Now that Map has some seriously complex deductions, it's about time

it had a command-line solver. In order to do this, I've had to
expose the internal region numbering because the solver has to have
some way to state which region it means; and in any case it's also
useful to have human-visible region numbering so that two people can
discuss a puzzle they're solving together. So pressing L during play
now toggles the display of region numbers; and `mapsolver' uses
those same numbers when showing its working and its solutions.

[originally from svn r6244]
This commit is contained in:
Simon Tatham
2005-08-31 12:17:01 +00:00
parent 121f664b62
commit f2ff444fca
3 changed files with 368 additions and 45 deletions

2
Recipe
View File

@ -60,11 +60,13 @@ solosolver : [U] solo[STANDALONE_SOLVER] malloc
patternsolver : [U] pattern[STANDALONE_SOLVER] malloc
mineobfusc : [U] mines[STANDALONE_OBFUSCATOR] malloc random tree234 misc
slantsolver : [U] slant[STANDALONE_SOLVER] dsf malloc
mapsolver : [U] map[STANDALONE_SOLVER] dsf random misc malloc
solosolver : [C] solo[STANDALONE_SOLVER] malloc
patternsolver : [C] pattern[STANDALONE_SOLVER] malloc
mineobfusc : [C] mines[STANDALONE_OBFUSCATOR] malloc random tree234 misc
slantsolver : [C] slant[STANDALONE_SOLVER] dsf malloc
mapsolver : [C] map[STANDALONE_SOLVER] dsf random misc malloc
# The Windows Net shouldn't be called `net.exe' since Windows
# already has a reasonably important utility program by that name!

380
map.c
View File

@ -20,6 +20,18 @@
#include "puzzles.h"
/*
* In standalone solver mode, `verbose' is a variable which can be
* set by command-line option; in debugging mode it's simply always
* true.
*/
#if defined STANDALONE_SOLVER
#define SOLVER_DIAGNOSTICS
int verbose = FALSE;
#elif defined SOLVER_DIAGNOSTICS
#define verbose TRUE
#endif
/*
* I don't seriously anticipate wanting to change the number of
* colours used in this game, but it doesn't cost much to use a
@ -75,7 +87,8 @@ struct map {
int n;
int ngraph;
int *immutable;
int *edgex, *edgey; /* positions of a point on each edge */
int *edgex, *edgey; /* position of a point on each edge */
int *regionx, *regiony; /* position of a point in each region */
};
struct game_state {
@ -794,6 +807,9 @@ struct solver_scratch {
int *graph;
int *bfsqueue;
int *bfscolour;
#ifdef SOLVER_DIAGNOSTICS
int *bfsprev;
#endif
int n;
int ngraph;
int depth;
@ -811,6 +827,9 @@ static struct solver_scratch *new_scratch(int *graph, int n, int ngraph)
sc->depth = 0;
sc->bfsqueue = snewn(n, int);
sc->bfscolour = snewn(n, int);
#ifdef SOLVER_DIAGNOSTICS
sc->bfsprev = snewn(n, int);
#endif
return sc;
}
@ -820,6 +839,9 @@ static void free_scratch(struct solver_scratch *sc)
sfree(sc->possible);
sfree(sc->bfsqueue);
sfree(sc->bfscolour);
#ifdef SOLVER_DIAGNOSTICS
sfree(sc->bfsprev);
#endif
sfree(sc);
}
@ -834,8 +856,16 @@ static int bitcount(int word)
return word;
}
#ifdef SOLVER_DIAGNOSTICS
static const char colnames[FOUR] = { 'R', 'Y', 'G', 'B' };
#endif
static int place_colour(struct solver_scratch *sc,
int *colouring, int index, int colour)
int *colouring, int index, int colour
#ifdef SOLVER_DIAGNOSTICS
, char *verb
#endif
)
{
int *graph = sc->graph, n = sc->n, ngraph = sc->ngraph;
int j, k;
@ -846,18 +876,44 @@ static int place_colour(struct solver_scratch *sc,
sc->possible[index] = 1 << colour;
colouring[index] = colour;
#ifdef SOLVER_DIAGNOSTICS
if (verbose)
printf("%s %c in region %d\n", verb, colnames[colour], index);
#endif
/*
* Rule out this colour from all the region's neighbours.
*/
for (j = graph_vertex_start(graph, n, ngraph, index);
j < ngraph && graph[j] < n*(index+1); j++) {
k = graph[j] - index*n;
#ifdef SOLVER_DIAGNOSTICS
if (verbose && (sc->possible[k] & (1 << colour)))
printf(" ruling out %c in region %d\n", colnames[colour], k);
#endif
sc->possible[k] &= ~(1 << colour);
}
return TRUE;
}
#ifdef SOLVER_DIAGNOSTICS
static char *colourset(char *buf, int set)
{
int i;
char *p = buf;
char *sep = "";
for (i = 0; i < FOUR; i++)
if (set & (1 << i)) {
p += sprintf(p, "%s%c", sep, colnames[i]);
sep = ",";
}
return buf;
}
#endif
/*
* Returns 0 for impossible, 1 for success, 2 for failure to
* converge (i.e. puzzle is either ambiguous or just too
@ -880,7 +936,11 @@ static int map_solver(struct solver_scratch *sc,
*/
for (i = 0; i < n; i++)
if (colouring[i] >= 0) {
if (!place_colour(sc, colouring, i, colouring[i]))
if (!place_colour(sc, colouring, i, colouring[i]
#ifdef SOLVER_DIAGNOSTICS
, "initial clue:"
#endif
))
return 0; /* the clues aren't even consistent! */
}
@ -909,7 +969,11 @@ static int map_solver(struct solver_scratch *sc,
if (p == (1 << c))
break;
assert(c < FOUR);
if (!place_colour(sc, colouring, i, c))
if (!place_colour(sc, colouring, i, c
#ifdef SOLVER_DIAGNOSTICS
, "placing"
#endif
))
return 0; /* found puzzle to be inconsistent */
done_something = TRUE;
}
@ -935,6 +999,9 @@ static int map_solver(struct solver_scratch *sc,
for (i = 0; i < ngraph; i++) {
int j1 = graph[i] / n, j2 = graph[i] % n;
int j, k, v, v2;
#ifdef SOLVER_DIAGNOSTICS
int started = FALSE;
#endif
if (j1 > j2)
continue; /* done it already, other way round */
@ -970,6 +1037,17 @@ static int map_solver(struct solver_scratch *sc,
k = graph[j] - j1*n;
if (graph_adjacent(graph, n, ngraph, k, j2) &&
(sc->possible[k] & v)) {
#ifdef SOLVER_DIAGNOSTICS
if (verbose) {
char buf[80];
if (!started)
printf("adjacent regions %d,%d share colours %s\n",
j1, j2, colourset(buf, v));
started = TRUE;
printf(" ruling out %s in region %d\n",
colourset(buf, sc->possible[k] & v), k);
}
#endif
sc->possible[k] &= ~v;
done_something = TRUE;
}
@ -1041,8 +1119,12 @@ static int map_solver(struct solver_scratch *sc,
origc = 1 << c;
for (j = 0; j < n; j++)
for (j = 0; j < n; j++) {
sc->bfscolour[j] = -1;
#ifdef SOLVER_DIAGNOSTICS
sc->bfsprev[j] = -1;
#endif
}
head = tail = 0;
sc->bfsqueue[tail++] = i;
sc->bfscolour[i] = sc->possible[i] &~ origc;
@ -1073,6 +1155,9 @@ static int map_solver(struct solver_scratch *sc,
sc->bfsqueue[tail++] = k;
sc->bfscolour[k] =
sc->possible[k] &~ currc;
#ifdef SOLVER_DIAGNOSTICS
sc->bfsprev[k] = j;
#endif
}
/*
@ -1086,6 +1171,21 @@ static int map_solver(struct solver_scratch *sc,
if (currc == origc &&
graph_adjacent(graph, n, ngraph, k, i) &&
(sc->possible[k] & currc)) {
#ifdef SOLVER_DIAGNOSTICS
if (verbose) {
char buf[80], *sep = "";
int r;
printf("forcing chain, colour %s, ",
colourset(buf, origc));
for (r = j; r != -1; r = sc->bfsprev[r]) {
printf("%s%d", sep, r);
sep = "-";
}
printf("\n ruling out %s in region %d\n",
colourset(buf, origc), k);
}
#endif
sc->possible[k] &= ~origc;
done_something = TRUE;
}
@ -1745,21 +1845,23 @@ static game_state *new_game(midend *me, game_params *params, char *desc)
/*
* Analyse the map to find a canonical line segment
* corresponding to each edge. These are where we'll eventually
* put error markers.
* corresponding to each edge, and a canonical point
* corresponding to each region. The former are where we'll
* eventually put error markers; the latter are where we'll put
* per-region flags such as numbers (when in diagnostic mode).
*/
{
int *bestx, *besty, *an, pass;
float *ax, *ay, *best;
ax = snewn(state->map->ngraph, float);
ay = snewn(state->map->ngraph, float);
an = snewn(state->map->ngraph, int);
bestx = snewn(state->map->ngraph, int);
besty = snewn(state->map->ngraph, int);
best = snewn(state->map->ngraph, float);
ax = snewn(state->map->ngraph + n, float);
ay = snewn(state->map->ngraph + n, float);
an = snewn(state->map->ngraph + n, int);
bestx = snewn(state->map->ngraph + n, int);
besty = snewn(state->map->ngraph + n, int);
best = snewn(state->map->ngraph + n, float);
for (i = 0; i < state->map->ngraph; i++) {
for (i = 0; i < state->map->ngraph + n; i++) {
bestx[i] = besty[i] = -1;
best[i] = 2*(w+h)+1;
ax[i] = ay[i] = 0.0F;
@ -1768,11 +1870,12 @@ static game_state *new_game(midend *me, game_params *params, char *desc)
/*
* We make two passes over the map, finding all the line
* segments separating regions. In the first pass, we
* compute the _average_ x and y coordinate of all the line
* segments separating each pair of regions; in the second
* pass, for each such average point, we find the line
* segment closest to it and call that canonical.
* segments separating regions and all the suitable points
* within regions. In the first pass, we compute the
* _average_ x and y coordinate of all the points in a
* given class; in the second pass, for each such average
* point, we find the candidate closest to it and call that
* canonical.
*
* Line segments are considered to have coordinates in
* their centre. Thus, at least one coordinate for any line
@ -1798,30 +1901,25 @@ static game_state *new_game(midend *me, game_params *params, char *desc)
/* right edge */
ea[en] = state->map->map[RE * wh + y*w+x];
eb[en] = state->map->map[LE * wh + y*w+(x+1)];
if (ea[en] != eb[en]) {
ex[en] = (x+1)*2;
ey[en] = y*2+1;
en++;
}
}
if (y+1 < h) {
/* bottom edge */
ea[en] = state->map->map[BE * wh + y*w+x];
eb[en] = state->map->map[TE * wh + (y+1)*w+x];
if (ea[en] != eb[en]) {
ex[en] = x*2+1;
ey[en] = (y+1)*2;
en++;
}
}
/* diagonal edge */
ea[en] = state->map->map[TE * wh + y*w+x];
eb[en] = state->map->map[BE * wh + y*w+x];
if (ea[en] != eb[en]) {
ex[en] = x*2+1;
ey[en] = y*2+1;
en++;
}
if (x+1 < w && y+1 < h) {
/* bottom right corner */
int oct[8], othercol, nchanges;
@ -1861,18 +1959,39 @@ static game_state *new_game(midend *me, game_params *params, char *desc)
ey[en] = (y+1)*2;
en++;
}
/*
* If there's exactly _one_ region at this
* point, on the other hand, it's a valid
* place to put a region centre.
*/
if (othercol < 0) {
ea[en] = eb[en] = oct[0];
ex[en] = (x+1)*2;
ey[en] = (y+1)*2;
en++;
}
}
/*
* Now process the edges we've found, one by
* Now process the points we've found, one by
* one.
*/
for (i = 0; i < en; i++) {
int emin = min(ea[i], eb[i]);
int emax = max(ea[i], eb[i]);
int gindex =
int gindex;
if (emin != emax) {
/* Graph edge */
gindex =
graph_edge_index(state->map->graph, n,
state->map->ngraph, emin, emax);
state->map->ngraph, emin,
emax);
} else {
/* Region number */
gindex = state->map->ngraph + emin;
}
assert(gindex >= 0);
@ -1907,7 +2026,7 @@ static game_state *new_game(midend *me, game_params *params, char *desc)
}
if (pass == 0) {
for (i = 0; i < state->map->ngraph; i++)
for (i = 0; i < state->map->ngraph + n; i++)
if (an[i] > 0) {
ax[i] /= an[i];
ay[i] /= an[i];
@ -1915,8 +2034,15 @@ static game_state *new_game(midend *me, game_params *params, char *desc)
}
}
state->map->edgex = bestx;
state->map->edgey = besty;
state->map->edgex = snewn(state->map->ngraph, int);
state->map->edgey = snewn(state->map->ngraph, int);
memcpy(state->map->edgex, bestx, state->map->ngraph * sizeof(int));
memcpy(state->map->edgey, besty, state->map->ngraph * sizeof(int));
state->map->regionx = snewn(n, int);
state->map->regiony = snewn(n, int);
memcpy(state->map->regionx, bestx + state->map->ngraph, n*sizeof(int));
memcpy(state->map->regiony, besty + state->map->ngraph, n*sizeof(int));
for (i = 0; i < state->map->ngraph; i++)
if (state->map->edgex[i] < 0) {
@ -1933,6 +2059,8 @@ static game_state *new_game(midend *me, game_params *params, char *desc)
sfree(ay);
sfree(an);
sfree(best);
sfree(bestx);
sfree(besty);
}
return state;
@ -1963,6 +2091,8 @@ static void free_game(game_state *state)
sfree(state->map->immutable);
sfree(state->map->edgex);
sfree(state->map->edgey);
sfree(state->map->regionx);
sfree(state->map->regiony);
sfree(state->map);
}
sfree(state->colouring);
@ -2037,6 +2167,7 @@ static char *game_text_format(game_state *state)
struct game_ui {
int drag_colour; /* -1 means no drag active */
int dragx, dragy;
int show_numbers;
};
static game_ui *new_ui(game_state *state)
@ -2044,6 +2175,7 @@ static game_ui *new_ui(game_state *state)
game_ui *ui = snew(game_ui);
ui->dragx = ui->dragy = -1;
ui->drag_colour = -2;
ui->show_numbers = FALSE;
return ui;
}
@ -2082,6 +2214,7 @@ struct game_drawstate {
#define PENCIL_B_BASE 0x00008000L
#define PENCIL_B_MASK 0x00078000L
#define PENCIL_MASK 0x007F8000L
#define SHOW_NUMBERS 0x00004000L
#define TILESIZE (ds->tilesize)
#define BORDER (TILESIZE)
@ -2112,6 +2245,14 @@ static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
{
char buf[80];
/*
* Enable or disable numeric labels on regions.
*/
if (button == 'l' || button == 'L') {
ui->show_numbers = !ui->show_numbers;
return "";
}
if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
int r = region_from_coords(state, ds, x, y);
@ -2364,12 +2505,15 @@ static void draw_square(drawing *dr, game_drawstate *ds,
int x, int y, int v)
{
int w = params->w, h = params->h, wh = w*h;
int tv, bv, xo, yo, errs, pencil;
int tv, bv, xo, yo, errs, pencil, i, j, oldj;
int show_numbers;
errs = v & ERR_MASK;
v &= ~ERR_MASK;
pencil = v & PENCIL_MASK;
v &= ~PENCIL_MASK;
show_numbers = v & SHOW_NUMBERS;
v &= ~SHOW_NUMBERS;
tv = v / FIVE;
bv = v % FIVE;
@ -2454,6 +2598,31 @@ static void draw_square(drawing *dr, game_drawstate *ds,
(COORD(x)*2+TILESIZE*xo)/2,
(COORD(y)*2+TILESIZE*yo)/2);
/*
* Draw region numbers, if desired.
*/
if (show_numbers) {
oldj = -1;
for (i = 0; i < 2; i++) {
j = map->map[(i?BE:TE)*wh+y*w+x];
if (oldj == j)
continue;
oldj = j;
xo = map->regionx[j] - 2*x;
yo = map->regiony[j] - 2*y;
if (xo >= 0 && xo <= 2 && yo >= 0 && yo <= 2) {
char buf[80];
sprintf(buf, "%d", j);
draw_text(dr, (COORD(x)*2+TILESIZE*xo)/2,
(COORD(y)*2+TILESIZE*yo)/2,
FONT_VARIABLE, 3*TILESIZE/5,
ALIGN_HCENTRE|ALIGN_VCENTRE,
COL_GRID, buf);
}
}
}
unclip(dr);
draw_update(dr, COORD(x), COORD(y), TILESIZE, TILESIZE);
@ -2544,6 +2713,9 @@ static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
v |= PENCIL_B_BASE << i;
}
if (ui->show_numbers)
v |= SHOW_NUMBERS;
ds->todraw[y*w+x] = v;
}
@ -2760,7 +2932,7 @@ static void game_print(drawing *dr, game_state *state, int tilesize)
else
d2 = i;
}
/* printf("%% %d,%d r=%d: d1=%d d2=%d lastdir=%d\n", x, y, r, d1, d2, lastdir); */
assert(d1 != -1 && d2 != -1);
if (d1 == lastdir)
d1 = d2;
@ -2833,3 +3005,145 @@ const struct game thegame = {
FALSE, game_timing_state,
0, /* mouse_priorities */
};
#ifdef STANDALONE_SOLVER
#include <stdarg.h>
void frontend_default_colour(frontend *fe, float *output) {}
void draw_text(drawing *dr, int x, int y, int fonttype, int fontsize,
int align, int colour, char *text) {}
void draw_rect(drawing *dr, int x, int y, int w, int h, int colour) {}
void draw_line(drawing *dr, int x1, int y1, int x2, int y2, int colour) {}
void draw_polygon(drawing *dr, int *coords, int npoints,
int fillcolour, int outlinecolour) {}
void draw_circle(drawing *dr, int cx, int cy, int radius,
int fillcolour, int outlinecolour) {}
void clip(drawing *dr, int x, int y, int w, int h) {}
void unclip(drawing *dr) {}
void start_draw(drawing *dr) {}
void draw_update(drawing *dr, int x, int y, int w, int h) {}
void end_draw(drawing *dr) {}
blitter *blitter_new(drawing *dr, int w, int h) {return NULL;}
void blitter_free(drawing *dr, blitter *bl) {}
void blitter_save(drawing *dr, blitter *bl, int x, int y) {}
void blitter_load(drawing *dr, blitter *bl, int x, int y) {}
int print_mono_colour(drawing *dr, int grey) { return 0; }
int print_rgb_colour(drawing *dr, int hatch, float r, float g, float b)
{ return 0; }
void print_line_width(drawing *dr, int width) {}
void fatal(char *fmt, ...)
{
va_list ap;
fprintf(stderr, "fatal error: ");
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
fprintf(stderr, "\n");
exit(1);
}
int main(int argc, char **argv)
{
game_params *p;
game_state *s;
char *id = NULL, *desc, *err;
int grade = FALSE;
int ret, diff, really_verbose = FALSE;
struct solver_scratch *sc;
int i;
while (--argc > 0) {
char *p = *++argv;
if (!strcmp(p, "-v")) {
really_verbose = TRUE;
} else if (!strcmp(p, "-g")) {
grade = TRUE;
} else if (*p == '-') {
fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
return 1;
} else {
id = p;
}
}
if (!id) {
fprintf(stderr, "usage: %s [-g | -v] <game_id>\n", argv[0]);
return 1;
}
desc = strchr(id, ':');
if (!desc) {
fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
return 1;
}
*desc++ = '\0';
p = default_params();
decode_params(p, id);
err = validate_desc(p, desc);
if (err) {
fprintf(stderr, "%s: %s\n", argv[0], err);
return 1;
}
s = new_game(NULL, p, desc);
sc = new_scratch(s->map->graph, s->map->n, s->map->ngraph);
/*
* When solving an Easy puzzle, we don't want to bother the
* user with Hard-level deductions. For this reason, we grade
* the puzzle internally before doing anything else.
*/
ret = -1; /* placate optimiser */
for (diff = 0; diff < DIFFCOUNT; diff++) {
for (i = 0; i < s->map->n; i++)
if (!s->map->immutable[i])
s->colouring[i] = -1;
ret = map_solver(sc, s->map->graph, s->map->n, s->map->ngraph,
s->colouring, diff);
if (ret < 2)
break;
}
if (diff == DIFFCOUNT) {
if (grade)
printf("Difficulty rating: harder than Hard, or ambiguous\n");
else
printf("Unable to find a unique solution\n");
} else {
if (grade) {
if (ret == 0)
printf("Difficulty rating: impossible (no solution exists)\n");
else if (ret == 1)
printf("Difficulty rating: %s\n", map_diffnames[diff]);
} else {
verbose = really_verbose;
for (i = 0; i < s->map->n; i++)
if (!s->map->immutable[i])
s->colouring[i] = -1;
ret = map_solver(sc, s->map->graph, s->map->n, s->map->ngraph,
s->colouring, diff);
if (ret == 0)
printf("Puzzle is inconsistent\n");
else {
int col = 0;
for (i = 0; i < s->map->n; i++) {
printf("%5d <- %c%c", i, colnames[s->colouring[i]],
(col < 6 && i+1 < s->map->n ? ' ' : '\n'));
if (++col == 7)
col = 0;
}
}
}
}
return 0;
}
#endif

View File

@ -1640,6 +1640,13 @@ you think the region \e{might} be that colour. A region can contain
stipples in multiple colours at once. (This is often useful at the
harder difficulty levels.)
If you press L during play, the game will toggle display of a number
in each region of the map. This is useful if you want to discuss a
particular puzzle instance with a friend \dash having an unambiguous
name for each region is much easier than trying to refer to them all
by names such as \q{the one down and right of the brown one on the
top border}.
(All the actions described in \k{common-actions} are also available.)
\H{map-parameters} \I{parameters, for Map}Map parameters