mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-21 08:01:30 -07:00
Initial checkin of a portable framework for writing small GUI puzzle
games. [originally from svn r4138]
This commit is contained in:
624
net.c
Normal file
624
net.c
Normal file
@ -0,0 +1,624 @@
|
||||
/*
|
||||
* net.c: Net game.
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <assert.h>
|
||||
|
||||
#include "puzzles.h"
|
||||
#include "tree234.h"
|
||||
|
||||
/* Direction bitfields */
|
||||
#define R 0x01
|
||||
#define U 0x02
|
||||
#define L 0x04
|
||||
#define D 0x08
|
||||
#define LOCKED 0x10
|
||||
|
||||
/* Rotations: Anticlockwise, Clockwise, Flip, general rotate */
|
||||
#define A(x) ( (((x) & 0x07) << 1) | (((x) & 0x08) >> 3) )
|
||||
#define C(x) ( (((x) & 0x0E) >> 1) | (((x) & 0x01) << 3) )
|
||||
#define F(x) ( (((x) & 0x0C) >> 2) | (((x) & 0x03) << 2) )
|
||||
#define ROT(x, n) ( ((n)&3) == 0 ? (x) : \
|
||||
((n)&3) == 1 ? A(x) : \
|
||||
((n)&3) == 2 ? F(x) : C(x) )
|
||||
|
||||
/* X and Y displacements */
|
||||
#define X(x) ( (x) == R ? +1 : (x) == L ? -1 : 0 )
|
||||
#define Y(x) ( (x) == D ? +1 : (x) == U ? -1 : 0 )
|
||||
|
||||
/* Bit count */
|
||||
#define COUNT(x) ( (((x) & 0x08) >> 3) + (((x) & 0x04) >> 2) + \
|
||||
(((x) & 0x02) >> 1) + ((x) & 0x01) )
|
||||
|
||||
#define TILE_SIZE 32
|
||||
#define TILE_BORDER 1
|
||||
#define WINDOW_OFFSET 16
|
||||
|
||||
struct game_params {
|
||||
int width;
|
||||
int height;
|
||||
int wrapping;
|
||||
float barrier_probability;
|
||||
};
|
||||
|
||||
struct game_state {
|
||||
int width, height, wrapping, completed;
|
||||
unsigned char *tiles;
|
||||
unsigned char *barriers;
|
||||
};
|
||||
|
||||
#define OFFSET(x2,y2,x1,y1,dir,state) \
|
||||
( (x2) = ((x1) + (state)->width + X((dir))) % (state)->width, \
|
||||
(y2) = ((y1) + (state)->height + Y((dir))) % (state)->height)
|
||||
|
||||
#define index(state, a, x, y) ( a[(y) * (state)->width + (x)] )
|
||||
#define tile(state, x, y) index(state, (state)->tiles, x, y)
|
||||
#define barrier(state, x, y) index(state, (state)->barriers, x, y)
|
||||
|
||||
struct xyd {
|
||||
int x, y, direction;
|
||||
};
|
||||
|
||||
static int xyd_cmp(void *av, void *bv) {
|
||||
struct xyd *a = (struct xyd *)av;
|
||||
struct xyd *b = (struct xyd *)bv;
|
||||
if (a->x < b->x)
|
||||
return -1;
|
||||
if (a->x > b->x)
|
||||
return +1;
|
||||
if (a->y < b->y)
|
||||
return -1;
|
||||
if (a->y > b->y)
|
||||
return +1;
|
||||
if (a->direction < b->direction)
|
||||
return -1;
|
||||
if (a->direction > b->direction)
|
||||
return +1;
|
||||
return 0;
|
||||
};
|
||||
|
||||
static struct xyd *new_xyd(int x, int y, int direction)
|
||||
{
|
||||
struct xyd *xyd = snew(struct xyd);
|
||||
xyd->x = x;
|
||||
xyd->y = y;
|
||||
xyd->direction = direction;
|
||||
return xyd;
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Randomly select a new game seed.
|
||||
*/
|
||||
|
||||
char *new_game_seed(game_params *params)
|
||||
{
|
||||
/*
|
||||
* The full description of a Net game is far too large to
|
||||
* encode directly in the seed, so by default we'll have to go
|
||||
* for the simple approach of providing a random-number seed.
|
||||
*
|
||||
* (This does not restrict me from _later on_ inventing a seed
|
||||
* string syntax which can never be generated by this code -
|
||||
* for example, strings beginning with a letter - allowing me
|
||||
* to type in a precise game, and have new_game detect it and
|
||||
* understand it and do something completely different.)
|
||||
*/
|
||||
char buf[40];
|
||||
sprintf(buf, "%d", rand());
|
||||
return dupstr(buf);
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Construct an initial game state, given a seed and parameters.
|
||||
*/
|
||||
|
||||
game_state *new_game(game_params *params, char *seed)
|
||||
{
|
||||
random_state *rs;
|
||||
game_state *state;
|
||||
tree234 *possibilities, *barriers;
|
||||
int w, h, x, y, nbarriers;
|
||||
|
||||
assert(params->width > 2);
|
||||
assert(params->height > 2);
|
||||
|
||||
/*
|
||||
* Create a blank game state.
|
||||
*/
|
||||
state = snew(game_state);
|
||||
w = state->width = params->width;
|
||||
h = state->height = params->height;
|
||||
state->wrapping = params->wrapping;
|
||||
state->completed = FALSE;
|
||||
state->tiles = snewn(state->width * state->height, unsigned char);
|
||||
memset(state->tiles, 0, state->width * state->height);
|
||||
state->barriers = snewn(state->width * state->height, unsigned char);
|
||||
memset(state->barriers, 0, state->width * state->height);
|
||||
|
||||
/*
|
||||
* Set up border barriers if this is a non-wrapping game.
|
||||
*/
|
||||
if (!state->wrapping) {
|
||||
for (x = 0; x < state->width; x++) {
|
||||
barrier(state, x, 0) |= U;
|
||||
barrier(state, x, state->height-1) |= D;
|
||||
}
|
||||
for (y = 0; y < state->height; y++) {
|
||||
barrier(state, y, 0) |= L;
|
||||
barrier(state, y, state->width-1) |= R;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Seed the internal random number generator.
|
||||
*/
|
||||
rs = random_init(seed, strlen(seed));
|
||||
|
||||
/*
|
||||
* Construct the unshuffled grid.
|
||||
*
|
||||
* To do this, we simply start at the centre point, repeatedly
|
||||
* choose a random possibility out of the available ways to
|
||||
* extend a used square into an unused one, and do it. After
|
||||
* extending the third line out of a square, we remove the
|
||||
* fourth from the possibilities list to avoid any full-cross
|
||||
* squares (which would make the game too easy because they
|
||||
* only have one orientation).
|
||||
*
|
||||
* The slightly worrying thing is the avoidance of full-cross
|
||||
* squares. Can this cause our unsophisticated construction
|
||||
* algorithm to paint itself into a corner, by getting into a
|
||||
* situation where there are some unreached squares and the
|
||||
* only way to reach any of them is to extend a T-piece into a
|
||||
* full cross?
|
||||
*
|
||||
* Answer: no it can't, and here's a proof.
|
||||
*
|
||||
* Any contiguous group of such unreachable squares must be
|
||||
* surrounded on _all_ sides by T-pieces pointing away from the
|
||||
* group. (If not, then there is a square which can be extended
|
||||
* into one of the `unreachable' ones, and so it wasn't
|
||||
* unreachable after all.) In particular, this implies that
|
||||
* each contiguous group of unreachable squares must be
|
||||
* rectangular in shape (any deviation from that yields a
|
||||
* non-T-piece next to an `unreachable' square).
|
||||
*
|
||||
* So we have a rectangle of unreachable squares, with T-pieces
|
||||
* forming a solid border around the rectangle. The corners of
|
||||
* that border must be connected (since every tile connects all
|
||||
* the lines arriving in it), and therefore the border must
|
||||
* form a closed loop around the rectangle.
|
||||
*
|
||||
* But this can't have happened in the first place, since we
|
||||
* _know_ we've avoided creating closed loops! Hence, no such
|
||||
* situation can ever arise, and the naive grid construction
|
||||
* algorithm will guaranteeably result in a complete grid
|
||||
* containing no unreached squares, no full crosses _and_ no
|
||||
* closed loops. []
|
||||
*/
|
||||
possibilities = newtree234(xyd_cmp);
|
||||
add234(possibilities, new_xyd(w/2, h/2, R));
|
||||
add234(possibilities, new_xyd(w/2, h/2, U));
|
||||
add234(possibilities, new_xyd(w/2, h/2, L));
|
||||
add234(possibilities, new_xyd(w/2, h/2, D));
|
||||
|
||||
while (count234(possibilities) > 0) {
|
||||
int i;
|
||||
struct xyd *xyd;
|
||||
int x1, y1, d1, x2, y2, d2, d;
|
||||
|
||||
/*
|
||||
* Extract a randomly chosen possibility from the list.
|
||||
*/
|
||||
i = random_upto(rs, count234(possibilities));
|
||||
xyd = delpos234(possibilities, i);
|
||||
x1 = xyd->x;
|
||||
y1 = xyd->y;
|
||||
d1 = xyd->direction;
|
||||
sfree(xyd);
|
||||
|
||||
OFFSET(x2, y2, x1, y1, d1, state);
|
||||
d2 = F(d1);
|
||||
#ifdef DEBUG
|
||||
printf("picked (%d,%d,%c) <-> (%d,%d,%c)\n",
|
||||
x1, y1, "0RU3L567D9abcdef"[d1], x2, y2, "0RU3L567D9abcdef"[d2]);
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Make the connection. (We should be moving to an as yet
|
||||
* unused tile.)
|
||||
*/
|
||||
tile(state, x1, y1) |= d1;
|
||||
assert(tile(state, x2, y2) == 0);
|
||||
tile(state, x2, y2) |= d2;
|
||||
|
||||
/*
|
||||
* If we have created a T-piece, remove its last
|
||||
* possibility.
|
||||
*/
|
||||
if (COUNT(tile(state, x1, y1)) == 3) {
|
||||
struct xyd xyd1, *xydp;
|
||||
|
||||
xyd1.x = x1;
|
||||
xyd1.y = y1;
|
||||
xyd1.direction = 0x0F ^ tile(state, x1, y1);
|
||||
|
||||
xydp = find234(possibilities, &xyd1, NULL);
|
||||
|
||||
if (xydp) {
|
||||
#ifdef DEBUG
|
||||
printf("T-piece; removing (%d,%d,%c)\n",
|
||||
xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
|
||||
#endif
|
||||
del234(possibilities, xydp);
|
||||
sfree(xydp);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Remove all other possibilities that were pointing at the
|
||||
* tile we've just moved into.
|
||||
*/
|
||||
for (d = 1; d < 0x10; d <<= 1) {
|
||||
int x3, y3, d3;
|
||||
struct xyd xyd1, *xydp;
|
||||
|
||||
OFFSET(x3, y3, x2, y2, d, state);
|
||||
d3 = F(d);
|
||||
|
||||
xyd1.x = x3;
|
||||
xyd1.y = y3;
|
||||
xyd1.direction = d3;
|
||||
|
||||
xydp = find234(possibilities, &xyd1, NULL);
|
||||
|
||||
if (xydp) {
|
||||
#ifdef DEBUG
|
||||
printf("Loop avoidance; removing (%d,%d,%c)\n",
|
||||
xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
|
||||
#endif
|
||||
del234(possibilities, xydp);
|
||||
sfree(xydp);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Add new possibilities to the list for moving _out_ of
|
||||
* the tile we have just moved into.
|
||||
*/
|
||||
for (d = 1; d < 0x10; d <<= 1) {
|
||||
int x3, y3;
|
||||
|
||||
if (d == d2)
|
||||
continue; /* we've got this one already */
|
||||
|
||||
if (!state->wrapping) {
|
||||
if (d == U && y2 == 0)
|
||||
continue;
|
||||
if (d == D && y2 == state->height-1)
|
||||
continue;
|
||||
if (d == L && x2 == 0)
|
||||
continue;
|
||||
if (d == R && x2 == state->width-1)
|
||||
continue;
|
||||
}
|
||||
|
||||
OFFSET(x3, y3, x2, y2, d, state);
|
||||
|
||||
if (tile(state, x3, y3))
|
||||
continue; /* this would create a loop */
|
||||
|
||||
#ifdef DEBUG
|
||||
printf("New frontier; adding (%d,%d,%c)\n",
|
||||
x2, y2, "0RU3L567D9abcdef"[d]);
|
||||
#endif
|
||||
add234(possibilities, new_xyd(x2, y2, d));
|
||||
}
|
||||
}
|
||||
/* Having done that, we should have no possibilities remaining. */
|
||||
assert(count234(possibilities) == 0);
|
||||
freetree234(possibilities);
|
||||
|
||||
/*
|
||||
* Now compute a list of the possible barrier locations.
|
||||
*/
|
||||
barriers = newtree234(xyd_cmp);
|
||||
for (y = 0; y < state->height - (!state->wrapping); y++) {
|
||||
for (x = 0; x < state->width - (!state->wrapping); x++) {
|
||||
|
||||
if (!(tile(state, x, y) & R))
|
||||
add234(barriers, new_xyd(x, y, R));
|
||||
if (!(tile(state, x, y) & D))
|
||||
add234(barriers, new_xyd(x, y, D));
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Now shuffle the grid.
|
||||
*/
|
||||
for (y = 0; y < state->height - (!state->wrapping); y++) {
|
||||
for (x = 0; x < state->width - (!state->wrapping); x++) {
|
||||
int orig = tile(state, x, y);
|
||||
int rot = random_upto(rs, 4);
|
||||
tile(state, x, y) = ROT(orig, rot);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* And now choose barrier locations. (We carefully do this
|
||||
* _after_ shuffling, so that changing the barrier rate in the
|
||||
* params while keeping the game seed the same will give the
|
||||
* same shuffled grid and _only_ change the barrier locations.
|
||||
* Also the way we choose barrier locations, by repeatedly
|
||||
* choosing one possibility from the list until we have enough,
|
||||
* is designed to ensure that raising the barrier rate while
|
||||
* keeping the seed the same will provide a superset of the
|
||||
* previous barrier set - i.e. if you ask for 10 barriers, and
|
||||
* then decide that's still too hard and ask for 20, you'll get
|
||||
* the original 10 plus 10 more, rather than getting 20 new
|
||||
* ones and the chance of remembering your first 10.)
|
||||
*/
|
||||
nbarriers = params->barrier_probability * count234(barriers);
|
||||
assert(nbarriers >= 0 && nbarriers <= count234(barriers));
|
||||
|
||||
while (nbarriers > 0) {
|
||||
int i;
|
||||
struct xyd *xyd;
|
||||
int x1, y1, d1, x2, y2, d2;
|
||||
|
||||
/*
|
||||
* Extract a randomly chosen barrier from the list.
|
||||
*/
|
||||
i = random_upto(rs, count234(barriers));
|
||||
xyd = delpos234(barriers, i);
|
||||
|
||||
assert(xyd != NULL);
|
||||
|
||||
x1 = xyd->x;
|
||||
y1 = xyd->y;
|
||||
d1 = xyd->direction;
|
||||
sfree(xyd);
|
||||
|
||||
OFFSET(x2, y2, x1, y1, d1, state);
|
||||
d2 = F(d1);
|
||||
|
||||
barrier(state, x1, y1) |= d1;
|
||||
barrier(state, x2, y2) |= d2;
|
||||
|
||||
nbarriers--;
|
||||
}
|
||||
|
||||
/*
|
||||
* Clean up the rest of the barrier list.
|
||||
*/
|
||||
{
|
||||
struct xyd *xyd;
|
||||
|
||||
while ( (xyd = delpos234(barriers, 0)) != NULL)
|
||||
sfree(xyd);
|
||||
|
||||
freetree234(barriers);
|
||||
}
|
||||
|
||||
random_free(rs);
|
||||
|
||||
return state;
|
||||
}
|
||||
|
||||
game_state *dup_game(game_state *state)
|
||||
{
|
||||
game_state *ret;
|
||||
|
||||
ret = snew(game_state);
|
||||
ret->width = state->width;
|
||||
ret->height = state->height;
|
||||
ret->wrapping = state->wrapping;
|
||||
ret->completed = state->completed;
|
||||
ret->tiles = snewn(state->width * state->height, unsigned char);
|
||||
memcpy(ret->tiles, state->tiles, state->width * state->height);
|
||||
ret->barriers = snewn(state->width * state->height, unsigned char);
|
||||
memcpy(ret->barriers, state->barriers, state->width * state->height);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
void free_game(game_state *state)
|
||||
{
|
||||
sfree(state->tiles);
|
||||
sfree(state->barriers);
|
||||
sfree(state);
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Utility routine.
|
||||
*/
|
||||
|
||||
/*
|
||||
* Compute which squares are reachable from the centre square, as a
|
||||
* quick visual aid to determining how close the game is to
|
||||
* completion. This is also a simple way to tell if the game _is_
|
||||
* completed - just call this function and see whether every square
|
||||
* is marked active.
|
||||
*/
|
||||
static unsigned char *compute_active(game_state *state)
|
||||
{
|
||||
unsigned char *active;
|
||||
tree234 *todo;
|
||||
struct xyd *xyd;
|
||||
|
||||
active = snewn(state->width * state->height, unsigned char);
|
||||
memset(active, 0, state->width * state->height);
|
||||
|
||||
/*
|
||||
* We only store (x,y) pairs in todo, but it's easier to reuse
|
||||
* xyd_cmp and just store direction 0 every time.
|
||||
*/
|
||||
todo = newtree234(xyd_cmp);
|
||||
add234(todo, new_xyd(state->width / 2, state->height / 2, 0));
|
||||
|
||||
while ( (xyd = delpos234(todo, 0)) != NULL) {
|
||||
int x1, y1, d1, x2, y2, d2;
|
||||
|
||||
x1 = xyd->x;
|
||||
y1 = xyd->y;
|
||||
sfree(xyd);
|
||||
|
||||
for (d1 = 1; d1 < 0x10; d1 <<= 1) {
|
||||
OFFSET(x2, y2, x1, y1, d1, state);
|
||||
d2 = F(d1);
|
||||
|
||||
/*
|
||||
* If the next tile in this direction is connected to
|
||||
* us, and there isn't a barrier in the way, and it
|
||||
* isn't already marked active, then mark it active and
|
||||
* add it to the to-examine list.
|
||||
*/
|
||||
if ((tile(state, x1, y1) & d1) &&
|
||||
(tile(state, x2, y2) & d2) &&
|
||||
!(barrier(state, x1, y1) & d1) &&
|
||||
!index(state, active, x2, y2)) {
|
||||
index(state, active, x2, y2) = 1;
|
||||
add234(todo, new_xyd(x2, y2, 0));
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Now we expect the todo list to have shrunk to zero size. */
|
||||
assert(count234(todo) == 0);
|
||||
freetree234(todo);
|
||||
|
||||
return active;
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Process a move.
|
||||
*/
|
||||
game_state *make_move(game_state *state, int x, int y, int button)
|
||||
{
|
||||
game_state *ret;
|
||||
int tx, ty, orig;
|
||||
|
||||
/*
|
||||
* All moves in Net are made with the mouse.
|
||||
*/
|
||||
if (button != LEFT_BUTTON &&
|
||||
button != MIDDLE_BUTTON &&
|
||||
button != RIGHT_BUTTON)
|
||||
return NULL;
|
||||
|
||||
/*
|
||||
* The button must have been clicked on a valid tile.
|
||||
*/
|
||||
x -= WINDOW_OFFSET;
|
||||
y -= WINDOW_OFFSET;
|
||||
if (x < 0 || y < 0)
|
||||
return NULL;
|
||||
tx = x / TILE_SIZE;
|
||||
ty = y / TILE_SIZE;
|
||||
if (tx >= state->width || ty >= state->height)
|
||||
return NULL;
|
||||
if (tx % TILE_SIZE >= TILE_SIZE - TILE_BORDER ||
|
||||
ty % TILE_SIZE >= TILE_SIZE - TILE_BORDER)
|
||||
return NULL;
|
||||
|
||||
/*
|
||||
* The middle button locks or unlocks a tile. (A locked tile
|
||||
* cannot be turned, and is visually marked as being locked.
|
||||
* This is a convenience for the player, so that once they are
|
||||
* sure which way round a tile goes, they can lock it and thus
|
||||
* avoid forgetting later on that they'd already done that one;
|
||||
* and the locking also prevents them turning the tile by
|
||||
* accident. If they change their mind, another middle click
|
||||
* unlocks it.)
|
||||
*/
|
||||
if (button == MIDDLE_BUTTON) {
|
||||
ret = dup_game(state);
|
||||
tile(ret, tx, ty) ^= LOCKED;
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* The left and right buttons have no effect if clicked on a
|
||||
* locked tile.
|
||||
*/
|
||||
if (tile(state, tx, ty) & LOCKED)
|
||||
return NULL;
|
||||
|
||||
/*
|
||||
* Otherwise, turn the tile one way or the other. Left button
|
||||
* turns anticlockwise; right button turns clockwise.
|
||||
*/
|
||||
ret = dup_game(state);
|
||||
orig = tile(ret, tx, ty);
|
||||
if (button == LEFT_BUTTON)
|
||||
tile(ret, tx, ty) = A(orig);
|
||||
else
|
||||
tile(ret, tx, ty) = C(orig);
|
||||
|
||||
/*
|
||||
* Check whether the game has been completed.
|
||||
*/
|
||||
{
|
||||
unsigned char *active = compute_active(ret);
|
||||
int x1, y1;
|
||||
int complete = TRUE;
|
||||
|
||||
for (x1 = 0; x1 < ret->width; x1++)
|
||||
for (y1 = 0; y1 < ret->height; y1++)
|
||||
if (!index(ret, active, x1, y1)) {
|
||||
complete = FALSE;
|
||||
goto break_label; /* break out of two loops at once */
|
||||
}
|
||||
break_label:
|
||||
|
||||
sfree(active);
|
||||
|
||||
if (complete)
|
||||
ret->completed = TRUE;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Routines for drawing the game position on the screen.
|
||||
*/
|
||||
|
||||
#ifndef TESTMODE /* FIXME: should be #ifdef */
|
||||
|
||||
int main(void)
|
||||
{
|
||||
game_params params = { 13, 11, TRUE, 0.1 };
|
||||
char *seed;
|
||||
game_state *state;
|
||||
unsigned char *active;
|
||||
|
||||
seed = "123";
|
||||
state = new_game(¶ms, seed);
|
||||
active = compute_active(state);
|
||||
|
||||
{
|
||||
int x, y;
|
||||
|
||||
printf("\033)0\016");
|
||||
for (y = 0; y < state->height; y++) {
|
||||
for (x = 0; x < state->width; x++) {
|
||||
if (index(state, active, x, y))
|
||||
printf("\033[1;32m");
|
||||
else
|
||||
printf("\033[0;31m");
|
||||
putchar("~``m`qjv`lxtkwua"[tile(state, x, y)]);
|
||||
}
|
||||
printf("\033[m\n");
|
||||
}
|
||||
printf("\017");
|
||||
}
|
||||
|
||||
free_game(state);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif
|
Reference in New Issue
Block a user