mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-21 08:01:30 -07:00
I'm sick and tired of having unfinished puzzle code lying around on
several different systems in strange directories. So I'm creating an `unfinished' directory within source control, and centralising all my half-finished, half-baked or otherwise half-arsed puzzle implementations into it. Herewith Sokoban (playable but rubbish generation), Pearl (Masyu - rubbish generation and nothing else), Path (Number Link - rubbish generation and nothing else) and NumGame (the Countdown numbers game - currently just a solver and not even a generator yet). [originally from svn r6883]
This commit is contained in:
914
unfinished/numgame.c
Normal file
914
unfinished/numgame.c
Normal file
@ -0,0 +1,914 @@
|
||||
/*
|
||||
* This program implements a breadth-first search which
|
||||
* exhaustively solves the Countdown numbers game, and related
|
||||
* games with slightly different rule sets such as `Flippo'.
|
||||
*
|
||||
* Currently it is simply a standalone command-line utility to
|
||||
* which you provide a set of numbers and it tells you everything
|
||||
* it can make together with how many different ways it can be
|
||||
* made. I would like ultimately to turn it into the generator for
|
||||
* a Puzzles puzzle, but I haven't even started on writing a
|
||||
* Puzzles user interface yet.
|
||||
*/
|
||||
|
||||
/*
|
||||
* TODO:
|
||||
*
|
||||
* - start thinking about difficulty ratings
|
||||
* + anything involving associative operations will be flagged
|
||||
* as many-paths because of the associative options (e.g.
|
||||
* 2*3*4 can be (2*3)*4 or 2*(3*4), or indeed (2*4)*3). This
|
||||
* is probably a _good_ thing, since those are unusually
|
||||
* easy.
|
||||
* + tree-structured calculations ((a*b)/(c+d)) have multiple
|
||||
* paths because the independent branches of the tree can be
|
||||
* evaluated in either order, whereas straight-line
|
||||
* calculations with no branches will be considered easier.
|
||||
* Can we do anything about this? It's certainly not clear to
|
||||
* me that tree-structure calculations are _easier_, although
|
||||
* I'm also not convinced they're harder.
|
||||
* + I think for a realistic difficulty assessment we must also
|
||||
* consider the `obviousness' of the arithmetic operations in
|
||||
* some heuristic sense, and also (in Countdown) how many
|
||||
* numbers ended up being used.
|
||||
* - actually try some generations
|
||||
* - at this point we're probably ready to start on the Puzzles
|
||||
* integration.
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <limits.h>
|
||||
#include <assert.h>
|
||||
|
||||
#include "puzzles.h"
|
||||
#include "tree234.h"
|
||||
|
||||
/*
|
||||
* To search for numbers we can make, we employ a breadth-first
|
||||
* search across the space of sets of input numbers. That is, for
|
||||
* example, we start with the set (3,6,25,50,75,100); we apply
|
||||
* moves which involve combining two numbers (e.g. adding the 50
|
||||
* and the 75 takes us to the set (3,6,25,100,125); and then we see
|
||||
* if we ever end up with a set containing (say) 952.
|
||||
*
|
||||
* If the rules are changed so that all the numbers must be used,
|
||||
* this is easy to adjust to: we simply see if we end up with a set
|
||||
* containing _only_ (say) 952.
|
||||
*
|
||||
* Obviously, we can vary the rules about permitted arithmetic
|
||||
* operations simply by altering the set of valid moves in the bfs.
|
||||
* However, there's one common rule in this sort of puzzle which
|
||||
* takes a little more thought, and that's _concatenation_. For
|
||||
* example, if you are given (say) four 4s and required to make 10,
|
||||
* you are permitted to combine two of the 4s into a 44 to begin
|
||||
* with, making (44-4)/4 = 10. However, you are generally not
|
||||
* allowed to concatenate two numbers that _weren't_ both in the
|
||||
* original input set (you couldn't multiply two 4s to get 16 and
|
||||
* then concatenate a 4 on to it to make 164), so concatenation is
|
||||
* not an operation which is valid in all situations.
|
||||
*
|
||||
* We could enforce this restriction by storing a flag alongside
|
||||
* each number indicating whether or not it's an original number;
|
||||
* the rules being that concatenation of two numbers is only valid
|
||||
* if they both have the original flag, and that its output _also_
|
||||
* has the original flag (so that you can concatenate three 4s into
|
||||
* a 444), but that applying any other arithmetic operation clears
|
||||
* the original flag on the output. However, we can get marginally
|
||||
* simpler than that by observing that since concatenation has to
|
||||
* happen to a number before any other operation, we can simply
|
||||
* place all the concatenations at the start of the search. In
|
||||
* other words, we have a global flag on an entire number _set_
|
||||
* which indicates whether we are still permitted to perform
|
||||
* concatenations; if so, we can concatenate any of the numbers in
|
||||
* that set. Performing any other operation clears the flag.
|
||||
*/
|
||||
|
||||
#define SETFLAG_CONCAT 1 /* we can do concatenation */
|
||||
|
||||
struct sets;
|
||||
|
||||
struct set {
|
||||
int *numbers; /* rationals stored as n,d pairs */
|
||||
short nnumbers; /* # of rationals, so half # of ints */
|
||||
short flags; /* SETFLAG_CONCAT only, at present */
|
||||
struct set *prev; /* index of ancestor set in set list */
|
||||
unsigned char pa, pb, po, pr; /* operation that got here from prev */
|
||||
int npaths; /* number of ways to reach this set */
|
||||
};
|
||||
|
||||
struct output {
|
||||
int number;
|
||||
struct set *set;
|
||||
int index; /* which number in the set is it? */
|
||||
int npaths; /* number of ways to reach this */
|
||||
};
|
||||
|
||||
#define SETLISTLEN 1024
|
||||
#define NUMBERLISTLEN 32768
|
||||
#define OUTPUTLISTLEN 1024
|
||||
struct operation;
|
||||
struct sets {
|
||||
struct set **setlists;
|
||||
int nsets, nsetlists, setlistsize;
|
||||
tree234 *settree;
|
||||
int **numberlists;
|
||||
int nnumbers, nnumberlists, numberlistsize;
|
||||
struct output **outputlists;
|
||||
int noutputs, noutputlists, outputlistsize;
|
||||
tree234 *outputtree;
|
||||
const struct operation *const *ops;
|
||||
};
|
||||
|
||||
#define OPFLAG_NEEDS_CONCAT 1
|
||||
#define OPFLAG_KEEPS_CONCAT 2
|
||||
|
||||
struct operation {
|
||||
/*
|
||||
* Most operations should be shown in the output working, but
|
||||
* concatenation should not; we just take the result of the
|
||||
* concatenation and assume that it's obvious how it was
|
||||
* derived.
|
||||
*/
|
||||
int display;
|
||||
|
||||
/*
|
||||
* Text display of the operator.
|
||||
*/
|
||||
char *text;
|
||||
|
||||
/*
|
||||
* Flags dictating when the operator can be applied.
|
||||
*/
|
||||
int flags;
|
||||
|
||||
/*
|
||||
* Priority of the operator (for avoiding unnecessary
|
||||
* parentheses when formatting it into a string).
|
||||
*/
|
||||
int priority;
|
||||
|
||||
/*
|
||||
* Associativity of the operator. Bit 0 means we need parens
|
||||
* when the left operand of one of these operators is another
|
||||
* instance of it, e.g. (2^3)^4. Bit 1 means we need parens
|
||||
* when the right operand is another instance of the same
|
||||
* operator, e.g. 2-(3-4). Thus:
|
||||
*
|
||||
* - this field is 0 for a fully associative operator, since
|
||||
* we never need parens.
|
||||
* - it's 1 for a right-associative operator.
|
||||
* - it's 2 for a left-associative operator.
|
||||
* - it's 3 for a _non_-associative operator (which always
|
||||
* uses parens just to be sure).
|
||||
*/
|
||||
int assoc;
|
||||
|
||||
/*
|
||||
* Whether the operator is commutative. Saves time in the
|
||||
* search if we don't have to try it both ways round.
|
||||
*/
|
||||
int commutes;
|
||||
|
||||
/*
|
||||
* Function which implements the operator. Returns TRUE on
|
||||
* success, FALSE on failure. Takes two rationals and writes
|
||||
* out a third.
|
||||
*/
|
||||
int (*perform)(int *a, int *b, int *output);
|
||||
};
|
||||
|
||||
struct rules {
|
||||
const struct operation *const *ops;
|
||||
int use_all;
|
||||
};
|
||||
|
||||
#define MUL(r, a, b) do { \
|
||||
(r) = (a) * (b); \
|
||||
if ((b) && (a) && (r) / (b) != (a)) return FALSE; \
|
||||
} while (0)
|
||||
|
||||
#define ADD(r, a, b) do { \
|
||||
(r) = (a) + (b); \
|
||||
if ((a) > 0 && (b) > 0 && (r) < 0) return FALSE; \
|
||||
if ((a) < 0 && (b) < 0 && (r) > 0) return FALSE; \
|
||||
} while (0)
|
||||
|
||||
#define OUT(output, n, d) do { \
|
||||
int g = gcd((n),(d)); \
|
||||
if ((d) < 0) g = -g; \
|
||||
(output)[0] = (n)/g; \
|
||||
(output)[1] = (d)/g; \
|
||||
assert((output)[1] > 0); \
|
||||
} while (0)
|
||||
|
||||
static int gcd(int x, int y)
|
||||
{
|
||||
while (x != 0 && y != 0) {
|
||||
int t = x;
|
||||
x = y;
|
||||
y = t % y;
|
||||
}
|
||||
|
||||
return abs(x + y); /* i.e. whichever one isn't zero */
|
||||
}
|
||||
|
||||
static int perform_add(int *a, int *b, int *output)
|
||||
{
|
||||
int at, bt, tn, bn;
|
||||
/*
|
||||
* a0/a1 + b0/b1 = (a0*b1 + b0*a1) / (a1*b1)
|
||||
*/
|
||||
MUL(at, a[0], b[1]);
|
||||
MUL(bt, b[0], a[1]);
|
||||
ADD(tn, at, bt);
|
||||
MUL(bn, a[1], b[1]);
|
||||
OUT(output, tn, bn);
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
static int perform_sub(int *a, int *b, int *output)
|
||||
{
|
||||
int at, bt, tn, bn;
|
||||
/*
|
||||
* a0/a1 - b0/b1 = (a0*b1 - b0*a1) / (a1*b1)
|
||||
*/
|
||||
MUL(at, a[0], b[1]);
|
||||
MUL(bt, b[0], a[1]);
|
||||
ADD(tn, at, -bt);
|
||||
MUL(bn, a[1], b[1]);
|
||||
OUT(output, tn, bn);
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
static int perform_mul(int *a, int *b, int *output)
|
||||
{
|
||||
int tn, bn;
|
||||
/*
|
||||
* a0/a1 * b0/b1 = (a0*b0) / (a1*b1)
|
||||
*/
|
||||
MUL(tn, a[0], b[0]);
|
||||
MUL(bn, a[1], b[1]);
|
||||
OUT(output, tn, bn);
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
static int perform_div(int *a, int *b, int *output)
|
||||
{
|
||||
int tn, bn;
|
||||
|
||||
/*
|
||||
* Division by zero is outlawed.
|
||||
*/
|
||||
if (b[0] == 0)
|
||||
return FALSE;
|
||||
|
||||
/*
|
||||
* a0/a1 / b0/b1 = (a0*b1) / (a1*b0)
|
||||
*/
|
||||
MUL(tn, a[0], b[1]);
|
||||
MUL(bn, a[1], b[0]);
|
||||
OUT(output, tn, bn);
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
static int perform_exact_div(int *a, int *b, int *output)
|
||||
{
|
||||
int tn, bn;
|
||||
|
||||
/*
|
||||
* Division by zero is outlawed.
|
||||
*/
|
||||
if (b[0] == 0)
|
||||
return FALSE;
|
||||
|
||||
/*
|
||||
* a0/a1 / b0/b1 = (a0*b1) / (a1*b0)
|
||||
*/
|
||||
MUL(tn, a[0], b[1]);
|
||||
MUL(bn, a[1], b[0]);
|
||||
OUT(output, tn, bn);
|
||||
|
||||
/*
|
||||
* Exact division means we require the result to be an integer.
|
||||
*/
|
||||
return (output[1] == 1);
|
||||
}
|
||||
|
||||
static int perform_concat(int *a, int *b, int *output)
|
||||
{
|
||||
int t1, t2, p10;
|
||||
|
||||
/*
|
||||
* We can't concatenate anything which isn't an integer.
|
||||
*/
|
||||
if (a[1] != 1 || b[1] != 1)
|
||||
return FALSE;
|
||||
|
||||
/*
|
||||
* For concatenation, we can safely assume leading zeroes
|
||||
* aren't an issue. It isn't clear whether they `should' be
|
||||
* allowed, but it turns out not to matter: concatenating a
|
||||
* leading zero on to a number in order to harmlessly get rid
|
||||
* of the zero is never necessary because unwanted zeroes can
|
||||
* be disposed of by adding them to something instead. So we
|
||||
* disallow them always.
|
||||
*
|
||||
* The only other possibility is that you might want to
|
||||
* concatenate a leading zero on to something and then
|
||||
* concatenate another non-zero digit on to _that_ (to make,
|
||||
* for example, 106); but that's also unnecessary, because you
|
||||
* can make 106 just as easily by concatenating the 0 on to the
|
||||
* _end_ of the 1 first.
|
||||
*/
|
||||
if (a[0] == 0)
|
||||
return FALSE;
|
||||
|
||||
/*
|
||||
* Find the smallest power of ten strictly greater than b. This
|
||||
* is the power of ten by which we'll multiply a.
|
||||
*
|
||||
* Special case: we must multiply a by at least 10, even if b
|
||||
* is zero.
|
||||
*/
|
||||
p10 = 10;
|
||||
while (p10 <= (INT_MAX/10) && p10 <= b[0])
|
||||
p10 *= 10;
|
||||
if (p10 > INT_MAX/10)
|
||||
return FALSE; /* integer overflow */
|
||||
MUL(t1, p10, a[0]);
|
||||
ADD(t2, t1, b[0]);
|
||||
OUT(output, t2, 1);
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
const static struct operation op_add = {
|
||||
TRUE, "+", 0, 10, 0, TRUE, perform_add
|
||||
};
|
||||
const static struct operation op_sub = {
|
||||
TRUE, "-", 0, 10, 2, FALSE, perform_sub
|
||||
};
|
||||
const static struct operation op_mul = {
|
||||
TRUE, "*", 0, 20, 0, TRUE, perform_mul
|
||||
};
|
||||
const static struct operation op_div = {
|
||||
TRUE, "/", 0, 20, 2, FALSE, perform_div
|
||||
};
|
||||
const static struct operation op_xdiv = {
|
||||
TRUE, "/", 0, 20, 2, FALSE, perform_exact_div
|
||||
};
|
||||
const static struct operation op_concat = {
|
||||
FALSE, "", OPFLAG_NEEDS_CONCAT | OPFLAG_KEEPS_CONCAT,
|
||||
1000, 0, FALSE, perform_concat
|
||||
};
|
||||
|
||||
/*
|
||||
* In Countdown, divisions resulting in fractions are disallowed.
|
||||
* http://www.askoxford.com/wordgames/countdown/rules/
|
||||
*/
|
||||
const static struct operation *const ops_countdown[] = {
|
||||
&op_add, &op_mul, &op_sub, &op_xdiv, NULL
|
||||
};
|
||||
const static struct rules rules_countdown = {
|
||||
ops_countdown, FALSE
|
||||
};
|
||||
|
||||
/*
|
||||
* A slightly different rule set which handles the reasonably well
|
||||
* known puzzle of making 24 using two 3s and two 8s. For this we
|
||||
* need rational rather than integer division.
|
||||
*/
|
||||
const static struct operation *const ops_3388[] = {
|
||||
&op_add, &op_mul, &op_sub, &op_div, NULL
|
||||
};
|
||||
const static struct rules rules_3388 = {
|
||||
ops_3388, TRUE
|
||||
};
|
||||
|
||||
/*
|
||||
* A still more permissive rule set usable for the four-4s problem
|
||||
* and similar things. Permits concatenation.
|
||||
*/
|
||||
const static struct operation *const ops_four4s[] = {
|
||||
&op_add, &op_mul, &op_sub, &op_div, &op_concat, NULL
|
||||
};
|
||||
const static struct rules rules_four4s = {
|
||||
ops_four4s, TRUE
|
||||
};
|
||||
|
||||
#define ratcmp(a,op,b) ( (long long)(a)[0] * (b)[1] op \
|
||||
(long long)(b)[0] * (a)[1] )
|
||||
|
||||
static int addtoset(struct set *set, int newnumber[2])
|
||||
{
|
||||
int i, j;
|
||||
|
||||
/* Find where we want to insert the new number */
|
||||
for (i = 0; i < set->nnumbers &&
|
||||
ratcmp(set->numbers+2*i, <, newnumber); i++);
|
||||
|
||||
/* Move everything else up */
|
||||
for (j = set->nnumbers; j > i; j--) {
|
||||
set->numbers[2*j] = set->numbers[2*j-2];
|
||||
set->numbers[2*j+1] = set->numbers[2*j-1];
|
||||
}
|
||||
|
||||
/* Insert the new number */
|
||||
set->numbers[2*i] = newnumber[0];
|
||||
set->numbers[2*i+1] = newnumber[1];
|
||||
|
||||
set->nnumbers++;
|
||||
|
||||
return i;
|
||||
}
|
||||
|
||||
#define ensure(array, size, newlen, type) do { \
|
||||
if ((newlen) > (size)) { \
|
||||
(size) = (newlen) + 512; \
|
||||
(array) = sresize((array), (size), type); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
static int setcmp(void *av, void *bv)
|
||||
{
|
||||
struct set *a = (struct set *)av;
|
||||
struct set *b = (struct set *)bv;
|
||||
int i;
|
||||
|
||||
if (a->nnumbers < b->nnumbers)
|
||||
return -1;
|
||||
else if (a->nnumbers > b->nnumbers)
|
||||
return +1;
|
||||
|
||||
if (a->flags < b->flags)
|
||||
return -1;
|
||||
else if (a->flags > b->flags)
|
||||
return +1;
|
||||
|
||||
for (i = 0; i < a->nnumbers; i++) {
|
||||
if (ratcmp(a->numbers+2*i, <, b->numbers+2*i))
|
||||
return -1;
|
||||
else if (ratcmp(a->numbers+2*i, >, b->numbers+2*i))
|
||||
return +1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int outputcmp(void *av, void *bv)
|
||||
{
|
||||
struct output *a = (struct output *)av;
|
||||
struct output *b = (struct output *)bv;
|
||||
|
||||
if (a->number < b->number)
|
||||
return -1;
|
||||
else if (a->number > b->number)
|
||||
return +1;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int outputfindcmp(void *av, void *bv)
|
||||
{
|
||||
int *a = (int *)av;
|
||||
struct output *b = (struct output *)bv;
|
||||
|
||||
if (*a < b->number)
|
||||
return -1;
|
||||
else if (*a > b->number)
|
||||
return +1;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void addset(struct sets *s, struct set *set, struct set *prev)
|
||||
{
|
||||
struct set *s2;
|
||||
int npaths = (prev ? prev->npaths : 1);
|
||||
|
||||
assert(set == s->setlists[s->nsets / SETLISTLEN] + s->nsets % SETLISTLEN);
|
||||
s2 = add234(s->settree, set);
|
||||
if (s2 == set) {
|
||||
/*
|
||||
* New set added to the tree.
|
||||
*/
|
||||
set->prev = prev;
|
||||
set->npaths = npaths;
|
||||
s->nsets++;
|
||||
s->nnumbers += 2 * set->nnumbers;
|
||||
} else {
|
||||
/*
|
||||
* Rediscovered an existing set. Update its npaths only.
|
||||
*/
|
||||
s2->npaths += npaths;
|
||||
}
|
||||
}
|
||||
|
||||
static struct set *newset(struct sets *s, int nnumbers, int flags)
|
||||
{
|
||||
struct set *sn;
|
||||
|
||||
ensure(s->setlists, s->setlistsize, s->nsets/SETLISTLEN+1, struct set *);
|
||||
while (s->nsetlists <= s->nsets / SETLISTLEN)
|
||||
s->setlists[s->nsetlists++] = snewn(SETLISTLEN, struct set);
|
||||
sn = s->setlists[s->nsets / SETLISTLEN] + s->nsets % SETLISTLEN;
|
||||
|
||||
if (s->nnumbers + nnumbers * 2 > s->nnumberlists * NUMBERLISTLEN)
|
||||
s->nnumbers = s->nnumberlists * NUMBERLISTLEN;
|
||||
ensure(s->numberlists, s->numberlistsize,
|
||||
s->nnumbers/NUMBERLISTLEN+1, int *);
|
||||
while (s->nnumberlists <= s->nnumbers / NUMBERLISTLEN)
|
||||
s->numberlists[s->nnumberlists++] = snewn(NUMBERLISTLEN, int);
|
||||
sn->numbers = s->numberlists[s->nnumbers / NUMBERLISTLEN] +
|
||||
s->nnumbers % NUMBERLISTLEN;
|
||||
|
||||
/*
|
||||
* Start the set off empty.
|
||||
*/
|
||||
sn->nnumbers = 0;
|
||||
|
||||
sn->flags = flags;
|
||||
|
||||
return sn;
|
||||
}
|
||||
|
||||
static int addoutput(struct sets *s, struct set *ss, int index, int *n)
|
||||
{
|
||||
struct output *o, *o2;
|
||||
|
||||
/*
|
||||
* Target numbers are always integers.
|
||||
*/
|
||||
if (ss->numbers[2*index+1] != 1)
|
||||
return FALSE;
|
||||
|
||||
ensure(s->outputlists, s->outputlistsize, s->noutputs/OUTPUTLISTLEN+1,
|
||||
struct output *);
|
||||
while (s->noutputlists <= s->noutputs / OUTPUTLISTLEN)
|
||||
s->outputlists[s->noutputlists++] = snewn(OUTPUTLISTLEN,
|
||||
struct output);
|
||||
o = s->outputlists[s->noutputs / OUTPUTLISTLEN] +
|
||||
s->noutputs % OUTPUTLISTLEN;
|
||||
|
||||
o->number = ss->numbers[2*index];
|
||||
o->set = ss;
|
||||
o->index = index;
|
||||
o->npaths = ss->npaths;
|
||||
o2 = add234(s->outputtree, o);
|
||||
if (o2 != o) {
|
||||
o2->npaths += o->npaths;
|
||||
} else {
|
||||
s->noutputs++;
|
||||
}
|
||||
*n = o->number;
|
||||
return TRUE;
|
||||
}
|
||||
|
||||
static struct sets *do_search(int ninputs, int *inputs,
|
||||
const struct rules *rules, int *target)
|
||||
{
|
||||
struct sets *s;
|
||||
struct set *sn;
|
||||
int qpos, i;
|
||||
const struct operation *const *ops = rules->ops;
|
||||
|
||||
s = snew(struct sets);
|
||||
s->setlists = NULL;
|
||||
s->nsets = s->nsetlists = s->setlistsize = 0;
|
||||
s->numberlists = NULL;
|
||||
s->nnumbers = s->nnumberlists = s->numberlistsize = 0;
|
||||
s->outputlists = NULL;
|
||||
s->noutputs = s->noutputlists = s->outputlistsize = 0;
|
||||
s->settree = newtree234(setcmp);
|
||||
s->outputtree = newtree234(outputcmp);
|
||||
s->ops = ops;
|
||||
|
||||
/*
|
||||
* Start with the input set.
|
||||
*/
|
||||
sn = newset(s, ninputs, SETFLAG_CONCAT);
|
||||
for (i = 0; i < ninputs; i++) {
|
||||
int newnumber[2];
|
||||
newnumber[0] = inputs[i];
|
||||
newnumber[1] = 1;
|
||||
addtoset(sn, newnumber);
|
||||
}
|
||||
addset(s, sn, NULL);
|
||||
|
||||
/*
|
||||
* Now perform the breadth-first search: keep looping over sets
|
||||
* until we run out of steam.
|
||||
*/
|
||||
qpos = 0;
|
||||
while (qpos < s->nsets) {
|
||||
struct set *ss = s->setlists[qpos / SETLISTLEN] + qpos % SETLISTLEN;
|
||||
struct set *sn;
|
||||
int i, j, k, m;
|
||||
|
||||
/*
|
||||
* Record all the valid output numbers in this state. We
|
||||
* can always do this if there's only one number in the
|
||||
* state; otherwise, we can only do it if we aren't
|
||||
* required to use all the numbers in coming to our answer.
|
||||
*/
|
||||
if (ss->nnumbers == 1 || !rules->use_all) {
|
||||
for (i = 0; i < ss->nnumbers; i++) {
|
||||
int n;
|
||||
|
||||
if (addoutput(s, ss, i, &n) && target && n == *target)
|
||||
return s;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Try every possible operation from this state.
|
||||
*/
|
||||
for (k = 0; ops[k] && ops[k]->perform; k++) {
|
||||
if ((ops[k]->flags & OPFLAG_NEEDS_CONCAT) &&
|
||||
!(ss->flags & SETFLAG_CONCAT))
|
||||
continue; /* can't use this operation here */
|
||||
for (i = 0; i < ss->nnumbers; i++) {
|
||||
for (j = 0; j < ss->nnumbers; j++) {
|
||||
int n[2];
|
||||
|
||||
if (i == j)
|
||||
continue; /* can't combine a number with itself */
|
||||
if (i > j && ops[k]->commutes)
|
||||
continue; /* no need to do this both ways round */
|
||||
if (!ops[k]->perform(ss->numbers+2*i, ss->numbers+2*j, n))
|
||||
continue; /* operation failed */
|
||||
|
||||
sn = newset(s, ss->nnumbers-1, ss->flags);
|
||||
|
||||
if (!(ops[k]->flags & OPFLAG_KEEPS_CONCAT))
|
||||
sn->flags &= ~SETFLAG_CONCAT;
|
||||
|
||||
for (m = 0; m < ss->nnumbers; m++) {
|
||||
if (m == i || m == j)
|
||||
continue;
|
||||
sn->numbers[2*sn->nnumbers] = ss->numbers[2*m];
|
||||
sn->numbers[2*sn->nnumbers + 1] = ss->numbers[2*m + 1];
|
||||
sn->nnumbers++;
|
||||
}
|
||||
sn->pa = i;
|
||||
sn->pb = j;
|
||||
sn->po = k;
|
||||
sn->pr = addtoset(sn, n);
|
||||
addset(s, sn, ss);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
qpos++;
|
||||
}
|
||||
|
||||
return s;
|
||||
}
|
||||
|
||||
static void free_sets(struct sets *s)
|
||||
{
|
||||
int i;
|
||||
|
||||
freetree234(s->settree);
|
||||
freetree234(s->outputtree);
|
||||
for (i = 0; i < s->nsetlists; i++)
|
||||
sfree(s->setlists[i]);
|
||||
sfree(s->setlists);
|
||||
for (i = 0; i < s->nnumberlists; i++)
|
||||
sfree(s->numberlists[i]);
|
||||
sfree(s->numberlists);
|
||||
for (i = 0; i < s->noutputlists; i++)
|
||||
sfree(s->outputlists[i]);
|
||||
sfree(s->outputlists);
|
||||
sfree(s);
|
||||
}
|
||||
|
||||
/*
|
||||
* Construct a text formula for producing a given output.
|
||||
*/
|
||||
void mkstring_recurse(char **str, int *len,
|
||||
struct sets *s, struct set *ss, int index,
|
||||
int priority, int assoc, int child)
|
||||
{
|
||||
if (ss->prev && index != ss->pr) {
|
||||
int pi;
|
||||
|
||||
/*
|
||||
* This number was passed straight down from this set's
|
||||
* predecessor. Find its index in the previous set and
|
||||
* recurse to there.
|
||||
*/
|
||||
pi = index;
|
||||
assert(pi != ss->pr);
|
||||
if (pi > ss->pr)
|
||||
pi--;
|
||||
if (pi >= min(ss->pa, ss->pb)) {
|
||||
pi++;
|
||||
if (pi >= max(ss->pa, ss->pb))
|
||||
pi++;
|
||||
}
|
||||
mkstring_recurse(str, len, s, ss->prev, pi, priority, assoc, child);
|
||||
} else if (ss->prev && index == ss->pr &&
|
||||
s->ops[ss->po]->display) {
|
||||
/*
|
||||
* This number was created by a displayed operator in the
|
||||
* transition from this set to its predecessor. Hence we
|
||||
* write an open paren, then recurse into the first
|
||||
* operand, then write the operator, then the second
|
||||
* operand, and finally close the paren.
|
||||
*/
|
||||
char *op;
|
||||
int parens, thispri, thisassoc;
|
||||
|
||||
/*
|
||||
* Determine whether we need parentheses.
|
||||
*/
|
||||
thispri = s->ops[ss->po]->priority;
|
||||
thisassoc = s->ops[ss->po]->assoc;
|
||||
parens = (thispri < priority ||
|
||||
(thispri == priority && (assoc & child)));
|
||||
|
||||
if (parens) {
|
||||
if (str)
|
||||
*(*str)++ = '(';
|
||||
if (len)
|
||||
(*len)++;
|
||||
}
|
||||
mkstring_recurse(str, len, s, ss->prev, ss->pa, thispri, thisassoc, 1);
|
||||
for (op = s->ops[ss->po]->text; *op; op++) {
|
||||
if (str)
|
||||
*(*str)++ = *op;
|
||||
if (len)
|
||||
(*len)++;
|
||||
}
|
||||
mkstring_recurse(str, len, s, ss->prev, ss->pb, thispri, thisassoc, 2);
|
||||
if (parens) {
|
||||
if (str)
|
||||
*(*str)++ = ')';
|
||||
if (len)
|
||||
(*len)++;
|
||||
}
|
||||
} else {
|
||||
/*
|
||||
* This number is either an original, or something formed
|
||||
* by a non-displayed operator (concatenation). Either way,
|
||||
* we display it as is.
|
||||
*/
|
||||
char buf[80], *p;
|
||||
int blen;
|
||||
blen = sprintf(buf, "%d", ss->numbers[2*index]);
|
||||
if (ss->numbers[2*index+1] != 1)
|
||||
blen += sprintf(buf+blen, "/%d", ss->numbers[2*index+1]);
|
||||
assert(blen < lenof(buf));
|
||||
for (p = buf; *p; p++) {
|
||||
if (str)
|
||||
*(*str)++ = *p;
|
||||
if (len)
|
||||
(*len)++;
|
||||
}
|
||||
}
|
||||
}
|
||||
char *mkstring(struct sets *s, struct output *o)
|
||||
{
|
||||
int len;
|
||||
char *str, *p;
|
||||
|
||||
len = 0;
|
||||
mkstring_recurse(NULL, &len, s, o->set, o->index, 0, 0, 0);
|
||||
str = snewn(len+1, char);
|
||||
p = str;
|
||||
mkstring_recurse(&p, NULL, s, o->set, o->index, 0, 0, 0);
|
||||
assert(p - str <= len);
|
||||
*p = '\0';
|
||||
return str;
|
||||
}
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int doing_opts = TRUE;
|
||||
const struct rules *rules = NULL;
|
||||
char *pname = argv[0];
|
||||
int got_target = FALSE, target = 0;
|
||||
int numbers[10], nnumbers = 0;
|
||||
int verbose = FALSE;
|
||||
int pathcounts = FALSE;
|
||||
|
||||
struct output *o;
|
||||
struct sets *s;
|
||||
int i, start, limit;
|
||||
|
||||
while (--argc) {
|
||||
char *p = *++argv;
|
||||
int c;
|
||||
|
||||
if (doing_opts && *p == '-') {
|
||||
p++;
|
||||
|
||||
if (!strcmp(p, "-")) {
|
||||
doing_opts = FALSE;
|
||||
continue;
|
||||
} else while (*p) switch (c = *p++) {
|
||||
case 'C':
|
||||
rules = &rules_countdown;
|
||||
break;
|
||||
case 'B':
|
||||
rules = &rules_3388;
|
||||
break;
|
||||
case 'D':
|
||||
rules = &rules_four4s;
|
||||
break;
|
||||
case 'v':
|
||||
verbose = TRUE;
|
||||
break;
|
||||
case 'p':
|
||||
pathcounts = TRUE;
|
||||
break;
|
||||
case 't':
|
||||
{
|
||||
char *v;
|
||||
if (*p) {
|
||||
v = p;
|
||||
p = NULL;
|
||||
} else if (--argc) {
|
||||
v = *++argv;
|
||||
} else {
|
||||
fprintf(stderr, "%s: option '-%c' expects an"
|
||||
" argument\n", pname, c);
|
||||
return 1;
|
||||
}
|
||||
switch (c) {
|
||||
case 't':
|
||||
got_target = TRUE;
|
||||
target = atoi(v);
|
||||
break;
|
||||
}
|
||||
}
|
||||
break;
|
||||
default:
|
||||
fprintf(stderr, "%s: option '-%c' not"
|
||||
" recognised\n", pname, c);
|
||||
return 1;
|
||||
}
|
||||
} else {
|
||||
if (nnumbers >= lenof(numbers)) {
|
||||
fprintf(stderr, "%s: internal limit of %d numbers exceeded\n",
|
||||
pname, lenof(numbers));
|
||||
return 1;
|
||||
} else {
|
||||
numbers[nnumbers++] = atoi(p);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (!rules) {
|
||||
fprintf(stderr, "%s: no rule set specified; use -C,-B,-D\n", pname);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (!nnumbers) {
|
||||
fprintf(stderr, "%s: no input numbers specified\n", pname);
|
||||
return 1;
|
||||
}
|
||||
|
||||
s = do_search(nnumbers, numbers, rules, (got_target ? &target : NULL));
|
||||
|
||||
if (got_target) {
|
||||
o = findrelpos234(s->outputtree, &target, outputfindcmp,
|
||||
REL234_LE, &start);
|
||||
if (!o)
|
||||
start = -1;
|
||||
o = findrelpos234(s->outputtree, &target, outputfindcmp,
|
||||
REL234_GE, &limit);
|
||||
if (!o)
|
||||
limit = -1;
|
||||
assert(start != -1 || limit != -1);
|
||||
if (start == -1)
|
||||
start = limit;
|
||||
else if (limit == -1)
|
||||
limit = start;
|
||||
limit++;
|
||||
} else {
|
||||
start = 0;
|
||||
limit = count234(s->outputtree);
|
||||
}
|
||||
|
||||
for (i = start; i < limit; i++) {
|
||||
o = index234(s->outputtree, i);
|
||||
|
||||
printf("%d", o->number);
|
||||
|
||||
if (pathcounts)
|
||||
printf(" [%d]", o->npaths);
|
||||
|
||||
if (got_target || verbose) {
|
||||
char *p = mkstring(s, o);
|
||||
printf(" = %s", p);
|
||||
sfree(p);
|
||||
}
|
||||
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
free_sets(s);
|
||||
|
||||
return 0;
|
||||
}
|
Reference in New Issue
Block a user