mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-21 08:01:30 -07:00
A piece of library code which constructs a random division of a
rectangle into equally sized ominoes. I have a couple of potential applications for this, but none I've actually implemented yet, so for the moment it's living in `unfinished'. [originally from svn r7690]
This commit is contained in:
533
unfinished/divvy.c
Normal file
533
unfinished/divvy.c
Normal file
@ -0,0 +1,533 @@
|
||||
/*
|
||||
* Library code to divide up a rectangle into a number of equally
|
||||
* sized ominoes, in a random fashion.
|
||||
*
|
||||
* Could use this for generating solved grids of
|
||||
* http://www.nikoli.co.jp/ja/puzzles/block_puzzle/
|
||||
* or for generating the playfield for Jigsaw Sudoku.
|
||||
*/
|
||||
|
||||
#include <assert.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <stddef.h>
|
||||
|
||||
#include "puzzles.h"
|
||||
|
||||
/*
|
||||
* Subroutine which implements a function used in computing both
|
||||
* whether a square can safely be added to an omino, and whether
|
||||
* it can safely be removed.
|
||||
*
|
||||
* We enumerate the eight squares 8-adjacent to this one, in
|
||||
* cyclic order. We go round that loop and count the number of
|
||||
* times we find a square owned by the target omino next to one
|
||||
* not owned by it. We then return success iff that count is 2.
|
||||
*
|
||||
* When adding a square to an omino, this is precisely the
|
||||
* criterion which tells us that adding the square won't leave a
|
||||
* hole in the middle of the omino. (There's no explicit
|
||||
* requirement in the statement of our problem that the ominoes be
|
||||
* simply connected, but we do know they must be all of equal size
|
||||
* and so it's clear that we must avoid leaving holes, since a
|
||||
* hole would necessarily be smaller than the maximum omino size.)
|
||||
*
|
||||
* When removing a square from an omino, the _same_ criterion
|
||||
* tells us that removing the square won't disconnect the omino.
|
||||
*/
|
||||
static int addremcommon(int w, int h, int x, int y, int *own, int val)
|
||||
{
|
||||
int neighbours[8];
|
||||
int dir, count;
|
||||
|
||||
for (dir = 0; dir < 8; dir++) {
|
||||
int dx = ((dir & 3) == 2 ? 0 : dir > 2 && dir < 6 ? +1 : -1);
|
||||
int dy = ((dir & 3) == 0 ? 0 : dir < 4 ? -1 : +1);
|
||||
int sx = x+dx, sy = y+dy;
|
||||
|
||||
if (sx < 0 || sx >= w || sy < 0 || sy >= h)
|
||||
neighbours[dir] = -1; /* outside the grid */
|
||||
else
|
||||
neighbours[dir] = own[sy*w+sx];
|
||||
}
|
||||
|
||||
/*
|
||||
* To begin with, check 4-adjacency.
|
||||
*/
|
||||
if (neighbours[0] != val && neighbours[2] != val &&
|
||||
neighbours[4] != val && neighbours[6] != val)
|
||||
return FALSE;
|
||||
|
||||
count = 0;
|
||||
|
||||
for (dir = 0; dir < 8; dir++) {
|
||||
int next = (dir + 1) & 7;
|
||||
int gotthis = (neighbours[dir] == val);
|
||||
int gotnext = (neighbours[next] == val);
|
||||
|
||||
if (gotthis != gotnext)
|
||||
count++;
|
||||
}
|
||||
|
||||
return (count == 2);
|
||||
}
|
||||
|
||||
/*
|
||||
* w and h are the dimensions of the rectangle.
|
||||
*
|
||||
* k is the size of the required ominoes. (So k must divide w*h,
|
||||
* of course.)
|
||||
*
|
||||
* The returned result is a w*h-sized dsf.
|
||||
*
|
||||
* In both of the above suggested use cases, the user would
|
||||
* probably want w==h==k, but that isn't a requirement.
|
||||
*/
|
||||
int *divvy_rectangle(int w, int h, int k, random_state *rs)
|
||||
{
|
||||
int *order, *queue, *tmp, *own, *sizes, *addable, *removable, *retdsf;
|
||||
int wh = w*h;
|
||||
int i, j, n, x, y, qhead, qtail;
|
||||
|
||||
n = wh / k;
|
||||
assert(wh == k*n);
|
||||
|
||||
order = snewn(wh, int);
|
||||
tmp = snewn(wh, int);
|
||||
own = snewn(wh, int);
|
||||
sizes = snewn(n, int);
|
||||
queue = snewn(n, int);
|
||||
addable = snewn(wh*4, int);
|
||||
removable = snewn(wh, int);
|
||||
|
||||
/*
|
||||
* Permute the grid squares into a random order, which will be
|
||||
* used for iterating over the grid whenever we need to search
|
||||
* for something. This prevents directional bias and arranges
|
||||
* for the answer to be non-deterministic.
|
||||
*/
|
||||
for (i = 0; i < wh; i++)
|
||||
order[i] = i;
|
||||
shuffle(order, wh, sizeof(*order), rs);
|
||||
|
||||
/*
|
||||
* Begin by choosing a starting square at random for each
|
||||
* omino.
|
||||
*/
|
||||
for (i = 0; i < wh; i++) {
|
||||
own[i] = -1;
|
||||
}
|
||||
for (i = 0; i < n; i++) {
|
||||
own[order[i]] = i;
|
||||
sizes[i] = 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* Now repeatedly pick a random omino which isn't already at
|
||||
* the target size, and find a way to expand it by one. This
|
||||
* may involve stealing a square from another omino, in which
|
||||
* case we then re-expand that omino, forming a chain of
|
||||
* square-stealing which terminates in an as yet unclaimed
|
||||
* square. Hence every successful iteration around this loop
|
||||
* causes the number of unclaimed squares to drop by one, and
|
||||
* so the process is bounded in duration.
|
||||
*/
|
||||
while (1) {
|
||||
|
||||
#ifdef DIVVY_DIAGNOSTICS
|
||||
{
|
||||
int x, y;
|
||||
printf("Top of loop. Current grid:\n");
|
||||
for (y = 0; y < h; y++) {
|
||||
for (x = 0; x < w; x++)
|
||||
printf("%3d", own[y*w+x]);
|
||||
printf("\n");
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Go over the grid and figure out which squares can
|
||||
* safely be added to, or removed from, each omino. We
|
||||
* don't take account of other ominoes in this process, so
|
||||
* we will often end up knowing that a square can be
|
||||
* poached from one omino by another.
|
||||
*
|
||||
* For each square, there may be up to four ominoes to
|
||||
* which it can be added (those to which it is
|
||||
* 4-adjacent).
|
||||
*/
|
||||
for (y = 0; y < h; y++) {
|
||||
for (x = 0; x < w; x++) {
|
||||
int yx = y*w+x;
|
||||
int curr = own[yx];
|
||||
int dir;
|
||||
|
||||
if (curr < 0) {
|
||||
removable[yx] = 0; /* can't remove if it's not owned! */
|
||||
} else {
|
||||
/*
|
||||
* See if this square can be removed from its
|
||||
* omino without disconnecting it.
|
||||
*/
|
||||
removable[yx] = addremcommon(w, h, x, y, own, curr);
|
||||
}
|
||||
|
||||
for (dir = 0; dir < 4; dir++) {
|
||||
int dx = (dir == 0 ? -1 : dir == 1 ? +1 : 0);
|
||||
int dy = (dir == 2 ? -1 : dir == 3 ? +1 : 0);
|
||||
int sx = x + dx, sy = y + dy;
|
||||
int syx = sy*w+sx;
|
||||
|
||||
addable[yx*4+dir] = -1;
|
||||
|
||||
if (sx < 0 || sx >= w || sy < 0 || sy >= h)
|
||||
continue; /* no omino here! */
|
||||
if (own[syx] < 0)
|
||||
continue; /* also no omino here */
|
||||
if (own[syx] == own[yx])
|
||||
continue; /* we already got one */
|
||||
if (!addremcommon(w, h, x, y, own, own[syx]))
|
||||
continue; /* would non-simply connect the omino */
|
||||
|
||||
addable[yx*4+dir] = own[syx];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (i = j = 0; i < n; i++)
|
||||
if (sizes[i] < k)
|
||||
tmp[j++] = i;
|
||||
if (j == 0)
|
||||
break; /* all ominoes are complete! */
|
||||
j = tmp[random_upto(rs, j)];
|
||||
|
||||
/*
|
||||
* So we're trying to expand omino j. We breadth-first
|
||||
* search out from j across the space of ominoes.
|
||||
*
|
||||
* For bfs purposes, we use two elements of tmp per omino:
|
||||
* tmp[2*i+0] tells us which omino we got to i from, and
|
||||
* tmp[2*i+1] numbers the grid square that omino stole
|
||||
* from us.
|
||||
*
|
||||
* This requires that wh (the size of tmp) is at least 2n,
|
||||
* i.e. k is at least 2. There would have been nothing to
|
||||
* stop a user calling this function with k=1, but if they
|
||||
* did then we wouldn't have got to _here_ in the code -
|
||||
* we would have noticed above that all ominoes were
|
||||
* already at their target sizes, and terminated :-)
|
||||
*/
|
||||
assert(wh >= 2*n);
|
||||
for (i = 0; i < n; i++)
|
||||
tmp[2*i] = tmp[2*i+1] = -1;
|
||||
qhead = qtail = 0;
|
||||
queue[qtail++] = j;
|
||||
tmp[2*j] = tmp[2*j+1] = -2; /* special value: `starting point' */
|
||||
|
||||
while (qhead < qtail) {
|
||||
int tmpsq;
|
||||
|
||||
j = queue[qhead];
|
||||
|
||||
/*
|
||||
* We wish to expand omino j. However, we might have
|
||||
* got here by omino j having a square stolen from it,
|
||||
* so first of all we must temporarily mark that
|
||||
* square as not belonging to j, so that our adjacency
|
||||
* calculations don't assume j _does_ belong to us.
|
||||
*/
|
||||
tmpsq = tmp[2*j+1];
|
||||
if (tmpsq >= 0) {
|
||||
assert(own[tmpsq] == j);
|
||||
own[tmpsq] = -1;
|
||||
}
|
||||
|
||||
/*
|
||||
* OK. Now begin by seeing if we can find any
|
||||
* unclaimed square into which we can expand omino j.
|
||||
* If we find one, the entire bfs terminates.
|
||||
*/
|
||||
for (i = 0; i < wh; i++) {
|
||||
int dir;
|
||||
|
||||
if (own[order[i]] >= 0)
|
||||
continue; /* this square is claimed */
|
||||
for (dir = 0; dir < 4; dir++)
|
||||
if (addable[order[i]*4+dir] == j) {
|
||||
/*
|
||||
* We know this square is addable to this
|
||||
* omino with the grid in the state it had
|
||||
* at the top of the loop. However, we
|
||||
* must now check that it's _still_
|
||||
* addable to this omino when the omino is
|
||||
* missing a square. To do this it's only
|
||||
* necessary to re-check addremcommon.
|
||||
~|~ */
|
||||
if (!addremcommon(w, h, order[i]%w, order[i]/w,
|
||||
own, j))
|
||||
continue;
|
||||
break;
|
||||
}
|
||||
if (dir == 4)
|
||||
continue; /* we can't add this square to j */
|
||||
break; /* got one! */
|
||||
}
|
||||
if (i < wh) {
|
||||
i = order[i];
|
||||
|
||||
/*
|
||||
* We are done. We can add square i to omino j,
|
||||
* and then backtrack along the trail in tmp
|
||||
* moving squares between ominoes, ending up
|
||||
* expanding our starting omino by one.
|
||||
*/
|
||||
while (1) {
|
||||
own[i] = j;
|
||||
if (tmp[2*j] == -2)
|
||||
break;
|
||||
i = tmp[2*j+1];
|
||||
j = tmp[2*j];
|
||||
}
|
||||
|
||||
/*
|
||||
* Increment the size of the starting omino.
|
||||
*/
|
||||
sizes[j]++;
|
||||
|
||||
/*
|
||||
* Terminate the bfs loop.
|
||||
*/
|
||||
break;
|
||||
}
|
||||
|
||||
/*
|
||||
* If we get here, we haven't been able to expand
|
||||
* omino j into an unclaimed square. So now we begin
|
||||
* to investigate expanding it into squares which are
|
||||
* claimed by ominoes the bfs has not yet visited.
|
||||
*/
|
||||
for (i = 0; i < wh; i++) {
|
||||
int dir, nj;
|
||||
|
||||
nj = own[order[i]];
|
||||
if (nj < 0 || tmp[2*nj] != -1)
|
||||
continue; /* unclaimed, or owned by wrong omino */
|
||||
if (!removable[order[i]])
|
||||
continue; /* its omino won't let it go */
|
||||
|
||||
for (dir = 0; dir < 4; dir++)
|
||||
if (addable[order[i]*4+dir] == j) {
|
||||
/*
|
||||
* As above, re-check addremcommon.
|
||||
*/
|
||||
if (!addremcommon(w, h, order[i]%w, order[i]/w,
|
||||
own, j))
|
||||
continue;
|
||||
|
||||
/*
|
||||
* We have found a square we can use to
|
||||
* expand omino j, at the expense of the
|
||||
* as-yet unvisited omino nj. So add this
|
||||
* to the bfs queue.
|
||||
*/
|
||||
assert(qtail < n);
|
||||
queue[qtail++] = nj;
|
||||
tmp[2*nj] = j;
|
||||
tmp[2*nj+1] = order[i];
|
||||
|
||||
/*
|
||||
* Now terminate the loop over dir, to
|
||||
* ensure we don't accidentally add the
|
||||
* same omino twice to the queue.
|
||||
*/
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Restore the temporarily removed square.
|
||||
*/
|
||||
if (tmpsq >= 0)
|
||||
own[tmpsq] = j;
|
||||
|
||||
/*
|
||||
* Advance the queue head.
|
||||
*/
|
||||
qhead++;
|
||||
}
|
||||
|
||||
if (qhead == qtail) {
|
||||
/*
|
||||
* We have finished the bfs and not found any way to
|
||||
* expand omino j. Panic, and return failure.
|
||||
*
|
||||
* FIXME: or should we loop over all ominoes before we
|
||||
* give up?
|
||||
*/
|
||||
retdsf = NULL;
|
||||
goto cleanup;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Construct the output dsf.
|
||||
*/
|
||||
for (i = 0; i < wh; i++) {
|
||||
assert(own[i] >= 0 && own[i] < n);
|
||||
tmp[own[i]] = i;
|
||||
}
|
||||
retdsf = snew_dsf(wh);
|
||||
for (i = 0; i < wh; i++) {
|
||||
dsf_merge(retdsf, i, tmp[own[i]]);
|
||||
}
|
||||
|
||||
/*
|
||||
* Construct the output dsf a different way, to verify that
|
||||
* the ominoes really are k-ominoes and we haven't
|
||||
* accidentally split one into two disconnected pieces.
|
||||
*/
|
||||
dsf_init(tmp, wh);
|
||||
for (y = 0; y < h; y++)
|
||||
for (x = 0; x+1 < w; x++)
|
||||
if (own[y*w+x] == own[y*w+(x+1)])
|
||||
dsf_merge(tmp, y*w+x, y*w+(x+1));
|
||||
for (x = 0; x < w; x++)
|
||||
for (y = 0; y+1 < h; y++)
|
||||
if (own[y*w+x] == own[(y+1)*w+x])
|
||||
dsf_merge(tmp, y*w+x, (y+1)*w+x);
|
||||
for (i = 0; i < wh; i++) {
|
||||
j = dsf_canonify(retdsf, i);
|
||||
assert(dsf_canonify(tmp, j) == dsf_canonify(tmp, i));
|
||||
}
|
||||
|
||||
cleanup:
|
||||
|
||||
/*
|
||||
* Free our temporary working space.
|
||||
*/
|
||||
sfree(order);
|
||||
sfree(tmp);
|
||||
sfree(own);
|
||||
sfree(sizes);
|
||||
sfree(queue);
|
||||
sfree(addable);
|
||||
sfree(removable);
|
||||
|
||||
/*
|
||||
* And we're done.
|
||||
*/
|
||||
return retdsf;
|
||||
}
|
||||
|
||||
#ifdef TESTMODE
|
||||
|
||||
/*
|
||||
* gcc -g -O0 -DTESTMODE -I.. -o divvy divvy.c ../random.c ../malloc.c ../dsf.c ../misc.c ../nullfe.c
|
||||
*
|
||||
* or to debug
|
||||
*
|
||||
* gcc -g -O0 -DDIVVY_DIAGNOSTICS -DTESTMODE -I.. -o divvy divvy.c ../random.c ../malloc.c ../dsf.c ../misc.c ../nullfe.c
|
||||
*/
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int *dsf;
|
||||
int i, successes;
|
||||
int w = 9, h = 4, k = 6, tries = 100;
|
||||
random_state *rs;
|
||||
|
||||
rs = random_new("123456", 6);
|
||||
|
||||
if (argc > 1)
|
||||
w = atoi(argv[1]);
|
||||
if (argc > 2)
|
||||
h = atoi(argv[2]);
|
||||
if (argc > 3)
|
||||
k = atoi(argv[3]);
|
||||
if (argc > 4)
|
||||
tries = atoi(argv[4]);
|
||||
|
||||
successes = 0;
|
||||
for (i = 0; i < tries; i++) {
|
||||
dsf = divvy_rectangle(w, h, k, rs);
|
||||
if (dsf) {
|
||||
int x, y;
|
||||
|
||||
successes++;
|
||||
|
||||
for (y = 0; y <= 2*h; y++) {
|
||||
for (x = 0; x <= 2*w; x++) {
|
||||
int miny = y/2 - 1, maxy = y/2;
|
||||
int minx = x/2 - 1, maxx = x/2;
|
||||
int classes[4], tx, ty;
|
||||
for (ty = 0; ty < 2; ty++)
|
||||
for (tx = 0; tx < 2; tx++) {
|
||||
int cx = minx+tx, cy = miny+ty;
|
||||
if (cx < 0 || cx >= w || cy < 0 || cy >= h)
|
||||
classes[ty*2+tx] = -1;
|
||||
else
|
||||
classes[ty*2+tx] = dsf_canonify(dsf, cy*w+cx);
|
||||
}
|
||||
switch (y%2 * 2 + x%2) {
|
||||
case 0: /* corner */
|
||||
/*
|
||||
* Cases for the corner:
|
||||
*
|
||||
* - if all four surrounding squares
|
||||
* belong to the same omino, we print a
|
||||
* space.
|
||||
*
|
||||
* - if the top two are the same and the
|
||||
* bottom two are the same, we print a
|
||||
* horizontal line.
|
||||
*
|
||||
* - if the left two are the same and the
|
||||
* right two are the same, we print a
|
||||
* vertical line.
|
||||
*
|
||||
* - otherwise, we print a cross.
|
||||
*/
|
||||
if (classes[0] == classes[1] &&
|
||||
classes[1] == classes[2] &&
|
||||
classes[2] == classes[3])
|
||||
printf(" ");
|
||||
else if (classes[0] == classes[1] &&
|
||||
classes[2] == classes[3])
|
||||
printf("-");
|
||||
else if (classes[0] == classes[2] &&
|
||||
classes[1] == classes[3])
|
||||
printf("|");
|
||||
else
|
||||
printf("+");
|
||||
break;
|
||||
case 1: /* horiz edge */
|
||||
if (classes[1] == classes[3])
|
||||
printf(" ");
|
||||
else
|
||||
printf("--");
|
||||
break;
|
||||
case 2: /* vert edge */
|
||||
if (classes[2] == classes[3])
|
||||
printf(" ");
|
||||
else
|
||||
printf("|");
|
||||
break;
|
||||
case 3: /* square centre */
|
||||
printf(" ");
|
||||
break;
|
||||
}
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
printf("\n");
|
||||
sfree(dsf);
|
||||
}
|
||||
}
|
||||
|
||||
printf("%d successes out of %d tries\n", successes, tries);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif
|
Reference in New Issue
Block a user