Outstandingly cute mathematical transformation which allows me to

lose a lot of code duplication in nsolve while preserving efficiency.

[originally from svn r5667]
This commit is contained in:
Simon Tatham
2005-04-24 10:06:47 +00:00
parent f5138782b1
commit 6bf62f4577

160
solo.c
View File

@ -569,6 +569,22 @@ static int rsolve(int c, int r, digit *grid, random_state *rs, int max)
* them can be in the fourth or fifth squares.)
*/
/*
* Within this solver, I'm going to transform all y-coordinates by
* inverting the significance of the block number and the position
* within the block. That is, we will start with the top row of
* each block in order, then the second row of each block in order,
* etc.
*
* This transformation has the enormous advantage that it means
* every row, column _and_ block is described by an arithmetic
* progression of coordinates within the cubic array, so that I can
* use the same very simple function to do blockwise, row-wise and
* column-wise elimination.
*/
#define YTRANS(y) (((y)%c)*r+(y)/c)
#define YUNTRANS(y) (((y)%r)*c+(y)/r)
struct nsolve_usage {
int c, r, cr;
/*
@ -577,11 +593,12 @@ struct nsolve_usage {
* or not that digit _could_ in principle go in that position.
*
* The way to index this array is cube[(x*cr+y)*cr+n-1].
* y-coordinates in here are transformed.
*/
unsigned char *cube;
/*
* This is the grid in which we write down our final
* deductions.
* deductions. y-coordinates in here are _not_ transformed.
*/
digit *grid;
/*
@ -596,11 +613,13 @@ struct nsolve_usage {
/* blk[(y*c+x)*cr+n-1] TRUE if digit n has been placed in block (x,y) */
unsigned char *blk;
};
#define cube(x,y,n) (usage->cube[((x)*usage->cr+(y))*usage->cr+(n)-1])
#define cubepos(x,y,n) (((x)*usage->cr+(y))*usage->cr+(n)-1)
#define cube(x,y,n) (usage->cube[cubepos(x,y,n)])
/*
* Function called when we are certain that a particular square has
* a particular number in it.
* a particular number in it. The y-coordinate passed in here is
* transformed.
*/
static void nsolve_place(struct nsolve_usage *usage, int x, int y, int n)
{
@ -634,16 +653,16 @@ static void nsolve_place(struct nsolve_usage *usage, int x, int y, int n)
* Rule out this number in all other positions in the block.
*/
bx = (x/r)*r;
by = (y/c)*c;
by = y % r;
for (i = 0; i < r; i++)
for (j = 0; j < c; j++)
if (bx+i != x || by+j != y)
cube(bx+i,by+j,n) = FALSE;
if (bx+i != x || by+j*r != y)
cube(bx+i,by+j*r,n) = FALSE;
/*
* Enter the number in the result grid.
*/
usage->grid[y*cr+x] = n;
usage->grid[YUNTRANS(y)*cr+x] = n;
/*
* Cross out this number from the list of numbers left to place
@ -653,112 +672,33 @@ static void nsolve_place(struct nsolve_usage *usage, int x, int y, int n)
usage->blk[((y/c)*c+(x/r))*cr+n-1] = TRUE;
}
static int nsolve_blk_pos_elim(struct nsolve_usage *usage,
int x, int y, int n)
static int nsolve_elim(struct nsolve_usage *usage, int start, int step)
{
int c = usage->c, r = usage->r;
int i, j, fx, fy, m;
x *= r;
y *= c;
int c = usage->c, r = usage->r, cr = c*r;
int fpos, m, i;
/*
* Count the possible positions within this block where this
* number could appear.
* Count the number of set bits within this section of the
* cube.
*/
m = 0;
fx = fy = -1;
for (i = 0; i < r; i++)
for (j = 0; j < c; j++)
if (cube(x+i,y+j,n)) {
fx = x+i;
fy = y+j;
m++;
}
if (m == 1) {
assert(fx >= 0 && fy >= 0);
nsolve_place(usage, fx, fy, n);
return TRUE;
}
return FALSE;
}
static int nsolve_row_pos_elim(struct nsolve_usage *usage,
int y, int n)
{
int cr = usage->cr;
int x, fx, m;
/*
* Count the possible positions within this row where this
* number could appear.
*/
m = 0;
fx = -1;
for (x = 0; x < cr; x++)
if (cube(x,y,n)) {
fx = x;
fpos = -1;
for (i = 0; i < cr; i++)
if (usage->cube[start+i*step]) {
fpos = start+i*step;
m++;
}
if (m == 1) {
assert(fx >= 0);
nsolve_place(usage, fx, y, n);
return TRUE;
}
int x, y, n;
assert(fpos >= 0);
return FALSE;
}
n = 1 + fpos % cr;
y = fpos / cr;
x = y / cr;
y %= cr;
static int nsolve_col_pos_elim(struct nsolve_usage *usage,
int x, int n)
{
int cr = usage->cr;
int y, fy, m;
/*
* Count the possible positions within this column where this
* number could appear.
*/
m = 0;
fy = -1;
for (y = 0; y < cr; y++)
if (cube(x,y,n)) {
fy = y;
m++;
}
if (m == 1) {
assert(fy >= 0);
nsolve_place(usage, x, fy, n);
return TRUE;
}
return FALSE;
}
static int nsolve_num_elim(struct nsolve_usage *usage,
int x, int y)
{
int cr = usage->cr;
int n, fn, m;
/*
* Count the possible numbers that could appear in this square.
*/
m = 0;
fn = -1;
for (n = 1; n <= cr; n++)
if (cube(x,y,n)) {
fn = n;
m++;
}
if (m == 1) {
assert(fn > 0);
nsolve_place(usage, x, y, fn);
nsolve_place(usage, x, y, n);
return TRUE;
}
@ -796,7 +736,7 @@ static int nsolve(int c, int r, digit *grid)
for (x = 0; x < cr; x++)
for (y = 0; y < cr; y++)
if (grid[y*cr+x])
nsolve_place(usage, x, y, grid[y*cr+x]);
nsolve_place(usage, x, YTRANS(y), grid[y*cr+x]);
/*
* Now loop over the grid repeatedly trying all permitted modes
@ -809,11 +749,11 @@ static int nsolve(int c, int r, digit *grid)
/*
* Blockwise positional elimination.
*/
for (x = 0; x < c; x++)
for (x = 0; x < cr; x += r)
for (y = 0; y < r; y++)
for (n = 1; n <= cr; n++)
if (!usage->blk[((y/c)*c+(x/r))*cr+n-1] &&
nsolve_blk_pos_elim(usage, x, y, n))
if (!usage->blk[(y*c+(x/r))*cr+n-1] &&
nsolve_elim(usage, cubepos(x,y,n), r*cr))
continue;
/*
@ -822,7 +762,7 @@ static int nsolve(int c, int r, digit *grid)
for (y = 0; y < cr; y++)
for (n = 1; n <= cr; n++)
if (!usage->row[y*cr+n-1] &&
nsolve_row_pos_elim(usage, y, n))
nsolve_elim(usage, cubepos(0,y,n), cr*cr))
continue;
/*
* Column-wise positional elimination.
@ -830,7 +770,7 @@ static int nsolve(int c, int r, digit *grid)
for (x = 0; x < cr; x++)
for (n = 1; n <= cr; n++)
if (!usage->col[x*cr+n-1] &&
nsolve_col_pos_elim(usage, x, n))
nsolve_elim(usage, cubepos(x,0,n), cr))
continue;
/*
@ -838,8 +778,8 @@ static int nsolve(int c, int r, digit *grid)
*/
for (x = 0; x < cr; x++)
for (y = 0; y < cr; y++)
if (!usage->grid[y*cr+x] &&
nsolve_num_elim(usage, x, y))
if (!usage->grid[YUNTRANS(y)*cr+x] &&
nsolve_elim(usage, cubepos(x,y,1), 1))
continue;
/*