mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-21 16:05:44 -07:00
Implemented a couple more reasoning modes for Extreme difficulty
level: positional set elimination (which is so obvious I really should have thought of it myself, though it's tricky to spot) and forcing chains (which are a type of one-level proof by contradiction, findable through a simple breadth-first search without requiring recursion, but so ludicrously powerful that they are able to solve _two thirds_ of grids that the pre-Extreme Solo generated and rated as Unreasonable). Of course this makes Unreasonable mode harder still... [originally from svn r6239]
This commit is contained in:
256
solo.c
256
solo.c
@ -116,7 +116,7 @@ typedef unsigned char digit;
|
|||||||
enum { SYMM_NONE, SYMM_ROT2, SYMM_ROT4, SYMM_REF2, SYMM_REF2D, SYMM_REF4,
|
enum { SYMM_NONE, SYMM_ROT2, SYMM_ROT4, SYMM_REF2, SYMM_REF2D, SYMM_REF4,
|
||||||
SYMM_REF4D, SYMM_REF8 };
|
SYMM_REF4D, SYMM_REF8 };
|
||||||
|
|
||||||
enum { DIFF_BLOCK, DIFF_SIMPLE, DIFF_INTERSECT, DIFF_SET, DIFF_NEIGHBOUR,
|
enum { DIFF_BLOCK, DIFF_SIMPLE, DIFF_INTERSECT, DIFF_SET, DIFF_EXTREME,
|
||||||
DIFF_RECURSIVE, DIFF_AMBIGUOUS, DIFF_IMPOSSIBLE };
|
DIFF_RECURSIVE, DIFF_AMBIGUOUS, DIFF_IMPOSSIBLE };
|
||||||
|
|
||||||
enum {
|
enum {
|
||||||
@ -177,7 +177,7 @@ static int game_fetch_preset(int i, char **name, game_params **params)
|
|||||||
{ "3x3 Basic", { 3, 3, SYMM_ROT2, DIFF_SIMPLE } },
|
{ "3x3 Basic", { 3, 3, SYMM_ROT2, DIFF_SIMPLE } },
|
||||||
{ "3x3 Intermediate", { 3, 3, SYMM_ROT2, DIFF_INTERSECT } },
|
{ "3x3 Intermediate", { 3, 3, SYMM_ROT2, DIFF_INTERSECT } },
|
||||||
{ "3x3 Advanced", { 3, 3, SYMM_ROT2, DIFF_SET } },
|
{ "3x3 Advanced", { 3, 3, SYMM_ROT2, DIFF_SET } },
|
||||||
{ "3x3 Extreme", { 3, 3, SYMM_ROT2, DIFF_NEIGHBOUR } },
|
{ "3x3 Extreme", { 3, 3, SYMM_ROT2, DIFF_EXTREME } },
|
||||||
{ "3x3 Unreasonable", { 3, 3, SYMM_ROT2, DIFF_RECURSIVE } },
|
{ "3x3 Unreasonable", { 3, 3, SYMM_ROT2, DIFF_RECURSIVE } },
|
||||||
#ifndef SLOW_SYSTEM
|
#ifndef SLOW_SYSTEM
|
||||||
{ "3x4 Basic", { 3, 4, SYMM_ROT2, DIFF_SIMPLE } },
|
{ "3x4 Basic", { 3, 4, SYMM_ROT2, DIFF_SIMPLE } },
|
||||||
@ -238,7 +238,7 @@ static void decode_params(game_params *ret, char const *string)
|
|||||||
else if (*string == 'a') /* advanced */
|
else if (*string == 'a') /* advanced */
|
||||||
string++, ret->diff = DIFF_SET;
|
string++, ret->diff = DIFF_SET;
|
||||||
else if (*string == 'e') /* extreme */
|
else if (*string == 'e') /* extreme */
|
||||||
string++, ret->diff = DIFF_NEIGHBOUR;
|
string++, ret->diff = DIFF_EXTREME;
|
||||||
else if (*string == 'u') /* unreasonable */
|
else if (*string == 'u') /* unreasonable */
|
||||||
string++, ret->diff = DIFF_RECURSIVE;
|
string++, ret->diff = DIFF_RECURSIVE;
|
||||||
} else
|
} else
|
||||||
@ -267,7 +267,7 @@ static char *encode_params(game_params *params, int full)
|
|||||||
case DIFF_SIMPLE: strcat(str, "db"); break;
|
case DIFF_SIMPLE: strcat(str, "db"); break;
|
||||||
case DIFF_INTERSECT: strcat(str, "di"); break;
|
case DIFF_INTERSECT: strcat(str, "di"); break;
|
||||||
case DIFF_SET: strcat(str, "da"); break;
|
case DIFF_SET: strcat(str, "da"); break;
|
||||||
case DIFF_NEIGHBOUR: strcat(str, "de"); break;
|
case DIFF_EXTREME: strcat(str, "de"); break;
|
||||||
case DIFF_RECURSIVE: strcat(str, "du"); break;
|
case DIFF_RECURSIVE: strcat(str, "du"); break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -652,7 +652,10 @@ static int solver_intersect(struct solver_usage *usage,
|
|||||||
|
|
||||||
struct solver_scratch {
|
struct solver_scratch {
|
||||||
unsigned char *grid, *rowidx, *colidx, *set;
|
unsigned char *grid, *rowidx, *colidx, *set;
|
||||||
int *mne;
|
int *neighbours, *bfsqueue;
|
||||||
|
#ifdef STANDALONE_SOLVER
|
||||||
|
int *bfsprev;
|
||||||
|
#endif
|
||||||
};
|
};
|
||||||
|
|
||||||
static int solver_set(struct solver_usage *usage,
|
static int solver_set(struct solver_usage *usage,
|
||||||
@ -867,8 +870,8 @@ static int solver_mne(struct solver_usage *usage,
|
|||||||
int nnb, count;
|
int nnb, count;
|
||||||
int i, j, n, nbi;
|
int i, j, n, nbi;
|
||||||
|
|
||||||
nb[0] = scratch->mne;
|
nb[0] = scratch->neighbours;
|
||||||
nb[1] = scratch->mne + cr;
|
nb[1] = scratch->neighbours + cr;
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* First, work out the mutual neighbour squares of the two. We
|
* First, work out the mutual neighbour squares of the two. We
|
||||||
@ -1003,6 +1006,201 @@ static int solver_mne(struct solver_usage *usage,
|
|||||||
return 0; /* nothing found */
|
return 0; /* nothing found */
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Look for forcing chains. A forcing chain is a path of
|
||||||
|
* pairwise-exclusive squares (i.e. each pair of adjacent squares
|
||||||
|
* in the path are in the same row, column or block) with the
|
||||||
|
* following properties:
|
||||||
|
*
|
||||||
|
* (a) Each square on the path has precisely two possible numbers.
|
||||||
|
*
|
||||||
|
* (b) Each pair of squares which are adjacent on the path share
|
||||||
|
* at least one possible number in common.
|
||||||
|
*
|
||||||
|
* (c) Each square in the middle of the path shares _both_ of its
|
||||||
|
* numbers with at least one of its neighbours (not the same
|
||||||
|
* one with both neighbours).
|
||||||
|
*
|
||||||
|
* These together imply that at least one of the possible number
|
||||||
|
* choices at one end of the path forces _all_ the rest of the
|
||||||
|
* numbers along the path. In order to make real use of this, we
|
||||||
|
* need further properties:
|
||||||
|
*
|
||||||
|
* (c) Ruling out some number N from the square at one end
|
||||||
|
* of the path forces the square at the other end to
|
||||||
|
* take number N.
|
||||||
|
*
|
||||||
|
* (d) The two end squares are both in line with some third
|
||||||
|
* square.
|
||||||
|
*
|
||||||
|
* (e) That third square currently has N as a possibility.
|
||||||
|
*
|
||||||
|
* If we can find all of that lot, we can deduce that at least one
|
||||||
|
* of the two ends of the forcing chain has number N, and that
|
||||||
|
* therefore the mutually adjacent third square does not.
|
||||||
|
*
|
||||||
|
* To find forcing chains, we're going to start a bfs at each
|
||||||
|
* suitable square, once for each of its two possible numbers.
|
||||||
|
*/
|
||||||
|
static int solver_forcing(struct solver_usage *usage,
|
||||||
|
struct solver_scratch *scratch)
|
||||||
|
{
|
||||||
|
int c = usage->c, r = usage->r, cr = c*r;
|
||||||
|
int *bfsqueue = scratch->bfsqueue;
|
||||||
|
#ifdef STANDALONE_SOLVER
|
||||||
|
int *bfsprev = scratch->bfsprev;
|
||||||
|
#endif
|
||||||
|
unsigned char *number = scratch->grid;
|
||||||
|
int *neighbours = scratch->neighbours;
|
||||||
|
int x, y;
|
||||||
|
|
||||||
|
for (y = 0; y < cr; y++)
|
||||||
|
for (x = 0; x < cr; x++) {
|
||||||
|
int count, t, n;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* If this square doesn't have exactly two candidate
|
||||||
|
* numbers, don't try it.
|
||||||
|
*
|
||||||
|
* In this loop we also sum the candidate numbers,
|
||||||
|
* which is a nasty hack to allow us to quickly find
|
||||||
|
* `the other one' (since we will shortly know there
|
||||||
|
* are exactly two).
|
||||||
|
*/
|
||||||
|
for (count = t = 0, n = 1; n <= cr; n++)
|
||||||
|
if (cube(x, y, n))
|
||||||
|
count++, t += n;
|
||||||
|
if (count != 2)
|
||||||
|
continue;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Now attempt a bfs for each candidate.
|
||||||
|
*/
|
||||||
|
for (n = 1; n <= cr; n++)
|
||||||
|
if (cube(x, y, n)) {
|
||||||
|
int orign, currn, head, tail;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Begin a bfs.
|
||||||
|
*/
|
||||||
|
orign = n;
|
||||||
|
|
||||||
|
memset(number, cr+1, cr*cr);
|
||||||
|
head = tail = 0;
|
||||||
|
bfsqueue[tail++] = y*cr+x;
|
||||||
|
#ifdef STANDALONE_SOLVER
|
||||||
|
bfsprev[y*cr+x] = -1;
|
||||||
|
#endif
|
||||||
|
number[y*cr+x] = t - n;
|
||||||
|
|
||||||
|
while (head < tail) {
|
||||||
|
int xx, yy, nneighbours, xt, yt, xblk, i;
|
||||||
|
|
||||||
|
xx = bfsqueue[head++];
|
||||||
|
yy = xx / cr;
|
||||||
|
xx %= cr;
|
||||||
|
|
||||||
|
currn = number[yy*cr+xx];
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Find neighbours of yy,xx.
|
||||||
|
*/
|
||||||
|
nneighbours = 0;
|
||||||
|
for (yt = 0; yt < cr; yt++)
|
||||||
|
neighbours[nneighbours++] = yt*cr+xx;
|
||||||
|
for (xt = 0; xt < cr; xt++)
|
||||||
|
neighbours[nneighbours++] = yy*cr+xt;
|
||||||
|
xblk = xx - (xx % r);
|
||||||
|
for (yt = yy % r; yt < cr; yt += r)
|
||||||
|
for (xt = xblk; xt < xblk+r; xt++)
|
||||||
|
neighbours[nneighbours++] = yt*cr+xt;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Try visiting each of those neighbours.
|
||||||
|
*/
|
||||||
|
for (i = 0; i < nneighbours; i++) {
|
||||||
|
int cc, tt, nn;
|
||||||
|
|
||||||
|
xt = neighbours[i] % cr;
|
||||||
|
yt = neighbours[i] / cr;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* We need this square to not be
|
||||||
|
* already visited, and to include
|
||||||
|
* currn as a possible number.
|
||||||
|
*/
|
||||||
|
if (number[yt*cr+xt] <= cr)
|
||||||
|
continue;
|
||||||
|
if (!cube(xt, yt, currn))
|
||||||
|
continue;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Don't visit _this_ square a second
|
||||||
|
* time!
|
||||||
|
*/
|
||||||
|
if (xt == xx && yt == yy)
|
||||||
|
continue;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* To continue with the bfs, we need
|
||||||
|
* this square to have exactly two
|
||||||
|
* possible numbers.
|
||||||
|
*/
|
||||||
|
for (cc = tt = 0, nn = 1; nn <= cr; nn++)
|
||||||
|
if (cube(xt, yt, nn))
|
||||||
|
cc++, tt += nn;
|
||||||
|
if (cc == 2) {
|
||||||
|
bfsqueue[tail++] = yt*cr+xt;
|
||||||
|
#ifdef STANDALONE_SOLVER
|
||||||
|
bfsprev[yt*cr+xt] = yy*cr+xx;
|
||||||
|
#endif
|
||||||
|
number[yt*cr+xt] = tt - currn;
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* One other possibility is that this
|
||||||
|
* might be the square in which we can
|
||||||
|
* make a real deduction: if it's
|
||||||
|
* adjacent to x,y, and currn is equal
|
||||||
|
* to the original number we ruled out.
|
||||||
|
*/
|
||||||
|
if (currn == orign &&
|
||||||
|
(xt == x || yt == y ||
|
||||||
|
(xt / r == x / r && yt % r == y % r))) {
|
||||||
|
#ifdef STANDALONE_SOLVER
|
||||||
|
if (solver_show_working) {
|
||||||
|
char *sep = "";
|
||||||
|
int xl, yl;
|
||||||
|
printf("%*sforcing chain, %d at ends of ",
|
||||||
|
solver_recurse_depth*4, "", orign);
|
||||||
|
xl = xx;
|
||||||
|
yl = yy;
|
||||||
|
while (1) {
|
||||||
|
printf("%s(%d,%d)", sep, 1+xl,
|
||||||
|
1+YUNTRANS(yl));
|
||||||
|
xl = bfsprev[yl*cr+xl];
|
||||||
|
if (xl < 0)
|
||||||
|
break;
|
||||||
|
yl = xl / cr;
|
||||||
|
xl %= cr;
|
||||||
|
sep = "-";
|
||||||
|
}
|
||||||
|
printf("\n%*s ruling out %d at (%d,%d)\n",
|
||||||
|
solver_recurse_depth*4, "",
|
||||||
|
orign, 1+xt, 1+YUNTRANS(yt));
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
cube(xt, yt, orign) = FALSE;
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
static struct solver_scratch *solver_new_scratch(struct solver_usage *usage)
|
static struct solver_scratch *solver_new_scratch(struct solver_usage *usage)
|
||||||
{
|
{
|
||||||
struct solver_scratch *scratch = snew(struct solver_scratch);
|
struct solver_scratch *scratch = snew(struct solver_scratch);
|
||||||
@ -1011,13 +1209,21 @@ static struct solver_scratch *solver_new_scratch(struct solver_usage *usage)
|
|||||||
scratch->rowidx = snewn(cr, unsigned char);
|
scratch->rowidx = snewn(cr, unsigned char);
|
||||||
scratch->colidx = snewn(cr, unsigned char);
|
scratch->colidx = snewn(cr, unsigned char);
|
||||||
scratch->set = snewn(cr, unsigned char);
|
scratch->set = snewn(cr, unsigned char);
|
||||||
scratch->mne = snewn(2*cr, int);
|
scratch->neighbours = snewn(3*cr, int);
|
||||||
|
scratch->bfsqueue = snewn(cr*cr, int);
|
||||||
|
#ifdef STANDALONE_SOLVER
|
||||||
|
scratch->bfsprev = snewn(cr*cr, int);
|
||||||
|
#endif
|
||||||
return scratch;
|
return scratch;
|
||||||
}
|
}
|
||||||
|
|
||||||
static void solver_free_scratch(struct solver_scratch *scratch)
|
static void solver_free_scratch(struct solver_scratch *scratch)
|
||||||
{
|
{
|
||||||
sfree(scratch->mne);
|
#ifdef STANDALONE_SOLVER
|
||||||
|
sfree(scratch->bfsprev);
|
||||||
|
#endif
|
||||||
|
sfree(scratch->bfsqueue);
|
||||||
|
sfree(scratch->neighbours);
|
||||||
sfree(scratch->set);
|
sfree(scratch->set);
|
||||||
sfree(scratch->colidx);
|
sfree(scratch->colidx);
|
||||||
sfree(scratch->rowidx);
|
sfree(scratch->rowidx);
|
||||||
@ -1286,6 +1492,24 @@ static int solver(int c, int r, digit *grid, int maxdiff)
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Row-vs-column set elimination on a single number.
|
||||||
|
*/
|
||||||
|
for (n = 1; n <= cr; n++) {
|
||||||
|
ret = solver_set(usage, scratch, cubepos(0,0,n), cr*cr, cr
|
||||||
|
#ifdef STANDALONE_SOLVER
|
||||||
|
, "positional set elimination, number %d", n
|
||||||
|
#endif
|
||||||
|
);
|
||||||
|
if (ret < 0) {
|
||||||
|
diff = DIFF_IMPOSSIBLE;
|
||||||
|
goto got_result;
|
||||||
|
} else if (ret > 0) {
|
||||||
|
diff = max(diff, DIFF_EXTREME);
|
||||||
|
goto cont;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* Mutual neighbour elimination.
|
* Mutual neighbour elimination.
|
||||||
*/
|
*/
|
||||||
@ -1310,14 +1534,14 @@ static int solver(int c, int r, digit *grid, int maxdiff)
|
|||||||
!usage->grid[YUNTRANS(y2)*cr+x2] &&
|
!usage->grid[YUNTRANS(y2)*cr+x2] &&
|
||||||
(solver_mne(usage, scratch, x, y, x2, y2) ||
|
(solver_mne(usage, scratch, x, y, x2, y2) ||
|
||||||
solver_mne(usage, scratch, x2, y2, x, y))) {
|
solver_mne(usage, scratch, x2, y2, x, y))) {
|
||||||
diff = max(diff, DIFF_NEIGHBOUR);
|
diff = max(diff, DIFF_EXTREME);
|
||||||
goto cont;
|
goto cont;
|
||||||
}
|
}
|
||||||
if (!usage->grid[YUNTRANS(y)*cr+x2] &&
|
if (!usage->grid[YUNTRANS(y)*cr+x2] &&
|
||||||
!usage->grid[YUNTRANS(y2)*cr+x] &&
|
!usage->grid[YUNTRANS(y2)*cr+x] &&
|
||||||
(solver_mne(usage, scratch, x2, y, x, y2) ||
|
(solver_mne(usage, scratch, x2, y, x, y2) ||
|
||||||
solver_mne(usage, scratch, x, y2, x2, y))) {
|
solver_mne(usage, scratch, x, y2, x2, y))) {
|
||||||
diff = max(diff, DIFF_NEIGHBOUR);
|
diff = max(diff, DIFF_EXTREME);
|
||||||
goto cont;
|
goto cont;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -1325,6 +1549,14 @@ static int solver(int c, int r, digit *grid, int maxdiff)
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Forcing chains.
|
||||||
|
*/
|
||||||
|
if (solver_forcing(usage, scratch)) {
|
||||||
|
diff = max(diff, DIFF_EXTREME);
|
||||||
|
goto cont;
|
||||||
|
}
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* If we reach here, we have made no deductions in this
|
* If we reach here, we have made no deductions in this
|
||||||
* iteration, so the algorithm terminates.
|
* iteration, so the algorithm terminates.
|
||||||
@ -2950,7 +3182,7 @@ int main(int argc, char **argv)
|
|||||||
ret==DIFF_SIMPLE ? "Basic (row/column/number elimination required)":
|
ret==DIFF_SIMPLE ? "Basic (row/column/number elimination required)":
|
||||||
ret==DIFF_INTERSECT ? "Intermediate (intersectional analysis required)":
|
ret==DIFF_INTERSECT ? "Intermediate (intersectional analysis required)":
|
||||||
ret==DIFF_SET ? "Advanced (set elimination required)":
|
ret==DIFF_SET ? "Advanced (set elimination required)":
|
||||||
ret==DIFF_NEIGHBOUR ? "Extreme (mutual neighbour elimination required)":
|
ret==DIFF_EXTREME ? "Extreme (complex non-recursive techniques required)":
|
||||||
ret==DIFF_RECURSIVE ? "Unreasonable (guesswork and backtracking required)":
|
ret==DIFF_RECURSIVE ? "Unreasonable (guesswork and backtracking required)":
|
||||||
ret==DIFF_AMBIGUOUS ? "Ambiguous (multiple solutions exist)":
|
ret==DIFF_AMBIGUOUS ? "Ambiguous (multiple solutions exist)":
|
||||||
ret==DIFF_IMPOSSIBLE ? "Impossible (no solution exists)":
|
ret==DIFF_IMPOSSIBLE ? "Impossible (no solution exists)":
|
||||||
|
Reference in New Issue
Block a user