Further general development. Net is now playable, though

configuration is absent as yet.

[originally from svn r4145]
This commit is contained in:
Simon Tatham
2004-04-26 17:10:44 +00:00
parent a87bb05760
commit 9867234e70
6 changed files with 941 additions and 97 deletions

638
net.c
View File

@ -6,16 +6,32 @@
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <math.h>
#include "puzzles.h"
#include "tree234.h"
/* Direction bitfields */
#define PI 3.141592653589793238462643383279502884197169399
#define MATMUL(xr,yr,m,x,y) do { \
float rx, ry, xx = (x), yy = (y), *mat = (m); \
rx = mat[0] * xx + mat[2] * yy; \
ry = mat[1] * xx + mat[3] * yy; \
(xr) = rx; (yr) = ry; \
} while (0)
/* Direction and other bitfields */
#define R 0x01
#define U 0x02
#define L 0x04
#define D 0x08
#define LOCKED 0x10
#define ACTIVE 0x20
/* Corner flags go in the barriers array */
#define RU 0x10
#define UL 0x20
#define LD 0x40
#define DR 0x80
/* Rotations: Anticlockwise, Clockwise, Flip, general rotate */
#define A(x) ( (((x) & 0x07) << 1) | (((x) & 0x08) >> 3) )
@ -37,6 +53,20 @@
#define TILE_BORDER 1
#define WINDOW_OFFSET 16
#define ROTATE_TIME 0.1
#define FLASH_FRAME 0.05
enum {
COL_BACKGROUND,
COL_LOCKED,
COL_BORDER,
COL_WIRE,
COL_ENDPOINT,
COL_POWERED,
COL_BARRIER,
NCOLOURS
};
struct game_params {
int width;
int height;
@ -45,7 +75,7 @@ struct game_params {
};
struct game_state {
int width, height, wrapping, completed;
int width, height, cx, cy, wrapping, completed, last_rotate_dir;
unsigned char *tiles;
unsigned char *barriers;
};
@ -96,10 +126,10 @@ game_params *default_params(void)
{
game_params *ret = snew(game_params);
ret->width = 5;
ret->height = 5;
ret->wrapping = FALSE;
ret->barrier_probability = 0.0;
ret->width = 11;
ret->height = 11;
ret->wrapping = TRUE;
ret->barrier_probability = 0.1;
return ret;
}
@ -151,7 +181,10 @@ game_state *new_game(game_params *params, char *seed)
state = snew(game_state);
w = state->width = params->width;
h = state->height = params->height;
state->cx = state->width / 2;
state->cy = state->height / 2;
state->wrapping = params->wrapping;
state->last_rotate_dir = +1; /* *shrug* */
state->completed = FALSE;
state->tiles = snewn(state->width * state->height, unsigned char);
memset(state->tiles, 0, state->width * state->height);
@ -167,8 +200,8 @@ game_state *new_game(game_params *params, char *seed)
barrier(state, x, state->height-1) |= D;
}
for (y = 0; y < state->height; y++) {
barrier(state, y, 0) |= L;
barrier(state, y, state->width-1) |= R;
barrier(state, 0, y) |= L;
barrier(state, state->width-1, y) |= R;
}
}
@ -220,10 +253,11 @@ game_state *new_game(game_params *params, char *seed)
* closed loops. []
*/
possibilities = newtree234(xyd_cmp);
add234(possibilities, new_xyd(w/2, h/2, R));
add234(possibilities, new_xyd(w/2, h/2, U));
add234(possibilities, new_xyd(w/2, h/2, L));
add234(possibilities, new_xyd(w/2, h/2, D));
add234(possibilities, new_xyd(state->cx, state->cy, R));
add234(possibilities, new_xyd(state->cx, state->cy, U));
add234(possibilities, new_xyd(state->cx, state->cy, L));
add234(possibilities, new_xyd(state->cx, state->cy, D));
while (count234(possibilities) > 0) {
int i;
@ -346,12 +380,14 @@ game_state *new_game(game_params *params, char *seed)
* Now compute a list of the possible barrier locations.
*/
barriers = newtree234(xyd_cmp);
for (y = 0; y < state->height - (!state->wrapping); y++) {
for (x = 0; x < state->width - (!state->wrapping); x++) {
for (y = 0; y < state->height; y++) {
for (x = 0; x < state->width; x++) {
if (!(tile(state, x, y) & R))
if (!(tile(state, x, y) & R) &&
(state->wrapping || x < state->width-1))
add234(barriers, new_xyd(x, y, R));
if (!(tile(state, x, y) & D))
if (!(tile(state, x, y) & D) &&
(state->wrapping || y < state->height-1))
add234(barriers, new_xyd(x, y, D));
}
}
@ -359,8 +395,8 @@ game_state *new_game(game_params *params, char *seed)
/*
* Now shuffle the grid.
*/
for (y = 0; y < state->height - (!state->wrapping); y++) {
for (x = 0; x < state->width - (!state->wrapping); x++) {
for (y = 0; y < state->height; y++) {
for (x = 0; x < state->width; x++) {
int orig = tile(state, x, y);
int rot = random_upto(rs, 4);
tile(state, x, y) = ROT(orig, rot);
@ -423,6 +459,54 @@ game_state *new_game(game_params *params, char *seed)
freetree234(barriers);
}
/*
* Set up the barrier corner flags, for drawing barriers
* prettily when they meet.
*/
for (y = 0; y < state->height; y++) {
for (x = 0; x < state->width; x++) {
int dir;
for (dir = 1; dir < 0x10; dir <<= 1) {
int dir2 = A(dir);
int x1, y1, x2, y2, x3, y3;
int corner = FALSE;
if (!(barrier(state, x, y) & dir))
continue;
if (barrier(state, x, y) & dir2)
corner = TRUE;
x1 = x + X(dir), y1 = y + Y(dir);
if (x1 >= 0 && x1 < state->width &&
y1 >= 0 && y1 < state->width &&
(barrier(state, x1, y1) & dir2))
corner = TRUE;
x2 = x + X(dir2), y2 = y + Y(dir2);
if (x2 >= 0 && x2 < state->width &&
y2 >= 0 && y2 < state->width &&
(barrier(state, x2, y2) & dir))
corner = TRUE;
if (corner) {
barrier(state, x, y) |= (dir << 4);
if (x1 >= 0 && x1 < state->width &&
y1 >= 0 && y1 < state->width)
barrier(state, x1, y1) |= (A(dir) << 4);
if (x2 >= 0 && x2 < state->width &&
y2 >= 0 && y2 < state->width)
barrier(state, x2, y2) |= (C(dir) << 4);
x3 = x + X(dir) + X(dir2), y3 = y + Y(dir) + Y(dir2);
if (x3 >= 0 && x3 < state->width &&
y3 >= 0 && y3 < state->width)
barrier(state, x3, y3) |= (F(dir) << 4);
}
}
}
}
random_free(rs);
return state;
@ -435,8 +519,11 @@ game_state *dup_game(game_state *state)
ret = snew(game_state);
ret->width = state->width;
ret->height = state->height;
ret->cx = state->cx;
ret->cy = state->cy;
ret->wrapping = state->wrapping;
ret->completed = state->completed;
ret->last_rotate_dir = state->last_rotate_dir;
ret->tiles = snewn(state->width * state->height, unsigned char);
memcpy(ret->tiles, state->tiles, state->width * state->height);
ret->barriers = snewn(state->width * state->height, unsigned char);
@ -477,7 +564,8 @@ static unsigned char *compute_active(game_state *state)
* xyd_cmp and just store direction 0 every time.
*/
todo = newtree234(xyd_cmp);
add234(todo, new_xyd(state->width / 2, state->height / 2, 0));
index(state, active, state->cx, state->cy) = ACTIVE;
add234(todo, new_xyd(state->cx, state->cy, 0));
while ( (xyd = delpos234(todo, 0)) != NULL) {
int x1, y1, d1, x2, y2, d2;
@ -500,7 +588,7 @@ static unsigned char *compute_active(game_state *state)
(tile(state, x2, y2) & d2) &&
!(barrier(state, x1, y1) & d1) &&
!index(state, active, x2, y2)) {
index(state, active, x2, y2) = 1;
index(state, active, x2, y2) = ACTIVE;
add234(todo, new_xyd(x2, y2, 0));
}
}
@ -572,10 +660,13 @@ game_state *make_move(game_state *state, int x, int y, int button)
*/
ret = dup_game(state);
orig = tile(ret, tx, ty);
if (button == LEFT_BUTTON)
if (button == LEFT_BUTTON) {
tile(ret, tx, ty) = A(orig);
else
ret->last_rotate_dir = +1;
} else {
tile(ret, tx, ty) = C(orig);
ret->last_rotate_dir = -1;
}
/*
* Check whether the game has been completed.
@ -606,49 +697,488 @@ game_state *make_move(game_state *state, int x, int y, int button)
* Routines for drawing the game position on the screen.
*/
struct game_drawstate {
int started;
int width, height;
unsigned char *visible;
};
game_drawstate *game_new_drawstate(game_state *state)
{
game_drawstate *ds = snew(game_drawstate);
ds->started = FALSE;
ds->width = state->width;
ds->height = state->height;
ds->visible = snewn(state->width * state->height, unsigned char);
memset(ds->visible, 0xFF, state->width * state->height);
return ds;
}
void game_free_drawstate(game_drawstate *ds)
{
sfree(ds->visible);
sfree(ds);
}
void game_size(game_params *params, int *x, int *y)
{
*x = WINDOW_OFFSET * 2 + TILE_SIZE * params->width + TILE_BORDER;
*y = WINDOW_OFFSET * 2 + TILE_SIZE * params->height + TILE_BORDER;
}
/* ----------------------------------------------------------------------
* Test code.
*/
#ifdef TESTMODE
int main(void)
float *game_colours(frontend *fe, game_state *state, int *ncolours)
{
game_params params = { 13, 11, TRUE, 0.1 };
char *seed;
game_state *state;
unsigned char *active;
float *ret;
seed = "123";
state = new_game(&params, seed);
active = compute_active(state);
ret = snewn(NCOLOURS * 3, float);
*ncolours = NCOLOURS;
{
int x, y;
/*
* Basic background colour is whatever the front end thinks is
* a sensible default.
*/
frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
printf("\033)0\016");
for (y = 0; y < state->height; y++) {
for (x = 0; x < state->width; x++) {
if (index(state, active, x, y))
printf("\033[1;32m");
else
printf("\033[0;31m");
putchar("~``m`qjv`lxtkwua"[tile(state, x, y)]);
}
printf("\033[m\n");
}
printf("\017");
}
/*
* Wires are black.
*/
ret[COL_WIRE * 3 + 0] = 0.0;
ret[COL_WIRE * 3 + 1] = 0.0;
ret[COL_WIRE * 3 + 2] = 0.0;
free_game(state);
/*
* Powered wires and powered endpoints are cyan.
*/
ret[COL_POWERED * 3 + 0] = 0.0;
ret[COL_POWERED * 3 + 1] = 1.0;
ret[COL_POWERED * 3 + 2] = 1.0;
return 0;
/*
* Barriers are red.
*/
ret[COL_BARRIER * 3 + 0] = 1.0;
ret[COL_BARRIER * 3 + 1] = 0.0;
ret[COL_BARRIER * 3 + 2] = 0.0;
/*
* Unpowered endpoints are blue.
*/
ret[COL_ENDPOINT * 3 + 0] = 0.0;
ret[COL_ENDPOINT * 3 + 1] = 0.0;
ret[COL_ENDPOINT * 3 + 2] = 1.0;
/*
* Tile borders are a darker grey than the background.
*/
ret[COL_BORDER * 3 + 0] = 0.5 * ret[COL_BACKGROUND * 3 + 0];
ret[COL_BORDER * 3 + 1] = 0.5 * ret[COL_BACKGROUND * 3 + 1];
ret[COL_BORDER * 3 + 2] = 0.5 * ret[COL_BACKGROUND * 3 + 2];
/*
* Locked tiles are a grey in between those two.
*/
ret[COL_LOCKED * 3 + 0] = 0.75 * ret[COL_BACKGROUND * 3 + 0];
ret[COL_LOCKED * 3 + 1] = 0.75 * ret[COL_BACKGROUND * 3 + 1];
ret[COL_LOCKED * 3 + 2] = 0.75 * ret[COL_BACKGROUND * 3 + 2];
return ret;
}
#endif
static void draw_thick_line(frontend *fe, int x1, int y1, int x2, int y2,
int colour)
{
draw_line(fe, x1-1, y1, x2-1, y2, COL_WIRE);
draw_line(fe, x1+1, y1, x2+1, y2, COL_WIRE);
draw_line(fe, x1, y1-1, x2, y2-1, COL_WIRE);
draw_line(fe, x1, y1+1, x2, y2+1, COL_WIRE);
draw_line(fe, x1, y1, x2, y2, colour);
}
static void draw_rect_coords(frontend *fe, int x1, int y1, int x2, int y2,
int colour)
{
int mx = (x1 < x2 ? x1 : x2);
int my = (y1 < y2 ? y1 : y2);
int dx = (x2 + x1 - 2*mx + 1);
int dy = (y2 + y1 - 2*my + 1);
draw_rect(fe, mx, my, dx, dy, colour);
}
static void draw_barrier_corner(frontend *fe, int x, int y, int dir, int phase)
{
int bx = WINDOW_OFFSET + TILE_SIZE * x;
int by = WINDOW_OFFSET + TILE_SIZE * y;
int x1, y1, dx, dy, dir2;
dir >>= 4;
dir2 = A(dir);
dx = X(dir) + X(dir2);
dy = Y(dir) + Y(dir2);
x1 = (dx > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
y1 = (dy > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
if (phase == 0) {
draw_rect_coords(fe, bx+x1, by+y1,
bx+x1-TILE_BORDER*dx, by+y1-(TILE_BORDER-1)*dy,
COL_WIRE);
draw_rect_coords(fe, bx+x1, by+y1,
bx+x1-(TILE_BORDER-1)*dx, by+y1-TILE_BORDER*dy,
COL_WIRE);
} else {
draw_rect_coords(fe, bx+x1, by+y1,
bx+x1-(TILE_BORDER-1)*dx, by+y1-(TILE_BORDER-1)*dy,
COL_BARRIER);
}
}
static void draw_barrier(frontend *fe, int x, int y, int dir, int phase)
{
int bx = WINDOW_OFFSET + TILE_SIZE * x;
int by = WINDOW_OFFSET + TILE_SIZE * y;
int x1, y1, w, h;
x1 = (X(dir) > 0 ? TILE_SIZE : X(dir) == 0 ? TILE_BORDER : 0);
y1 = (Y(dir) > 0 ? TILE_SIZE : Y(dir) == 0 ? TILE_BORDER : 0);
w = (X(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
h = (Y(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
if (phase == 0) {
draw_rect(fe, bx+x1-X(dir), by+y1-Y(dir), w, h, COL_WIRE);
} else {
draw_rect(fe, bx+x1, by+y1, w, h, COL_BARRIER);
}
}
static void draw_tile(frontend *fe, game_state *state, int x, int y, int tile,
float angle)
{
int bx = WINDOW_OFFSET + TILE_SIZE * x;
int by = WINDOW_OFFSET + TILE_SIZE * y;
float matrix[4];
float cx, cy, ex, ey, tx, ty;
int dir, col, phase;
/*
* When we draw a single tile, we must draw everything up to
* and including the borders around the tile. This means that
* if the neighbouring tiles have connections to those borders,
* we must draw those connections on the borders themselves.
*
* This would be terribly fiddly if we ever had to draw a tile
* while its neighbour was in mid-rotate, because we'd have to
* arrange to _know_ that the neighbour was being rotated and
* hence had an anomalous effect on the redraw of this tile.
* Fortunately, the drawing algorithm avoids ever calling us in
* this circumstance: we're either drawing lots of straight
* tiles at game start or after a move is complete, or we're
* repeatedly drawing only the rotating tile. So no problem.
*/
/*
* So. First blank the tile out completely: draw a big
* rectangle in border colour, and a smaller rectangle in
* background colour to fill it in.
*/
draw_rect(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER,
COL_BORDER);
draw_rect(fe, bx+TILE_BORDER, by+TILE_BORDER,
TILE_SIZE-TILE_BORDER, TILE_SIZE-TILE_BORDER,
tile & LOCKED ? COL_LOCKED : COL_BACKGROUND);
/*
* Set up the rotation matrix.
*/
matrix[0] = cos(angle * PI / 180.0);
matrix[1] = -sin(angle * PI / 180.0);
matrix[2] = sin(angle * PI / 180.0);
matrix[3] = cos(angle * PI / 180.0);
/*
* Draw the wires.
*/
cx = cy = TILE_BORDER + (TILE_SIZE-TILE_BORDER) / 2.0 - 0.5;
col = (tile & ACTIVE ? COL_POWERED : COL_WIRE);
for (dir = 1; dir < 0x10; dir <<= 1) {
if (tile & dir) {
ex = (TILE_SIZE - TILE_BORDER - 1.0) / 2.0 * X(dir);
ey = (TILE_SIZE - TILE_BORDER - 1.0) / 2.0 * Y(dir);
MATMUL(tx, ty, matrix, ex, ey);
draw_thick_line(fe, bx+cx, by+cy, bx+(cx+tx), by+(cy+ty),
COL_WIRE);
}
}
for (dir = 1; dir < 0x10; dir <<= 1) {
if (tile & dir) {
ex = (TILE_SIZE - TILE_BORDER - 1.0) / 2.0 * X(dir);
ey = (TILE_SIZE - TILE_BORDER - 1.0) / 2.0 * Y(dir);
MATMUL(tx, ty, matrix, ex, ey);
draw_line(fe, bx+cx, by+cy, bx+(cx+tx), by+(cy+ty), col);
}
}
/*
* Draw the box in the middle. We do this in blue if the tile
* is an unpowered endpoint, in cyan if the tile is a powered
* endpoint, in black if the tile is the centrepiece, and
* otherwise not at all.
*/
col = -1;
if (x == state->cx && y == state->cy)
col = COL_WIRE;
else if (COUNT(tile) == 1) {
col = (tile & ACTIVE ? COL_POWERED : COL_ENDPOINT);
}
if (col >= 0) {
int i, points[8];
points[0] = +1; points[1] = +1;
points[2] = +1; points[3] = -1;
points[4] = -1; points[5] = -1;
points[6] = -1; points[7] = +1;
for (i = 0; i < 8; i += 2) {
ex = (TILE_SIZE * 0.24) * points[i];
ey = (TILE_SIZE * 0.24) * points[i+1];
MATMUL(tx, ty, matrix, ex, ey);
points[i] = bx+cx+tx;
points[i+1] = by+cy+ty;
}
draw_polygon(fe, points, 4, TRUE, col);
draw_polygon(fe, points, 4, FALSE, COL_WIRE);
}
/*
* Draw the points on the border if other tiles are connected
* to us.
*/
for (dir = 1; dir < 0x10; dir <<= 1) {
int dx, dy, px, py, lx, ly, vx, vy, ox, oy;
dx = X(dir);
dy = Y(dir);
ox = x + dx;
oy = y + dy;
if (ox < 0 || ox >= state->width || oy < 0 || oy >= state->height)
continue;
if (!(tile(state, ox, oy) & F(dir)))
continue;
px = bx + (dx>0 ? TILE_SIZE + TILE_BORDER - 1 : dx<0 ? 0 : cx);
py = by + (dy>0 ? TILE_SIZE + TILE_BORDER - 1 : dy<0 ? 0 : cy);
lx = dx * (TILE_BORDER-1);
ly = dy * (TILE_BORDER-1);
vx = (dy ? 1 : 0);
vy = (dx ? 1 : 0);
if (angle == 0.0 && (tile & dir)) {
/*
* If we are fully connected to the other tile, we must
* draw right across the tile border. (We can use our
* own ACTIVE state to determine what colour to do this
* in: if we are fully connected to the other tile then
* the two ACTIVE states will be the same.)
*/
draw_rect_coords(fe, px-vx, py-vy, px+lx+vx, py+ly+vy, COL_WIRE);
draw_rect_coords(fe, px, py, px+lx, py+ly,
(tile & ACTIVE) ? COL_POWERED : COL_WIRE);
} else {
/*
* The other tile extends into our border, but isn't
* actually connected to us. Just draw a single black
* dot.
*/
draw_rect_coords(fe, px, py, px, py, COL_WIRE);
}
}
/*
* Draw barrier corners, and then barriers.
*/
for (phase = 0; phase < 2; phase++) {
for (dir = 1; dir < 0x10; dir <<= 1)
if (barrier(state, x, y) & (dir << 4))
draw_barrier_corner(fe, x, y, dir << 4, phase);
for (dir = 1; dir < 0x10; dir <<= 1)
if (barrier(state, x, y) & dir)
draw_barrier(fe, x, y, dir, phase);
}
draw_update(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
}
void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
game_state *state, float t)
{
int x, y, tx, ty, frame;
unsigned char *active;
float angle = 0.0;
/*
* Clear the screen and draw the exterior barrier lines if this
* is our first call.
*/
if (!ds->started) {
int phase;
ds->started = TRUE;
draw_rect(fe, 0, 0,
WINDOW_OFFSET * 2 + TILE_SIZE * state->width + TILE_BORDER,
WINDOW_OFFSET * 2 + TILE_SIZE * state->height + TILE_BORDER,
COL_BACKGROUND);
draw_update(fe, 0, 0,
WINDOW_OFFSET*2 + TILE_SIZE*state->width + TILE_BORDER,
WINDOW_OFFSET*2 + TILE_SIZE*state->height + TILE_BORDER);
for (phase = 0; phase < 2; phase++) {
for (x = 0; x < ds->width; x++) {
if (barrier(state, x, 0) & UL)
draw_barrier_corner(fe, x, -1, LD, phase);
if (barrier(state, x, 0) & RU)
draw_barrier_corner(fe, x, -1, DR, phase);
if (barrier(state, x, 0) & U)
draw_barrier(fe, x, -1, D, phase);
if (barrier(state, x, ds->height-1) & DR)
draw_barrier_corner(fe, x, ds->height, RU, phase);
if (barrier(state, x, ds->height-1) & LD)
draw_barrier_corner(fe, x, ds->height, UL, phase);
if (barrier(state, x, ds->height-1) & D)
draw_barrier(fe, x, ds->height, U, phase);
}
for (y = 0; y < ds->height; y++) {
if (barrier(state, 0, y) & UL)
draw_barrier_corner(fe, -1, y, RU, phase);
if (barrier(state, 0, y) & LD)
draw_barrier_corner(fe, -1, y, DR, phase);
if (barrier(state, 0, y) & L)
draw_barrier(fe, -1, y, R, phase);
if (barrier(state, ds->width-1, y) & RU)
draw_barrier_corner(fe, ds->width, y, UL, phase);
if (barrier(state, ds->width-1, y) & DR)
draw_barrier_corner(fe, ds->width, y, LD, phase);
if (barrier(state, ds->width-1, y) & R)
draw_barrier(fe, ds->width, y, L, phase);
}
}
}
tx = ty = -1;
frame = -1;
if (oldstate && (t < ROTATE_TIME)) {
/*
* We're animating a tile rotation. Find the turning tile,
* if any.
*/
for (x = 0; x < oldstate->width; x++)
for (y = 0; y < oldstate->height; y++)
if ((tile(oldstate, x, y) ^ tile(state, x, y)) & 0xF) {
tx = x, ty = y;
goto break_label; /* leave both loops at once */
}
break_label:
if (tx >= 0) {
if (tile(state, tx, ty) == ROT(tile(oldstate, tx, ty),
state->last_rotate_dir))
angle = state->last_rotate_dir * 90.0 * (t / ROTATE_TIME);
else
angle = state->last_rotate_dir * -90.0 * (t / ROTATE_TIME);
state = oldstate;
}
} else if (t > ROTATE_TIME) {
/*
* We're animating a completion flash. Find which frame
* we're at.
*/
frame = (t - ROTATE_TIME) / FLASH_FRAME;
}
/*
* Draw any tile which differs from the way it was last drawn.
*/
active = compute_active(state);
for (x = 0; x < ds->width; x++)
for (y = 0; y < ds->height; y++) {
unsigned char c = tile(state, x, y) | index(state, active, x, y);
/*
* In a completion flash, we adjust the LOCKED bit
* depending on our distance from the centre point and
* the frame number.
*/
if (frame >= 0) {
int xdist, ydist, dist;
xdist = (x < state->cx ? state->cx - x : x - state->cx);
ydist = (y < state->cy ? state->cy - y : y - state->cy);
dist = (xdist > ydist ? xdist : ydist);
if (frame >= dist && frame < dist+4) {
int lock = (frame - dist) & 1;
lock = lock ? LOCKED : 0;
c = (c &~ LOCKED) | lock;
}
}
if (index(state, ds->visible, x, y) != c ||
index(state, ds->visible, x, y) == 0xFF ||
(x == tx && y == ty)) {
draw_tile(fe, state, x, y, c,
(x == tx && y == ty ? angle : 0.0));
if (x == tx && y == ty)
index(state, ds->visible, x, y) = 0xFF;
else
index(state, ds->visible, x, y) = c;
}
}
sfree(active);
}
float game_anim_length(game_state *oldstate, game_state *newstate)
{
float ret = 0.0;
int x, y;
/*
* If there's a tile which has been rotated, allow time to
* animate its rotation.
*/
for (x = 0; x < oldstate->width; x++)
for (y = 0; y < oldstate->height; y++)
if ((tile(oldstate, x, y) ^ tile(newstate, x, y)) & 0xF) {
ret = ROTATE_TIME;
goto break_label; /* leave both loops at once */
}
break_label:
/*
* Also, if the game has just been completed, allow time for a
* completion flash.
*/
if (!oldstate->completed && newstate->completed) {
int size;
size = 0;
if (size < newstate->cx+1)
size = newstate->cx+1;
if (size < newstate->cy+1)
size = newstate->cy+1;
if (size < newstate->width - newstate->cx)
size = newstate->width - newstate->cx;
if (size < newstate->height - newstate->cy)
size = newstate->height - newstate->cy;
ret += FLASH_FRAME * (size+4);
}
return ret;
}