
|
||||
vo = v_shrinkphi(vo);
|
||||
else if (shrink > 0)
|
||||
vo = v_growphi(vo);
|
||||
|
||||
vo = v_rotate(vo, ang);
|
||||
vo = v_trans(vo, vtrans);
|
||||
|
||||
return vo;
|
||||
}
|
||||
|
||||
|
||||
#define XFORM(n,o,s,a) vs[(n)] = xform_coord(v_edge, (s), vs[(o)], (a))
|
||||
|
||||
static int penrose_p2_small(penrose_state *state, int depth, int flip,
|
||||
vector v_orig, vector v_edge);
|
||||
|
||||
static int penrose_p2_large(penrose_state *state, int depth, int flip,
|
||||
vector v_orig, vector v_edge)
|
||||
{
|
||||
vector vv_orig, vv_edge;
|
||||
|
||||
#ifdef DEBUG_PENROSE
|
||||
{
|
||||
vector vs[3];
|
||||
vs[0] = v_orig;
|
||||
XFORM(1, 0, 0, 0);
|
||||
XFORM(2, 0, 0, -36*flip);
|
||||
|
||||
state->new_tile(state, vs, 3, depth);
|
||||
}
|
||||
#endif
|
||||
|
||||
if (flip > 0) {
|
||||
vector vs[4];
|
||||
|
||||
vs[0] = v_orig;
|
||||
XFORM(1, 0, 0, -36);
|
||||
XFORM(2, 0, 0, 0);
|
||||
XFORM(3, 0, 0, 36);
|
||||
|
||||
state->new_tile(state, vs, 4, depth);
|
||||
}
|
||||
if (depth >= state->max_depth) return 0;
|
||||
|
||||
vv_orig = v_trans(v_orig, v_rotate(v_edge, -36*flip));
|
||||
vv_edge = v_rotate(v_edge, 108*flip);
|
||||
|
||||
penrose_p2_small(state, depth+1, flip,
|
||||
v_orig, v_shrinkphi(v_edge));
|
||||
|
||||
penrose_p2_large(state, depth+1, flip,
|
||||
vv_orig, v_shrinkphi(vv_edge));
|
||||
penrose_p2_large(state, depth+1, -flip,
|
||||
vv_orig, v_shrinkphi(vv_edge));
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int penrose_p2_small(penrose_state *state, int depth, int flip,
|
||||
vector v_orig, vector v_edge)
|
||||
{
|
||||
vector vv_orig;
|
||||
|
||||
#ifdef DEBUG_PENROSE
|
||||
{
|
||||
vector vs[3];
|
||||
vs[0] = v_orig;
|
||||
XFORM(1, 0, 0, 0);
|
||||
XFORM(2, 0, -1, -36*flip);
|
||||
|
||||
state->new_tile(state, vs, 3, depth);
|
||||
}
|
||||
#endif
|
||||
|
||||
if (flip > 0) {
|
||||
vector vs[4];
|
||||
|
||||
vs[0] = v_orig;
|
||||
XFORM(1, 0, 0, -72);
|
||||
XFORM(2, 0, -1, -36);
|
||||
XFORM(3, 0, 0, 0);
|
||||
|
||||
state->new_tile(state, vs, 4, depth);
|
||||
}
|
||||
|
||||
if (depth >= state->max_depth) return 0;
|
||||
|
||||
vv_orig = v_trans(v_orig, v_edge);
|
||||
|
||||
penrose_p2_large(state, depth+1, -flip,
|
||||
v_orig, v_shrinkphi(v_rotate(v_edge, -36*flip)));
|
||||
|
||||
penrose_p2_small(state, depth+1, flip,
|
||||
vv_orig, v_shrinkphi(v_rotate(v_edge, -144*flip)));
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int penrose_p3_small(penrose_state *state, int depth, int flip,
|
||||
vector v_orig, vector v_edge);
|
||||
|
||||
static int penrose_p3_large(penrose_state *state, int depth, int flip,
|
||||
vector v_orig, vector v_edge)
|
||||
{
|
||||
vector vv_orig;
|
||||
|
||||
#ifdef DEBUG_PENROSE
|
||||
{
|
||||
vector vs[3];
|
||||
vs[0] = v_orig;
|
||||
XFORM(1, 0, 1, 0);
|
||||
XFORM(2, 0, 0, -36*flip);
|
||||
|
||||
state->new_tile(state, vs, 3, depth);
|
||||
}
|
||||
#endif
|
||||
|
||||
if (flip > 0) {
|
||||
vector vs[4];
|
||||
|
||||
vs[0] = v_orig;
|
||||
XFORM(1, 0, 0, -36);
|
||||
XFORM(2, 0, 1, 0);
|
||||
XFORM(3, 0, 0, 36);
|
||||
|
||||
state->new_tile(state, vs, 4, depth);
|
||||
}
|
||||
if (depth >= state->max_depth) return 0;
|
||||
|
||||
vv_orig = v_trans(v_orig, v_edge);
|
||||
|
||||
penrose_p3_large(state, depth+1, -flip,
|
||||
vv_orig, v_shrinkphi(v_rotate(v_edge, 180)));
|
||||
|
||||
penrose_p3_small(state, depth+1, flip,
|
||||
vv_orig, v_shrinkphi(v_rotate(v_edge, -108*flip)));
|
||||
|
||||
vv_orig = v_trans(v_orig, v_growphi(v_edge));
|
||||
|
||||
penrose_p3_large(state, depth+1, flip,
|
||||
vv_orig, v_shrinkphi(v_rotate(v_edge, -144*flip)));
|
||||
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int penrose_p3_small(penrose_state *state, int depth, int flip,
|
||||
vector v_orig, vector v_edge)
|
||||
{
|
||||
vector vv_orig;
|
||||
|
||||
#ifdef DEBUG_PENROSE
|
||||
{
|
||||
vector vs[3];
|
||||
vs[0] = v_orig;
|
||||
XFORM(1, 0, 0, 0);
|
||||
XFORM(2, 0, 0, -36*flip);
|
||||
|
||||
state->new_tile(state, vs, 3, depth);
|
||||
}
|
||||
#endif
|
||||
|
||||
if (flip > 0) {
|
||||
vector vs[4];
|
||||
|
||||
vs[0] = v_orig;
|
||||
XFORM(1, 0, 0, -36);
|
||||
XFORM(3, 0, 0, 0);
|
||||
XFORM(2, 3, 0, -36);
|
||||
|
||||
state->new_tile(state, vs, 4, depth);
|
||||
}
|
||||
if (depth >= state->max_depth) return 0;
|
||||
|
||||
/* NB these two are identical to the first two of p3_large. */
|
||||
vv_orig = v_trans(v_orig, v_edge);
|
||||
|
||||
penrose_p3_large(state, depth+1, -flip,
|
||||
vv_orig, v_shrinkphi(v_rotate(v_edge, 180)));
|
||||
|
||||
penrose_p3_small(state, depth+1, flip,
|
||||
vv_orig, v_shrinkphi(v_rotate(v_edge, -108*flip)));
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* -------------------------------------------------------
|
||||
* Utility routines.
|
||||
*/
|
||||
|
||||
double penrose_side_length(double start_size, int depth)
|
||||
{
|
||||
return start_size / pow(PHI, depth);
|
||||
}
|
||||
|
||||
void penrose_count_tiles(int depth, int *nlarge, int *nsmall)
|
||||
{
|
||||
/* Steal sgt's fibonacci thingummy. */
|
||||
}
|
||||
|
||||
/*
|
||||
* It turns out that an acute isosceles triangle with sides in ratio 1:phi:phi
|
||||
* has an incentre which is conveniently 2*phi^-2 of the way from the apex to
|
||||
* the base. Why's that convenient? Because: if we situate the incentre of the
|
||||
* triangle at the origin, then we can place the apex at phi^-2 * (B+C), and
|
||||
* the other two vertices at apex-B and apex-C respectively. So that's an acute
|
||||
* triangle with its long sides of unit length, covering a circle about the
|
||||
* origin of radius 1-(2*phi^-2), which is conveniently enough phi^-3.
|
||||
*
|
||||
* (later mail: this is an overestimate by about 5%)
|
||||
*/
|
||||
|
||||
int penrose(penrose_state *state, int which)
|
||||
{
|
||||
vector vo = v_origin();
|
||||
vector vb = v_origin();
|
||||
|
||||
vo.b = vo.c = -state->start_size;
|
||||
vo = v_shrinkphi(v_shrinkphi(vo));
|
||||
|
||||
vb.b = state->start_size;
|
||||
|
||||
if (which == PENROSE_P2)
|
||||
return penrose_p2_large(state, 0, 1, vo, vb);
|
||||
else
|
||||
return penrose_p3_small(state, 0, 1, vo, vb);
|
||||
}
|
||||
|
||||
/*
|
||||
* We're asked for a MxN grid, which just means a tiling fitting into roughly
|
||||
* an MxN space in some kind of reasonable unit - say, the side length of the
|
||||
* two-arrow edges of the tiles. By some reasoning in a previous email, that
|
||||
* means we want to pick some subarea of a circle of radius 3.11*sqrt(M^2+N^2).
|
||||
* To cover that circle, we need to subdivide a triangle large enough that it
|
||||
* contains a circle of that radius.
|
||||
*
|
||||
* Hence: start with those three vectors marking triangle vertices, scale them
|
||||
* all up by phi repeatedly until the radius of the inscribed circle gets
|
||||
* bigger than the target, and then recurse into that triangle with the same
|
||||
* recursion depth as the number of times you scaled up. That will give you
|
||||
* tiles of unit side length, covering a circle big enough that if you randomly
|
||||
* choose an orientation and coordinates within the circle, you'll be able to
|
||||
* get any valid piece of Penrose tiling of size MxN.
|
||||
*/
|
||||
#define INCIRCLE_RADIUS 0.22426 /* phi^-3 less 5%: see above */
|
||||
|
||||
void penrose_calculate_size(int which, int tilesize, int w, int h,
|
||||
double *required_radius, int *start_size, int *depth)
|
||||
{
|
||||
double rradius, size;
|
||||
int n = 0;
|
||||
|
||||
/*
|
||||
* Fudge factor to scale P2 and P3 tilings differently. This
|
||||
* doesn't seem to have much relevance to questions like the
|
||||
* average number of tiles per unit area; it's just aesthetic.
|
||||
*/
|
||||
if (which == PENROSE_P2)
|
||||
tilesize = tilesize * 3 / 2;
|
||||
else
|
||||
tilesize = tilesize * 5 / 4;
|
||||
|
||||
rradius = tilesize * 3.11 * sqrt((double)(w*w + h*h));
|
||||
size = tilesize;
|
||||
|
||||
while ((size * INCIRCLE_RADIUS) < rradius) {
|
||||
n++;
|
||||
size = size * PHI;
|
||||
}
|
||||
|
||||
*start_size = (int)size;
|
||||
*depth = n;
|
||||
*required_radius = rradius;
|
||||
}
|
||||
|
||||
/* -------------------------------------------------------
|
||||
* Test code.
|
||||
*/
|
||||
|
||||
#ifdef TEST_PENROSE
|
||||
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
int show_recursion = 0;
|
||||
int ntiles, nfinal;
|
||||
|
||||
int test_cb(penrose_state *state, vector *vs, int n, int depth)
|
||||
{
|
||||
int i, xoff = 0, yoff = 0;
|
||||
double l = penrose_side_length(state->start_size, depth);
|
||||
double rball = l / 10.0;
|
||||
const char *col;
|
||||
|
||||
ntiles++;
|
||||
if (state->max_depth == depth) {
|
||||
col = n == 4 ? "black" : "green";
|
||||
nfinal++;
|
||||
} else {
|
||||
if (!show_recursion)
|
||||
return 0;
|
||||
col = n == 4 ? "red" : "blue";
|
||||
}
|
||||
if (n != 4) yoff = state->start_size;
|
||||
|
||||
printf("<polygon points=\"");
|
||||
for (i = 0; i < n; i++) {
|
||||
printf("%s%f,%f", (i == 0) ? "" : " ",
|
||||
v_x(vs, i) + xoff, v_y(vs, i) + yoff);
|
||||
}
|
||||
printf("\" style=\"fill: %s; fill-opacity: 0.2; stroke: %s\" />\n", col, col);
|
||||
printf("<ellipse cx=\"%f\" cy=\"%f\" rx=\"%f\" ry=\"%f\" fill=\"%s\" />",
|
||||
v_x(vs, 0) + xoff, v_y(vs, 0) + yoff, rball, rball, col);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void usage_exit()
|
||||
{
|
||||
fprintf(stderr, "Usage: penrose-test [--recursion] P2|P3 SIZE DEPTH\n");
|
||||
exit(1);
|
||||
}
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
penrose_state ps;
|
||||
int which = 0;
|
||||
|
||||
while (--argc > 0) {
|
||||
char *p = *++argv;
|
||||
if (!strcmp(p, "-h") || !strcmp(p, "--help")) {
|
||||
usage_exit();
|
||||
} else if (!strcmp(p, "--recursion")) {
|
||||
show_recursion = 1;
|
||||
} else if (*p == '-') {
|
||||
fprintf(stderr, "Unrecognised option '%s'\n", p);
|
||||
exit(1);
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (argc < 3) usage_exit();
|
||||
|
||||
if (strcmp(argv[0], "P2") == 0) which = PENROSE_P2;
|
||||
else if (strcmp(argv[0], "P3") == 0) which = PENROSE_P3;
|
||||
else usage_exit();
|
||||
|
||||
ps.start_size = atoi(argv[1]);
|
||||
ps.max_depth = atoi(argv[2]);
|
||||
ps.new_tile = test_cb;
|
||||
|
||||
ntiles = nfinal = 0;
|
||||
|
||||
printf("\
|
||||
<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"no\"?>\n\
|
||||
<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 20010904//EN\"\n\
|
||||
\"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd\">\n\
|
||||
\n\
|
||||
<svg xmlns=\"http://www.w3.org/2000/svg\"\n\
|
||||
xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n\n");
|
||||
|
||||
printf("<g>\n");
|
||||
penrose(&ps, which);
|
||||
printf("</g>\n");
|
||||
|
||||
printf("<!-- %d tiles and %d leaf tiles total -->\n",
|
||||
ntiles, nfinal);
|
||||
|
||||
printf("</svg>");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef TEST_VECTORS
|
||||
|
||||
static void dbgv(const char *msg, vector v)
|
||||
{
|
||||
printf("%s: %s\n", msg, v_debug(v));
|
||||
}
|
||||
|
||||
int main(int argc, const char *argv[])
|
||||
{
|
||||
vector v = v_unit();
|
||||
|
||||
dbgv("unit vector", v);
|
||||
v = v_rotate(v, 36);
|
||||
dbgv("rotated 36", v);
|
||||
v = v_scale(v, 2);
|
||||
dbgv("scaled x2", v);
|
||||
v = v_shrinkphi(v);
|
||||
dbgv("shrunk phi", v);
|
||||
v = v_rotate(v, -36);
|
||||
dbgv("rotated -36", v);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif
|
||||
/* vim: set shiftwidth=4 tabstop=8: */
|
Reference in New Issue
Block a user