mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-20 07:31:30 -07:00
Hats tiling: more uniform parent selection.
This tweak improves the uniformity of the generated patches of hat tiling, by selecting from (the closest 32-bit approximation I can get to) the limiting probability distribution of finite patches in the whole plane. This shouldn't invalidate any grid description that contains enough coordinates to uniquely specify a piece of tiling - in particular, any generated by the game itself. But if anyone's been brave enough to hand-type a grid description in the last two days and left off some of the coordinates, then those might be invalidated.
This commit is contained in:
@ -1476,10 +1476,6 @@ int main(int argc, char **argv)
|
||||
printf(" };\n\n");
|
||||
|
||||
{
|
||||
struct Parent {
|
||||
MetatileType t;
|
||||
unsigned index;
|
||||
} parents[4][4*MT_MAXEXPAND];
|
||||
size_t psizes[4] = {0, 0, 0, 0};
|
||||
size_t csizes[4] = {0, 0, 0, 0};
|
||||
|
||||
@ -1492,8 +1488,6 @@ int main(int argc, char **argv)
|
||||
" ", HTPF[i]);
|
||||
for (j = 0; j < nt; j++) {
|
||||
MetatileType c = t[j].type;
|
||||
parents[c][psizes[c]].t = i;
|
||||
parents[c][psizes[c]].index = j;
|
||||
psizes[c]++;
|
||||
csizes[i]++;
|
||||
printf(" TT_%c,", HTPF[c]);
|
||||
@ -1509,26 +1503,6 @@ int main(int argc, char **argv)
|
||||
for (i = 0; i < 4; i++)
|
||||
printf(" %u,\n", (unsigned)csizes[i]);
|
||||
printf("};\n\n");
|
||||
|
||||
for (i = 0; i < 4; i++) {
|
||||
printf("static const MetatilePossibleParent "
|
||||
"permitted_parents_%c[] = {\n", HTPF[i]);
|
||||
for (j = 0; j < psizes[i]; j++)
|
||||
printf(" { TT_%c, %u },\n", HTPF[parents[i][j].t],
|
||||
parents[i][j].index);
|
||||
printf("};\n");
|
||||
}
|
||||
|
||||
printf("static const MetatilePossibleParent *const "
|
||||
"permitted_parents[] = {\n");
|
||||
for (i = 0; i < 4; i++)
|
||||
printf(" permitted_parents_%c,\n", HTPF[i]);
|
||||
printf("};\n");
|
||||
|
||||
printf("static const size_t n_permitted_parents[] = {\n");
|
||||
for (i = 0; i < 4; i++)
|
||||
printf(" %u,\n", (unsigned)psizes[i]);
|
||||
printf("};\n\n");
|
||||
}
|
||||
|
||||
{
|
||||
|
63
hat-tables.h
63
hat-tables.h
@ -31,69 +31,6 @@ static const size_t nchildren[] = {
|
||||
11,
|
||||
};
|
||||
|
||||
static const MetatilePossibleParent permitted_parents_H[] = {
|
||||
{ TT_H, 0 },
|
||||
{ TT_H, 1 },
|
||||
{ TT_H, 2 },
|
||||
{ TT_T, 0 },
|
||||
{ TT_P, 0 },
|
||||
{ TT_P, 1 },
|
||||
{ TT_F, 0 },
|
||||
{ TT_F, 1 },
|
||||
};
|
||||
static const MetatilePossibleParent permitted_parents_T[] = {
|
||||
{ TT_H, 3 },
|
||||
};
|
||||
static const MetatilePossibleParent permitted_parents_P[] = {
|
||||
{ TT_H, 4 },
|
||||
{ TT_H, 5 },
|
||||
{ TT_H, 6 },
|
||||
{ TT_T, 1 },
|
||||
{ TT_T, 2 },
|
||||
{ TT_T, 3 },
|
||||
{ TT_P, 2 },
|
||||
{ TT_P, 3 },
|
||||
{ TT_P, 4 },
|
||||
{ TT_F, 2 },
|
||||
{ TT_F, 3 },
|
||||
};
|
||||
static const MetatilePossibleParent permitted_parents_F[] = {
|
||||
{ TT_H, 7 },
|
||||
{ TT_H, 8 },
|
||||
{ TT_H, 9 },
|
||||
{ TT_H, 10 },
|
||||
{ TT_H, 11 },
|
||||
{ TT_H, 12 },
|
||||
{ TT_T, 4 },
|
||||
{ TT_T, 5 },
|
||||
{ TT_T, 6 },
|
||||
{ TT_P, 5 },
|
||||
{ TT_P, 6 },
|
||||
{ TT_P, 7 },
|
||||
{ TT_P, 8 },
|
||||
{ TT_P, 9 },
|
||||
{ TT_P, 10 },
|
||||
{ TT_F, 4 },
|
||||
{ TT_F, 5 },
|
||||
{ TT_F, 6 },
|
||||
{ TT_F, 7 },
|
||||
{ TT_F, 8 },
|
||||
{ TT_F, 9 },
|
||||
{ TT_F, 10 },
|
||||
};
|
||||
static const MetatilePossibleParent *const permitted_parents[] = {
|
||||
permitted_parents_H,
|
||||
permitted_parents_T,
|
||||
permitted_parents_P,
|
||||
permitted_parents_F,
|
||||
};
|
||||
static const size_t n_permitted_parents[] = {
|
||||
8,
|
||||
1,
|
||||
11,
|
||||
22,
|
||||
};
|
||||
|
||||
static const KitemapEntry kitemap_H[] = {
|
||||
/* hat #0 in metatile #0 (type H) */
|
||||
{1,0,0}, {7,3,0}, {3,0,4}, {4,0,4},
|
||||
|
183
hat.c
183
hat.c
@ -318,11 +318,6 @@ static const char tilechars[] = "HTPF";
|
||||
* Definitions for the autogenerated hat-tables.h header file that
|
||||
* defines all the lookup tables.
|
||||
*/
|
||||
typedef struct MetatilePossibleParent {
|
||||
TileType type;
|
||||
unsigned index;
|
||||
} MetatilePossibleParent;
|
||||
|
||||
typedef struct KitemapEntry {
|
||||
int kite, hat, meta; /* all -1 if impossible */
|
||||
} KitemapEntry;
|
||||
@ -505,15 +500,189 @@ static HatCoords *initial_coords(HatCoordContext *ctx)
|
||||
*/
|
||||
static void ensure_coords(HatCoordContext *ctx, HatCoords *hc, size_t n)
|
||||
{
|
||||
/*
|
||||
* One table that we write by hand: the permitted ways to extend
|
||||
* the coordinate system outwards from a given metatile.
|
||||
*
|
||||
* One obvious approach would be to make a table of all the places
|
||||
* each metatile can appear in the expansion of another (e.g. H
|
||||
* can be subtile 0, 1 or 2 of another H, subtile 0 of a T, or 0
|
||||
* or 1 of a P or an F), and when we need to decide what our
|
||||
* current topmost tile turns out to be a subtile of, choose
|
||||
* equiprobably at random from those options.
|
||||
*
|
||||
* That's what I did originally, but a better approach is to skew
|
||||
* the probabilities. We'd like to generate our patch of actual
|
||||
* tiling uniformly at random, in the sense that if you selected
|
||||
* uniformly from a very large region of the plane, the
|
||||
* distribution of possible finite patches of tiling would
|
||||
* converge to some limit as that region tended to infinity, and
|
||||
* we'd be picking from that limiting distribution on finite
|
||||
* patches.
|
||||
*
|
||||
* For this we have to refer back to the original paper, which
|
||||
* indicates the subset of each metatile's expansion that can be
|
||||
* considered to 'belong' to that metatile, such that every
|
||||
* subtile belongs to exactly one parent metatile, and the
|
||||
* overlaps are eliminated. Reading out the diagrams from their
|
||||
* Figure 2.8:
|
||||
*
|
||||
* - H: we discard three of the outer F subtiles, in the symmetric
|
||||
* positions index by our coordinates as 7, 10, 11. So we keep
|
||||
* the remaining subtiles {0,1,2,3,4,5,6,8,9,12}, which consist
|
||||
* of three H, one T, three P and three F.
|
||||
*
|
||||
* - T: only the central H expanded from a T is considered to
|
||||
* belong to it, so we just keep {0}, a single H.
|
||||
*
|
||||
* - P: we discard everything intersected by a long edge of the
|
||||
* parallelogram, leaving the central three tiles and the
|
||||
* endmost pair of F. That is, we keep {0,1,4,5,10}, consisting
|
||||
* of two H, one P and two F.
|
||||
*
|
||||
* - F: looks like P at one end, and we retain the corresponding
|
||||
* set of tiles there, but at the other end we keep the two F on
|
||||
* either side of the endmost one. So we keep {0,1,3,6,8,10},
|
||||
* consisting of two H, one P and _three_ F.
|
||||
*
|
||||
* Adding up the tile numbers gives us this matrix system:
|
||||
*
|
||||
* (H_1) (3 1 2 2)(H_0)
|
||||
* (T_1) = (1 0 0 0)(T_0)
|
||||
* (P_1) (3 0 1 1)(P_0)
|
||||
* (F_1) (3 0 2 3)(F_0)
|
||||
*
|
||||
* which says that if you have a patch of metatiling consisting of
|
||||
* H_0 H tiles, T_0 T tiles etc, then this matrix shows the number
|
||||
* H_1 of smaller H tiles, etc, expanded from it.
|
||||
*
|
||||
* If you expand _many_ times, that's equivalent to raising the
|
||||
* matrix to a power:
|
||||
*
|
||||
* n
|
||||
* (H_n) (3 1 2 2) (H_0)
|
||||
* (T_n) = (1 0 0 0) (T_0)
|
||||
* (P_n) (3 0 1 1) (P_0)
|
||||
* (F_n) (3 0 2 3) (F_0)
|
||||
*
|
||||
* The limiting distribution of metatiles is obtained by looking
|
||||
* at the four-way ratio between H_n, T_n, P_n and F_n as n tends
|
||||
* to infinity. To calculate this, we find the eigenvalues and
|
||||
* eigenvectors of the matrix, and extract the eigenvector
|
||||
* corresponding to the eigenvalue of largest magnitude. (Things
|
||||
* get more complicated in cases where that's not unique, but
|
||||
* here, it is.)
|
||||
*
|
||||
* That eigenvector is
|
||||
*
|
||||
* [ 1 ] [ 1 ]
|
||||
* [ (7 - 3 sqrt(5)) / 2 ] ~= [ 0.14589803375031545538 ]
|
||||
* [ 3 sqrt(5) - 6 ] [ 0.70820393249936908922 ]
|
||||
* [ (9 - 3 sqrt(5)) / 2 ] [ 1.14589803375031545538 ]
|
||||
*
|
||||
* So those are the limiting relative proportions of metatiles.
|
||||
*
|
||||
* So if we have a particular metatile, how likely is it for its
|
||||
* parent to be one of those? We have to adjust by the number of
|
||||
* metatiles of each type that each tile has as its children. For
|
||||
* example, the P and F tiles have one P child each, but the H has
|
||||
* three P children. So if we have a P, the proportion of H in its
|
||||
* potential ancestry is three times what's shown here. (And T
|
||||
* can't occur at all as a parent.)
|
||||
*
|
||||
* In other words, we should choose _each coordinate_ with
|
||||
* probability corresponding to one of those numbers (scaled down
|
||||
* so they all sum to 1). Continuing to use P as an example, it
|
||||
* will be:
|
||||
*
|
||||
* - child 4 of H with relative probability 1
|
||||
* - child 5 of H with relative probability 1
|
||||
* - child 6 of H with relative probability 1
|
||||
* - child 4 of P with relative probability 0.70820393249936908922
|
||||
* - child 3 of F with relative probability 1.14589803375031545538
|
||||
*
|
||||
* and then we obtain the true probabilities by scaling those
|
||||
* values down so that they sum to 1.
|
||||
*
|
||||
* The tables below give a reasonable approximation in 32-bit
|
||||
* integers to these proportions.
|
||||
*/
|
||||
|
||||
typedef struct MetatilePossibleParent {
|
||||
TileType type;
|
||||
unsigned index;
|
||||
unsigned long probability;
|
||||
} MetatilePossibleParent;
|
||||
|
||||
/* The above probabilities scaled up by 10000000 */
|
||||
#define PROB_H 10000000
|
||||
#define PROB_T 1458980
|
||||
#define PROB_P 7082039
|
||||
#define PROB_F 11458980
|
||||
|
||||
static const MetatilePossibleParent parents_H[] = {
|
||||
{ TT_H, 0, PROB_H },
|
||||
{ TT_H, 1, PROB_H },
|
||||
{ TT_H, 2, PROB_H },
|
||||
{ TT_T, 0, PROB_T },
|
||||
{ TT_P, 0, PROB_P },
|
||||
{ TT_P, 1, PROB_P },
|
||||
{ TT_F, 0, PROB_F },
|
||||
{ TT_F, 1, PROB_F },
|
||||
};
|
||||
static const MetatilePossibleParent parents_T[] = {
|
||||
{ TT_H, 3, PROB_H },
|
||||
};
|
||||
static const MetatilePossibleParent parents_P[] = {
|
||||
{ TT_H, 4, PROB_H },
|
||||
{ TT_H, 5, PROB_H },
|
||||
{ TT_H, 6, PROB_H },
|
||||
{ TT_P, 4, PROB_P },
|
||||
{ TT_F, 3, PROB_F },
|
||||
};
|
||||
static const MetatilePossibleParent parents_F[] = {
|
||||
{ TT_H, 8, PROB_H },
|
||||
{ TT_H, 9, PROB_H },
|
||||
{ TT_H, 12, PROB_H },
|
||||
{ TT_P, 5, PROB_P },
|
||||
{ TT_P, 10, PROB_P },
|
||||
{ TT_F, 6, PROB_F },
|
||||
{ TT_F, 8, PROB_F },
|
||||
{ TT_F, 10, PROB_F },
|
||||
};
|
||||
|
||||
#undef PROB_H
|
||||
#undef PROB_T
|
||||
#undef PROB_P
|
||||
#undef PROB_F
|
||||
|
||||
static const MetatilePossibleParent *const possible_parents[] = {
|
||||
parents_H, parents_T, parents_P, parents_F,
|
||||
};
|
||||
static const size_t n_possible_parents[] = {
|
||||
lenof(parents_H), lenof(parents_T), lenof(parents_P), lenof(parents_F),
|
||||
};
|
||||
|
||||
if (ctx->prototype->nc < n) {
|
||||
hc_make_space(ctx->prototype, n);
|
||||
while (ctx->prototype->nc < n) {
|
||||
TileType type = ctx->prototype->c[ctx->prototype->nc - 1].type;
|
||||
assert(ctx->prototype->c[ctx->prototype->nc - 1].index == -1);
|
||||
const MetatilePossibleParent *parents = permitted_parents[type];
|
||||
const MetatilePossibleParent *parents = possible_parents[type];
|
||||
size_t parent_index;
|
||||
if (ctx->rs) {
|
||||
parent_index = random_upto(ctx->rs, n_permitted_parents[type]);
|
||||
unsigned long limit = 0, value;
|
||||
size_t nparents = n_possible_parents[type], i;
|
||||
for (i = 0; i < nparents; i++)
|
||||
limit += parents[i].probability;
|
||||
value = random_upto(ctx->rs, limit);
|
||||
for (i = 0; i < nparents; i++) {
|
||||
if (value < parents[i].probability)
|
||||
break;
|
||||
value -= parents[i].probability;
|
||||
}
|
||||
assert(i < nparents);
|
||||
parent_index = i;
|
||||
} else {
|
||||
parent_index = 0;
|
||||
}
|
||||
|
Reference in New Issue
Block a user