Initial checkin of a portable framework for writing small GUI puzzle

games.

[originally from svn r4138]
This commit is contained in:
Simon Tatham
2004-04-25 14:27:58 +00:00
commit 96dbb537ee
12 changed files with 3475 additions and 0 deletions

4
.cvsignore Normal file
View File

@ -0,0 +1,4 @@
Makefile*
net cube
*.exe *.obj *.o
*notes

21
Recipe Normal file
View File

@ -0,0 +1,21 @@
# -*- makefile -*-
#
# This file describes which puzzle binaries are made up from which
# object and resource files. It is processed into the various
# Makefiles by means of a Perl script. Makefile changes should
# really be made by editing this file and/or the Perl script, not
# by editing the actual Makefiles.
!name puzzles
!makefile gtk Makefile
#!makefile vc Makefile.vc
COMMON = midend malloc
NET = net random tree234
net : [X] gtk COMMON NET
#cube : [X] gtk COMMON CUBE
#net : [G] windows COMMON NET
#cube : [G] windows COMMON CUBE

3
cube.c Normal file
View File

@ -0,0 +1,3 @@
/*
* cube.c: Cube game.
*/

23
gtk.c Normal file
View File

@ -0,0 +1,23 @@
/*
* gtk.c: GTK front end for my puzzle collection.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include "puzzles.h"
void fatal(char *fmt, ...)
{
va_list ap;
fprintf(stderr, "fatal error: ");
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
fprintf(stderr, "\n");
exit(1);
}

52
malloc.c Normal file
View File

@ -0,0 +1,52 @@
/*
* malloc.c: safe wrappers around malloc, realloc, free, strdup
*/
#include <stdlib.h>
#include "puzzles.h"
/*
* smalloc should guarantee to return a useful pointer - Halibut
* can do nothing except die when it's out of memory anyway.
*/
void *smalloc(int size) {
void *p;
p = malloc(size);
if (!p)
fatal("out of memory");
return p;
}
/*
* sfree should guaranteeably deal gracefully with freeing NULL
*/
void sfree(void *p) {
if (p) {
free(p);
}
}
/*
* srealloc should guaranteeably be able to realloc NULL
*/
void *srealloc(void *p, int size) {
void *q;
if (p) {
q = realloc(p, size);
} else {
q = malloc(size);
}
if (!q)
fatal("out of memory");
return q;
}
/*
* dupstr is like strdup, but with the never-return-NULL property
* of smalloc (and also reliably defined in all environments :-)
*/
char *dupstr(char *s) {
char *r = smalloc(1+strlen(s));
strcpy(r,s);
return r;
}

6
midend.c Normal file
View File

@ -0,0 +1,6 @@
/*
* midend.c: general middle fragment sitting between the
* platform-specific front end and game-specific back end.
* Maintains a move list, takes care of Undo and Redo commands, and
* processes standard keystrokes for undo/redo/new/restart/quit.
*/

624
net.c Normal file
View File

@ -0,0 +1,624 @@
/*
* net.c: Net game.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "puzzles.h"
#include "tree234.h"
/* Direction bitfields */
#define R 0x01
#define U 0x02
#define L 0x04
#define D 0x08
#define LOCKED 0x10
/* Rotations: Anticlockwise, Clockwise, Flip, general rotate */
#define A(x) ( (((x) & 0x07) << 1) | (((x) & 0x08) >> 3) )
#define C(x) ( (((x) & 0x0E) >> 1) | (((x) & 0x01) << 3) )
#define F(x) ( (((x) & 0x0C) >> 2) | (((x) & 0x03) << 2) )
#define ROT(x, n) ( ((n)&3) == 0 ? (x) : \
((n)&3) == 1 ? A(x) : \
((n)&3) == 2 ? F(x) : C(x) )
/* X and Y displacements */
#define X(x) ( (x) == R ? +1 : (x) == L ? -1 : 0 )
#define Y(x) ( (x) == D ? +1 : (x) == U ? -1 : 0 )
/* Bit count */
#define COUNT(x) ( (((x) & 0x08) >> 3) + (((x) & 0x04) >> 2) + \
(((x) & 0x02) >> 1) + ((x) & 0x01) )
#define TILE_SIZE 32
#define TILE_BORDER 1
#define WINDOW_OFFSET 16
struct game_params {
int width;
int height;
int wrapping;
float barrier_probability;
};
struct game_state {
int width, height, wrapping, completed;
unsigned char *tiles;
unsigned char *barriers;
};
#define OFFSET(x2,y2,x1,y1,dir,state) \
( (x2) = ((x1) + (state)->width + X((dir))) % (state)->width, \
(y2) = ((y1) + (state)->height + Y((dir))) % (state)->height)
#define index(state, a, x, y) ( a[(y) * (state)->width + (x)] )
#define tile(state, x, y) index(state, (state)->tiles, x, y)
#define barrier(state, x, y) index(state, (state)->barriers, x, y)
struct xyd {
int x, y, direction;
};
static int xyd_cmp(void *av, void *bv) {
struct xyd *a = (struct xyd *)av;
struct xyd *b = (struct xyd *)bv;
if (a->x < b->x)
return -1;
if (a->x > b->x)
return +1;
if (a->y < b->y)
return -1;
if (a->y > b->y)
return +1;
if (a->direction < b->direction)
return -1;
if (a->direction > b->direction)
return +1;
return 0;
};
static struct xyd *new_xyd(int x, int y, int direction)
{
struct xyd *xyd = snew(struct xyd);
xyd->x = x;
xyd->y = y;
xyd->direction = direction;
return xyd;
}
/* ----------------------------------------------------------------------
* Randomly select a new game seed.
*/
char *new_game_seed(game_params *params)
{
/*
* The full description of a Net game is far too large to
* encode directly in the seed, so by default we'll have to go
* for the simple approach of providing a random-number seed.
*
* (This does not restrict me from _later on_ inventing a seed
* string syntax which can never be generated by this code -
* for example, strings beginning with a letter - allowing me
* to type in a precise game, and have new_game detect it and
* understand it and do something completely different.)
*/
char buf[40];
sprintf(buf, "%d", rand());
return dupstr(buf);
}
/* ----------------------------------------------------------------------
* Construct an initial game state, given a seed and parameters.
*/
game_state *new_game(game_params *params, char *seed)
{
random_state *rs;
game_state *state;
tree234 *possibilities, *barriers;
int w, h, x, y, nbarriers;
assert(params->width > 2);
assert(params->height > 2);
/*
* Create a blank game state.
*/
state = snew(game_state);
w = state->width = params->width;
h = state->height = params->height;
state->wrapping = params->wrapping;
state->completed = FALSE;
state->tiles = snewn(state->width * state->height, unsigned char);
memset(state->tiles, 0, state->width * state->height);
state->barriers = snewn(state->width * state->height, unsigned char);
memset(state->barriers, 0, state->width * state->height);
/*
* Set up border barriers if this is a non-wrapping game.
*/
if (!state->wrapping) {
for (x = 0; x < state->width; x++) {
barrier(state, x, 0) |= U;
barrier(state, x, state->height-1) |= D;
}
for (y = 0; y < state->height; y++) {
barrier(state, y, 0) |= L;
barrier(state, y, state->width-1) |= R;
}
}
/*
* Seed the internal random number generator.
*/
rs = random_init(seed, strlen(seed));
/*
* Construct the unshuffled grid.
*
* To do this, we simply start at the centre point, repeatedly
* choose a random possibility out of the available ways to
* extend a used square into an unused one, and do it. After
* extending the third line out of a square, we remove the
* fourth from the possibilities list to avoid any full-cross
* squares (which would make the game too easy because they
* only have one orientation).
*
* The slightly worrying thing is the avoidance of full-cross
* squares. Can this cause our unsophisticated construction
* algorithm to paint itself into a corner, by getting into a
* situation where there are some unreached squares and the
* only way to reach any of them is to extend a T-piece into a
* full cross?
*
* Answer: no it can't, and here's a proof.
*
* Any contiguous group of such unreachable squares must be
* surrounded on _all_ sides by T-pieces pointing away from the
* group. (If not, then there is a square which can be extended
* into one of the `unreachable' ones, and so it wasn't
* unreachable after all.) In particular, this implies that
* each contiguous group of unreachable squares must be
* rectangular in shape (any deviation from that yields a
* non-T-piece next to an `unreachable' square).
*
* So we have a rectangle of unreachable squares, with T-pieces
* forming a solid border around the rectangle. The corners of
* that border must be connected (since every tile connects all
* the lines arriving in it), and therefore the border must
* form a closed loop around the rectangle.
*
* But this can't have happened in the first place, since we
* _know_ we've avoided creating closed loops! Hence, no such
* situation can ever arise, and the naive grid construction
* algorithm will guaranteeably result in a complete grid
* containing no unreached squares, no full crosses _and_ no
* closed loops. []
*/
possibilities = newtree234(xyd_cmp);
add234(possibilities, new_xyd(w/2, h/2, R));
add234(possibilities, new_xyd(w/2, h/2, U));
add234(possibilities, new_xyd(w/2, h/2, L));
add234(possibilities, new_xyd(w/2, h/2, D));
while (count234(possibilities) > 0) {
int i;
struct xyd *xyd;
int x1, y1, d1, x2, y2, d2, d;
/*
* Extract a randomly chosen possibility from the list.
*/
i = random_upto(rs, count234(possibilities));
xyd = delpos234(possibilities, i);
x1 = xyd->x;
y1 = xyd->y;
d1 = xyd->direction;
sfree(xyd);
OFFSET(x2, y2, x1, y1, d1, state);
d2 = F(d1);
#ifdef DEBUG
printf("picked (%d,%d,%c) <-> (%d,%d,%c)\n",
x1, y1, "0RU3L567D9abcdef"[d1], x2, y2, "0RU3L567D9abcdef"[d2]);
#endif
/*
* Make the connection. (We should be moving to an as yet
* unused tile.)
*/
tile(state, x1, y1) |= d1;
assert(tile(state, x2, y2) == 0);
tile(state, x2, y2) |= d2;
/*
* If we have created a T-piece, remove its last
* possibility.
*/
if (COUNT(tile(state, x1, y1)) == 3) {
struct xyd xyd1, *xydp;
xyd1.x = x1;
xyd1.y = y1;
xyd1.direction = 0x0F ^ tile(state, x1, y1);
xydp = find234(possibilities, &xyd1, NULL);
if (xydp) {
#ifdef DEBUG
printf("T-piece; removing (%d,%d,%c)\n",
xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
#endif
del234(possibilities, xydp);
sfree(xydp);
}
}
/*
* Remove all other possibilities that were pointing at the
* tile we've just moved into.
*/
for (d = 1; d < 0x10; d <<= 1) {
int x3, y3, d3;
struct xyd xyd1, *xydp;
OFFSET(x3, y3, x2, y2, d, state);
d3 = F(d);
xyd1.x = x3;
xyd1.y = y3;
xyd1.direction = d3;
xydp = find234(possibilities, &xyd1, NULL);
if (xydp) {
#ifdef DEBUG
printf("Loop avoidance; removing (%d,%d,%c)\n",
xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
#endif
del234(possibilities, xydp);
sfree(xydp);
}
}
/*
* Add new possibilities to the list for moving _out_ of
* the tile we have just moved into.
*/
for (d = 1; d < 0x10; d <<= 1) {
int x3, y3;
if (d == d2)
continue; /* we've got this one already */
if (!state->wrapping) {
if (d == U && y2 == 0)
continue;
if (d == D && y2 == state->height-1)
continue;
if (d == L && x2 == 0)
continue;
if (d == R && x2 == state->width-1)
continue;
}
OFFSET(x3, y3, x2, y2, d, state);
if (tile(state, x3, y3))
continue; /* this would create a loop */
#ifdef DEBUG
printf("New frontier; adding (%d,%d,%c)\n",
x2, y2, "0RU3L567D9abcdef"[d]);
#endif
add234(possibilities, new_xyd(x2, y2, d));
}
}
/* Having done that, we should have no possibilities remaining. */
assert(count234(possibilities) == 0);
freetree234(possibilities);
/*
* Now compute a list of the possible barrier locations.
*/
barriers = newtree234(xyd_cmp);
for (y = 0; y < state->height - (!state->wrapping); y++) {
for (x = 0; x < state->width - (!state->wrapping); x++) {
if (!(tile(state, x, y) & R))
add234(barriers, new_xyd(x, y, R));
if (!(tile(state, x, y) & D))
add234(barriers, new_xyd(x, y, D));
}
}
/*
* Now shuffle the grid.
*/
for (y = 0; y < state->height - (!state->wrapping); y++) {
for (x = 0; x < state->width - (!state->wrapping); x++) {
int orig = tile(state, x, y);
int rot = random_upto(rs, 4);
tile(state, x, y) = ROT(orig, rot);
}
}
/*
* And now choose barrier locations. (We carefully do this
* _after_ shuffling, so that changing the barrier rate in the
* params while keeping the game seed the same will give the
* same shuffled grid and _only_ change the barrier locations.
* Also the way we choose barrier locations, by repeatedly
* choosing one possibility from the list until we have enough,
* is designed to ensure that raising the barrier rate while
* keeping the seed the same will provide a superset of the
* previous barrier set - i.e. if you ask for 10 barriers, and
* then decide that's still too hard and ask for 20, you'll get
* the original 10 plus 10 more, rather than getting 20 new
* ones and the chance of remembering your first 10.)
*/
nbarriers = params->barrier_probability * count234(barriers);
assert(nbarriers >= 0 && nbarriers <= count234(barriers));
while (nbarriers > 0) {
int i;
struct xyd *xyd;
int x1, y1, d1, x2, y2, d2;
/*
* Extract a randomly chosen barrier from the list.
*/
i = random_upto(rs, count234(barriers));
xyd = delpos234(barriers, i);
assert(xyd != NULL);
x1 = xyd->x;
y1 = xyd->y;
d1 = xyd->direction;
sfree(xyd);
OFFSET(x2, y2, x1, y1, d1, state);
d2 = F(d1);
barrier(state, x1, y1) |= d1;
barrier(state, x2, y2) |= d2;
nbarriers--;
}
/*
* Clean up the rest of the barrier list.
*/
{
struct xyd *xyd;
while ( (xyd = delpos234(barriers, 0)) != NULL)
sfree(xyd);
freetree234(barriers);
}
random_free(rs);
return state;
}
game_state *dup_game(game_state *state)
{
game_state *ret;
ret = snew(game_state);
ret->width = state->width;
ret->height = state->height;
ret->wrapping = state->wrapping;
ret->completed = state->completed;
ret->tiles = snewn(state->width * state->height, unsigned char);
memcpy(ret->tiles, state->tiles, state->width * state->height);
ret->barriers = snewn(state->width * state->height, unsigned char);
memcpy(ret->barriers, state->barriers, state->width * state->height);
return ret;
}
void free_game(game_state *state)
{
sfree(state->tiles);
sfree(state->barriers);
sfree(state);
}
/* ----------------------------------------------------------------------
* Utility routine.
*/
/*
* Compute which squares are reachable from the centre square, as a
* quick visual aid to determining how close the game is to
* completion. This is also a simple way to tell if the game _is_
* completed - just call this function and see whether every square
* is marked active.
*/
static unsigned char *compute_active(game_state *state)
{
unsigned char *active;
tree234 *todo;
struct xyd *xyd;
active = snewn(state->width * state->height, unsigned char);
memset(active, 0, state->width * state->height);
/*
* We only store (x,y) pairs in todo, but it's easier to reuse
* xyd_cmp and just store direction 0 every time.
*/
todo = newtree234(xyd_cmp);
add234(todo, new_xyd(state->width / 2, state->height / 2, 0));
while ( (xyd = delpos234(todo, 0)) != NULL) {
int x1, y1, d1, x2, y2, d2;
x1 = xyd->x;
y1 = xyd->y;
sfree(xyd);
for (d1 = 1; d1 < 0x10; d1 <<= 1) {
OFFSET(x2, y2, x1, y1, d1, state);
d2 = F(d1);
/*
* If the next tile in this direction is connected to
* us, and there isn't a barrier in the way, and it
* isn't already marked active, then mark it active and
* add it to the to-examine list.
*/
if ((tile(state, x1, y1) & d1) &&
(tile(state, x2, y2) & d2) &&
!(barrier(state, x1, y1) & d1) &&
!index(state, active, x2, y2)) {
index(state, active, x2, y2) = 1;
add234(todo, new_xyd(x2, y2, 0));
}
}
}
/* Now we expect the todo list to have shrunk to zero size. */
assert(count234(todo) == 0);
freetree234(todo);
return active;
}
/* ----------------------------------------------------------------------
* Process a move.
*/
game_state *make_move(game_state *state, int x, int y, int button)
{
game_state *ret;
int tx, ty, orig;
/*
* All moves in Net are made with the mouse.
*/
if (button != LEFT_BUTTON &&
button != MIDDLE_BUTTON &&
button != RIGHT_BUTTON)
return NULL;
/*
* The button must have been clicked on a valid tile.
*/
x -= WINDOW_OFFSET;
y -= WINDOW_OFFSET;
if (x < 0 || y < 0)
return NULL;
tx = x / TILE_SIZE;
ty = y / TILE_SIZE;
if (tx >= state->width || ty >= state->height)
return NULL;
if (tx % TILE_SIZE >= TILE_SIZE - TILE_BORDER ||
ty % TILE_SIZE >= TILE_SIZE - TILE_BORDER)
return NULL;
/*
* The middle button locks or unlocks a tile. (A locked tile
* cannot be turned, and is visually marked as being locked.
* This is a convenience for the player, so that once they are
* sure which way round a tile goes, they can lock it and thus
* avoid forgetting later on that they'd already done that one;
* and the locking also prevents them turning the tile by
* accident. If they change their mind, another middle click
* unlocks it.)
*/
if (button == MIDDLE_BUTTON) {
ret = dup_game(state);
tile(ret, tx, ty) ^= LOCKED;
return ret;
}
/*
* The left and right buttons have no effect if clicked on a
* locked tile.
*/
if (tile(state, tx, ty) & LOCKED)
return NULL;
/*
* Otherwise, turn the tile one way or the other. Left button
* turns anticlockwise; right button turns clockwise.
*/
ret = dup_game(state);
orig = tile(ret, tx, ty);
if (button == LEFT_BUTTON)
tile(ret, tx, ty) = A(orig);
else
tile(ret, tx, ty) = C(orig);
/*
* Check whether the game has been completed.
*/
{
unsigned char *active = compute_active(ret);
int x1, y1;
int complete = TRUE;
for (x1 = 0; x1 < ret->width; x1++)
for (y1 = 0; y1 < ret->height; y1++)
if (!index(ret, active, x1, y1)) {
complete = FALSE;
goto break_label; /* break out of two loops at once */
}
break_label:
sfree(active);
if (complete)
ret->completed = TRUE;
}
return ret;
}
/* ----------------------------------------------------------------------
* Routines for drawing the game position on the screen.
*/
#ifndef TESTMODE /* FIXME: should be #ifdef */
int main(void)
{
game_params params = { 13, 11, TRUE, 0.1 };
char *seed;
game_state *state;
unsigned char *active;
seed = "123";
state = new_game(&params, seed);
active = compute_active(state);
{
int x, y;
printf("\033)0\016");
for (y = 0; y < state->height; y++) {
for (x = 0; x < state->width; x++) {
if (index(state, active, x, y))
printf("\033[1;32m");
else
printf("\033[0;31m");
putchar("~``m`qjv`lxtkwua"[tile(state, x, y)]);
}
printf("\033[m\n");
}
printf("\017");
}
free_game(state);
return 0;
}
#endif

61
puzzles.h Normal file
View File

@ -0,0 +1,61 @@
/*
* puzzles.h: header file for my puzzle collection
*/
#ifndef PUZZLES_PUZZLES_H
#define PUZZLES_PUZZLES_H
#ifndef TRUE
#define TRUE 1
#endif
#ifndef FALSE
#define FALSE 0
#endif
#define lenof(array) ( sizeof(array) / sizeof(*(array)) )
enum {
LEFT_BUTTON = 0x1000,
MIDDLE_BUTTON,
RIGHT_BUTTON
};
/*
* Platform routines
*/
void fatal(char *fmt, ...);
/*
* malloc.c
*/
void *smalloc(int size);
void *srealloc(void *p, int size);
void sfree(void *p);
char *dupstr(char *s);
#define snew(type) \
( (type *) smalloc (sizeof (type)) )
#define snewn(number, type) \
( (type *) smalloc ((number) * sizeof (type)) )
#define sresize(array, number, type) \
( (type *) srealloc ((array), (len) * sizeof (type)) )
/*
* random.c
*/
typedef struct random_state random_state;
random_state *random_init(char *seed, int len);
unsigned long random_upto(random_state *state, unsigned long limit);
void random_free(random_state *state);
/*
* Game-specific routines
*/
typedef struct game_params game_params;
typedef struct game_state game_state;
char *new_game_seed(game_params *params);
game_state *new_game(game_params *params, char *seed);
game_state *dup_game(game_state *state);
void free_game(game_state *state);
game_state *make_move(game_state *from, int x, int y, int button);
#endif /* PUZZLES_PUZZLES_H */

282
random.c Normal file
View File

@ -0,0 +1,282 @@
/*
* random.c: Internal random number generator, guaranteed to work
* the same way on all platforms. Used when generating an initial
* game state from a random game seed; required to ensure that game
* seeds can be exchanged between versions of a puzzle compiled for
* different platforms.
*
* The generator is based on SHA-1. This is almost certainly
* overkill, but I had the SHA-1 code kicking around and it was
* easier to reuse it than to do anything else!
*/
#include <assert.h>
#include "puzzles.h"
typedef unsigned long uint32;
typedef struct {
uint32 h[5];
unsigned char block[64];
int blkused;
uint32 lenhi, lenlo;
} SHA_State;
/* ----------------------------------------------------------------------
* Core SHA algorithm: processes 16-word blocks into a message digest.
*/
#define rol(x,y) ( ((x) << (y)) | (((uint32)x) >> (32-y)) )
static void SHA_Core_Init(uint32 h[5])
{
h[0] = 0x67452301;
h[1] = 0xefcdab89;
h[2] = 0x98badcfe;
h[3] = 0x10325476;
h[4] = 0xc3d2e1f0;
}
static void SHATransform(uint32 * digest, uint32 * block)
{
uint32 w[80];
uint32 a, b, c, d, e;
int t;
for (t = 0; t < 16; t++)
w[t] = block[t];
for (t = 16; t < 80; t++) {
uint32 tmp = w[t - 3] ^ w[t - 8] ^ w[t - 14] ^ w[t - 16];
w[t] = rol(tmp, 1);
}
a = digest[0];
b = digest[1];
c = digest[2];
d = digest[3];
e = digest[4];
for (t = 0; t < 20; t++) {
uint32 tmp =
rol(a, 5) + ((b & c) | (d & ~b)) + e + w[t] + 0x5a827999;
e = d;
d = c;
c = rol(b, 30);
b = a;
a = tmp;
}
for (t = 20; t < 40; t++) {
uint32 tmp = rol(a, 5) + (b ^ c ^ d) + e + w[t] + 0x6ed9eba1;
e = d;
d = c;
c = rol(b, 30);
b = a;
a = tmp;
}
for (t = 40; t < 60; t++) {
uint32 tmp = rol(a,
5) + ((b & c) | (b & d) | (c & d)) + e + w[t] +
0x8f1bbcdc;
e = d;
d = c;
c = rol(b, 30);
b = a;
a = tmp;
}
for (t = 60; t < 80; t++) {
uint32 tmp = rol(a, 5) + (b ^ c ^ d) + e + w[t] + 0xca62c1d6;
e = d;
d = c;
c = rol(b, 30);
b = a;
a = tmp;
}
digest[0] += a;
digest[1] += b;
digest[2] += c;
digest[3] += d;
digest[4] += e;
}
/* ----------------------------------------------------------------------
* Outer SHA algorithm: take an arbitrary length byte string,
* convert it into 16-word blocks with the prescribed padding at
* the end, and pass those blocks to the core SHA algorithm.
*/
static void SHA_Init(SHA_State * s)
{
SHA_Core_Init(s->h);
s->blkused = 0;
s->lenhi = s->lenlo = 0;
}
static void SHA_Bytes(SHA_State * s, void *p, int len)
{
unsigned char *q = (unsigned char *) p;
uint32 wordblock[16];
uint32 lenw = len;
int i;
/*
* Update the length field.
*/
s->lenlo += lenw;
s->lenhi += (s->lenlo < lenw);
if (s->blkused && s->blkused + len < 64) {
/*
* Trivial case: just add to the block.
*/
memcpy(s->block + s->blkused, q, len);
s->blkused += len;
} else {
/*
* We must complete and process at least one block.
*/
while (s->blkused + len >= 64) {
memcpy(s->block + s->blkused, q, 64 - s->blkused);
q += 64 - s->blkused;
len -= 64 - s->blkused;
/* Now process the block. Gather bytes big-endian into words */
for (i = 0; i < 16; i++) {
wordblock[i] =
(((uint32) s->block[i * 4 + 0]) << 24) |
(((uint32) s->block[i * 4 + 1]) << 16) |
(((uint32) s->block[i * 4 + 2]) << 8) |
(((uint32) s->block[i * 4 + 3]) << 0);
}
SHATransform(s->h, wordblock);
s->blkused = 0;
}
memcpy(s->block, q, len);
s->blkused = len;
}
}
static void SHA_Final(SHA_State * s, unsigned char *output)
{
int i;
int pad;
unsigned char c[64];
uint32 lenhi, lenlo;
if (s->blkused >= 56)
pad = 56 + 64 - s->blkused;
else
pad = 56 - s->blkused;
lenhi = (s->lenhi << 3) | (s->lenlo >> (32 - 3));
lenlo = (s->lenlo << 3);
memset(c, 0, pad);
c[0] = 0x80;
SHA_Bytes(s, &c, pad);
c[0] = (lenhi >> 24) & 0xFF;
c[1] = (lenhi >> 16) & 0xFF;
c[2] = (lenhi >> 8) & 0xFF;
c[3] = (lenhi >> 0) & 0xFF;
c[4] = (lenlo >> 24) & 0xFF;
c[5] = (lenlo >> 16) & 0xFF;
c[6] = (lenlo >> 8) & 0xFF;
c[7] = (lenlo >> 0) & 0xFF;
SHA_Bytes(s, &c, 8);
for (i = 0; i < 5; i++) {
output[i * 4] = (s->h[i] >> 24) & 0xFF;
output[i * 4 + 1] = (s->h[i] >> 16) & 0xFF;
output[i * 4 + 2] = (s->h[i] >> 8) & 0xFF;
output[i * 4 + 3] = (s->h[i]) & 0xFF;
}
}
static void SHA_Simple(void *p, int len, unsigned char *output)
{
SHA_State s;
SHA_Init(&s);
SHA_Bytes(&s, p, len);
SHA_Final(&s, output);
}
/* ----------------------------------------------------------------------
* The random number generator.
*/
struct random_state {
unsigned char seedbuf[40];
unsigned char databuf[20];
int pos;
};
random_state *random_init(char *seed, int len)
{
random_state *state;
state = snew(random_state);
SHA_Simple(seed, len, state->seedbuf);
SHA_Simple(state->seedbuf, 20, state->seedbuf + 20);
SHA_Simple(state->seedbuf, 40, state->databuf);
state->pos = 0;
return state;
}
unsigned long random_bits(random_state *state, int bits)
{
int ret = 0;
int n;
for (n = 0; n < bits; n += 8) {
if (state->pos >= 20) {
int i;
for (i = 0; i < 20; i++) {
if (state->seedbuf[i] != 0xFF) {
state->seedbuf[i]++;
break;
} else
state->seedbuf[i] = 0;
}
SHA_Simple(state->seedbuf, 40, state->databuf);
state->pos = 0;
}
ret = (ret << 8) | state->databuf[state->pos++];
}
ret &= (1 << bits) - 1;
return ret;
}
unsigned long random_upto(random_state *state, unsigned long limit)
{
int bits = 0;
unsigned long max, divisor, data;
while ((limit >> bits) != 0)
bits++;
bits += 3;
assert(bits < 32);
max = 1 << bits;
divisor = max / limit;
max = limit * divisor;
do {
data = random_bits(state, bits);
} while (data >= max);
return data / divisor;
}
void random_free(random_state *state)
{
sfree(state);
}

2194
tree234.c Normal file

File diff suppressed because it is too large Load Diff

202
tree234.h Normal file
View File

@ -0,0 +1,202 @@
/*
* tree234.h: header defining functions in tree234.c.
*
* This file is copyright 1999-2001 Simon Tatham.
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following
* conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL SIMON TATHAM BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
* CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef TREE234_H
#define TREE234_H
/*
* This typedef is opaque outside tree234.c itself.
*/
typedef struct tree234_Tag tree234;
typedef int (*cmpfn234)(void *, void *);
typedef void *(*copyfn234)(void *state, void *element);
/*
* Create a 2-3-4 tree. If `cmp' is NULL, the tree is unsorted, and
* lookups by key will fail: you can only look things up by numeric
* index, and you have to use addpos234() and delpos234().
*/
tree234 *newtree234(cmpfn234 cmp);
/*
* Free a 2-3-4 tree (not including freeing the elements).
*/
void freetree234(tree234 *t);
/*
* Add an element e to a sorted 2-3-4 tree t. Returns e on success,
* or if an existing element compares equal, returns that.
*/
void *add234(tree234 *t, void *e);
/*
* Add an element e to an unsorted 2-3-4 tree t. Returns e on
* success, NULL on failure. (Failure should only occur if the
* index is out of range or the tree is sorted.)
*
* Index range can be from 0 to the tree's current element count,
* inclusive.
*/
void *addpos234(tree234 *t, void *e, int index);
/*
* Look up the element at a given numeric index in a 2-3-4 tree.
* Returns NULL if the index is out of range.
*
* One obvious use for this function is in iterating over the whole
* of a tree (sorted or unsorted):
*
* for (i = 0; (p = index234(tree, i)) != NULL; i++) consume(p);
*
* or
*
* int maxcount = count234(tree);
* for (i = 0; i < maxcount; i++) {
* p = index234(tree, i);
* assert(p != NULL);
* consume(p);
* }
*/
void *index234(tree234 *t, int index);
/*
* Find an element e in a sorted 2-3-4 tree t. Returns NULL if not
* found. e is always passed as the first argument to cmp, so cmp
* can be an asymmetric function if desired. cmp can also be passed
* as NULL, in which case the compare function from the tree proper
* will be used.
*
* Three of these functions are special cases of findrelpos234. The
* non-`pos' variants lack the `index' parameter: if the parameter
* is present and non-NULL, it must point to an integer variable
* which will be filled with the numeric index of the returned
* element.
*
* The non-`rel' variants lack the `relation' parameter. This
* parameter allows you to specify what relation the element you
* provide has to the element you're looking for. This parameter
* can be:
*
* REL234_EQ - find only an element that compares equal to e
* REL234_LT - find the greatest element that compares < e
* REL234_LE - find the greatest element that compares <= e
* REL234_GT - find the smallest element that compares > e
* REL234_GE - find the smallest element that compares >= e
*
* Non-`rel' variants assume REL234_EQ.
*
* If `rel' is REL234_GT or REL234_LT, the `e' parameter may be
* NULL. In this case, REL234_GT will return the smallest element
* in the tree, and REL234_LT will return the greatest. This gives
* an alternative means of iterating over a sorted tree, instead of
* using index234:
*
* // to loop forwards
* for (p = NULL; (p = findrel234(tree, p, NULL, REL234_GT)) != NULL ;)
* consume(p);
*
* // to loop backwards
* for (p = NULL; (p = findrel234(tree, p, NULL, REL234_LT)) != NULL ;)
* consume(p);
*/
enum {
REL234_EQ, REL234_LT, REL234_LE, REL234_GT, REL234_GE
};
void *find234(tree234 *t, void *e, cmpfn234 cmp);
void *findrel234(tree234 *t, void *e, cmpfn234 cmp, int relation);
void *findpos234(tree234 *t, void *e, cmpfn234 cmp, int *index);
void *findrelpos234(tree234 *t, void *e, cmpfn234 cmp, int relation,
int *index);
/*
* Delete an element e in a 2-3-4 tree. Does not free the element,
* merely removes all links to it from the tree nodes.
*
* delpos234 deletes the element at a particular tree index: it
* works on both sorted and unsorted trees.
*
* del234 deletes the element passed to it, so it only works on
* sorted trees. (It's equivalent to using findpos234 to determine
* the index of an element, and then passing that index to
* delpos234.)
*
* Both functions return a pointer to the element they delete, for
* the user to free or pass on elsewhere or whatever. If the index
* is out of range (delpos234) or the element is already not in the
* tree (del234) then they return NULL.
*/
void *del234(tree234 *t, void *e);
void *delpos234(tree234 *t, int index);
/*
* Return the total element count of a tree234.
*/
int count234(tree234 *t);
/*
* Split a tree234 into two valid tree234s.
*
* splitpos234 splits at a given index. If `before' is TRUE, the
* items at and after that index are left in t and the ones before
* are returned; if `before' is FALSE, the items before that index
* are left in t and the rest are returned.
*
* split234 splits at a given key. You can pass any of the
* relations used with findrel234, except for REL234_EQ. The items
* in the tree that satisfy the relation are returned; the
* remainder are left.
*/
tree234 *splitpos234(tree234 *t, int index, int before);
tree234 *split234(tree234 *t, void *e, cmpfn234 cmp, int rel);
/*
* Join two tree234s together into a single one.
*
* All the elements in t1 are placed to the left of all the
* elements in t2. If the trees are sorted, there will be a test to
* ensure that this satisfies the ordering criterion, and NULL will
* be returned otherwise. If the trees are unsorted, there is no
* restriction on the use of join234.
*
* The tree returned is t1 (join234) or t2 (join234r), if the
* operation is successful.
*/
tree234 *join234(tree234 *t1, tree234 *t2);
tree234 *join234r(tree234 *t1, tree234 *t2);
/*
* Make a complete copy of a tree234. Element pointers will be
* reused unless copyfn is non-NULL, in which case it will be used
* to copy each element. (copyfn takes two `void *' parameters; the
* first is private state and the second is the element. A simple
* copy routine probably won't need private state.)
*/
tree234 *copytree234(tree234 *t, copyfn234 copyfn, void *copyfnstate);
#endif /* TREE234_H */

3
windows.c Normal file
View File

@ -0,0 +1,3 @@
/*
* windows.c: Windows front end for my puzzle collection.
*/