`Guess', a Mastermind clone from James Harvey. This checkin also

introduces a few new utility functions in misc.c, one of which is
the bitmap obfuscator from Mines (which has therefore been moved out
of mines.c).

[originally from svn r5992]
This commit is contained in:
Simon Tatham
2005-06-23 09:14:19 +00:00
parent b909204392
commit f862a227be
6 changed files with 1245 additions and 107 deletions

4
Recipe
View File

@ -21,7 +21,7 @@ MINES = mines tree234
FLIP = flip tree234 FLIP = flip tree234
ALL = list NET NETSLIDE cube fifteen sixteen rect pattern solo twiddle ALL = list NET NETSLIDE cube fifteen sixteen rect pattern solo twiddle
+ MINES samegame FLIP + MINES samegame FLIP guess
net : [X] gtk COMMON NET net : [X] gtk COMMON NET
netslide : [X] gtk COMMON NETSLIDE netslide : [X] gtk COMMON NETSLIDE
@ -35,6 +35,7 @@ twiddle : [X] gtk COMMON twiddle
mines : [X] gtk COMMON MINES mines : [X] gtk COMMON MINES
samegame : [X] gtk COMMON samegame samegame : [X] gtk COMMON samegame
flip : [X] gtk COMMON FLIP flip : [X] gtk COMMON FLIP
guess : [X] gtk COMMON guess
# The Windows Net shouldn't be called `net.exe' since Windows # The Windows Net shouldn't be called `net.exe' since Windows
# already has a reasonably important utility program by that name! # already has a reasonably important utility program by that name!
@ -50,6 +51,7 @@ twiddle : [G] WINDOWS COMMON twiddle
mines : [G] WINDOWS COMMON MINES mines : [G] WINDOWS COMMON MINES
samegame : [G] WINDOWS COMMON samegame samegame : [G] WINDOWS COMMON samegame
flip : [G] WINDOWS COMMON FLIP flip : [G] WINDOWS COMMON FLIP
guess : [G] WINDOWS COMMON guess
# Mac OS X unified application containing all the puzzles. # Mac OS X unified application containing all the puzzles.
Puzzles : [MX] osx osx.icns osx-info.plist COMMON ALL Puzzles : [MX] osx osx.icns osx-info.plist COMMON ALL

1079
guess.c Normal file

File diff suppressed because it is too large Load Diff

2
list.c
View File

@ -20,6 +20,7 @@ echo -e '};\n\nconst int gamecount = lenof(gamelist);'
extern const game cube; extern const game cube;
extern const game fifteen; extern const game fifteen;
extern const game flip; extern const game flip;
extern const game guess;
extern const game mines; extern const game mines;
extern const game net; extern const game net;
extern const game netslide; extern const game netslide;
@ -34,6 +35,7 @@ const game *gamelist[] = {
&cube, &cube,
&fifteen, &fifteen,
&flip, &flip,
&guess,
&mines, &mines,
&net, &net,
&netslide, &netslide,

106
mines.c
View File

@ -1828,112 +1828,6 @@ static char *minegen(int w, int h, int n, int x, int y, int unique,
return ret; return ret;
} }
/*
* The Mines game descriptions contain the location of every mine,
* and can therefore be used to cheat.
*
* It would be pointless to attempt to _prevent_ this form of
* cheating by encrypting the description, since Mines is
* open-source so anyone can find out the encryption key. However,
* I think it is worth doing a bit of gentle obfuscation to prevent
* _accidental_ spoilers: if you happened to note that the game ID
* starts with an F, for example, you might be unable to put the
* knowledge of those mines out of your mind while playing. So,
* just as discussions of film endings are rot13ed to avoid
* spoiling it for people who don't want to be told, we apply a
* keyless, reversible, but visually completely obfuscatory masking
* function to the mine bitmap.
*/
static void obfuscate_bitmap(unsigned char *bmp, int bits, int decode)
{
int bytes, firsthalf, secondhalf;
struct step {
unsigned char *seedstart;
int seedlen;
unsigned char *targetstart;
int targetlen;
} steps[2];
int i, j;
/*
* My obfuscation algorithm is similar in concept to the OAEP
* encoding used in some forms of RSA. Here's a specification
* of it:
*
* + We have a `masking function' which constructs a stream of
* pseudorandom bytes from a seed of some number of input
* bytes.
*
* + We pad out our input bit stream to a whole number of
* bytes by adding up to 7 zero bits on the end. (In fact
* the bitmap passed as input to this function will already
* have had this done in practice.)
*
* + We divide the _byte_ stream exactly in half, rounding the
* half-way position _down_. So an 81-bit input string, for
* example, rounds up to 88 bits or 11 bytes, and then
* dividing by two gives 5 bytes in the first half and 6 in
* the second half.
*
* + We generate a mask from the second half of the bytes, and
* XOR it over the first half.
*
* + We generate a mask from the (encoded) first half of the
* bytes, and XOR it over the second half. Any null bits at
* the end which were added as padding are cleared back to
* zero even if this operation would have made them nonzero.
*
* To de-obfuscate, the steps are precisely the same except
* that the final two are reversed.
*
* Finally, our masking function. Given an input seed string of
* bytes, the output mask consists of concatenating the SHA-1
* hashes of the seed string and successive decimal integers,
* starting from 0.
*/
bytes = (bits + 7) / 8;
firsthalf = bytes / 2;
secondhalf = bytes - firsthalf;
steps[decode ? 1 : 0].seedstart = bmp + firsthalf;
steps[decode ? 1 : 0].seedlen = secondhalf;
steps[decode ? 1 : 0].targetstart = bmp;
steps[decode ? 1 : 0].targetlen = firsthalf;
steps[decode ? 0 : 1].seedstart = bmp;
steps[decode ? 0 : 1].seedlen = firsthalf;
steps[decode ? 0 : 1].targetstart = bmp + firsthalf;
steps[decode ? 0 : 1].targetlen = secondhalf;
for (i = 0; i < 2; i++) {
SHA_State base, final;
unsigned char digest[20];
char numberbuf[80];
int digestpos = 20, counter = 0;
SHA_Init(&base);
SHA_Bytes(&base, steps[i].seedstart, steps[i].seedlen);
for (j = 0; j < steps[i].targetlen; j++) {
if (digestpos >= 20) {
sprintf(numberbuf, "%d", counter++);
final = base;
SHA_Bytes(&final, numberbuf, strlen(numberbuf));
SHA_Final(&final, digest);
digestpos = 0;
}
steps[i].targetstart[j] ^= digest[digestpos++];
}
/*
* Mask off the pad bits in the final byte after both steps.
*/
if (bits % 8)
bmp[bits / 8] &= 0xFF & (0xFF00 >> (bits % 8));
}
}
static char *describe_layout(char *grid, int area, int x, int y, static char *describe_layout(char *grid, int area, int x, int y,
int obfuscate) int obfuscate)
{ {

154
misc.c
View File

@ -4,6 +4,8 @@
#include <assert.h> #include <assert.h>
#include <stdlib.h> #include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include "puzzles.h" #include "puzzles.h"
@ -16,3 +18,155 @@ void free_cfg(config_item *cfg)
sfree(i->sval); sfree(i->sval);
sfree(cfg); sfree(cfg);
} }
/*
* The Mines (among others) game descriptions contain the location of every
* mine, and can therefore be used to cheat.
*
* It would be pointless to attempt to _prevent_ this form of
* cheating by encrypting the description, since Mines is
* open-source so anyone can find out the encryption key. However,
* I think it is worth doing a bit of gentle obfuscation to prevent
* _accidental_ spoilers: if you happened to note that the game ID
* starts with an F, for example, you might be unable to put the
* knowledge of those mines out of your mind while playing. So,
* just as discussions of film endings are rot13ed to avoid
* spoiling it for people who don't want to be told, we apply a
* keyless, reversible, but visually completely obfuscatory masking
* function to the mine bitmap.
*/
void obfuscate_bitmap(unsigned char *bmp, int bits, int decode)
{
int bytes, firsthalf, secondhalf;
struct step {
unsigned char *seedstart;
int seedlen;
unsigned char *targetstart;
int targetlen;
} steps[2];
int i, j;
/*
* My obfuscation algorithm is similar in concept to the OAEP
* encoding used in some forms of RSA. Here's a specification
* of it:
*
* + We have a `masking function' which constructs a stream of
* pseudorandom bytes from a seed of some number of input
* bytes.
*
* + We pad out our input bit stream to a whole number of
* bytes by adding up to 7 zero bits on the end. (In fact
* the bitmap passed as input to this function will already
* have had this done in practice.)
*
* + We divide the _byte_ stream exactly in half, rounding the
* half-way position _down_. So an 81-bit input string, for
* example, rounds up to 88 bits or 11 bytes, and then
* dividing by two gives 5 bytes in the first half and 6 in
* the second half.
*
* + We generate a mask from the second half of the bytes, and
* XOR it over the first half.
*
* + We generate a mask from the (encoded) first half of the
* bytes, and XOR it over the second half. Any null bits at
* the end which were added as padding are cleared back to
* zero even if this operation would have made them nonzero.
*
* To de-obfuscate, the steps are precisely the same except
* that the final two are reversed.
*
* Finally, our masking function. Given an input seed string of
* bytes, the output mask consists of concatenating the SHA-1
* hashes of the seed string and successive decimal integers,
* starting from 0.
*/
bytes = (bits + 7) / 8;
firsthalf = bytes / 2;
secondhalf = bytes - firsthalf;
steps[decode ? 1 : 0].seedstart = bmp + firsthalf;
steps[decode ? 1 : 0].seedlen = secondhalf;
steps[decode ? 1 : 0].targetstart = bmp;
steps[decode ? 1 : 0].targetlen = firsthalf;
steps[decode ? 0 : 1].seedstart = bmp;
steps[decode ? 0 : 1].seedlen = firsthalf;
steps[decode ? 0 : 1].targetstart = bmp + firsthalf;
steps[decode ? 0 : 1].targetlen = secondhalf;
for (i = 0; i < 2; i++) {
SHA_State base, final;
unsigned char digest[20];
char numberbuf[80];
int digestpos = 20, counter = 0;
SHA_Init(&base);
SHA_Bytes(&base, steps[i].seedstart, steps[i].seedlen);
for (j = 0; j < steps[i].targetlen; j++) {
if (digestpos >= 20) {
sprintf(numberbuf, "%d", counter++);
final = base;
SHA_Bytes(&final, numberbuf, strlen(numberbuf));
SHA_Final(&final, digest);
digestpos = 0;
}
steps[i].targetstart[j] ^= digest[digestpos++];
}
/*
* Mask off the pad bits in the final byte after both steps.
*/
if (bits % 8)
bmp[bits / 8] &= 0xFF & (0xFF00 >> (bits % 8));
}
}
/* err, yeah, these two pretty much rely on unsigned char being 8 bits.
* Platforms where this is not the case probably have bigger problems
* than just making these two work, though... */
char *bin2hex(const unsigned char *in, int inlen)
{
char *ret = snewn(inlen*2 + 1, char), *p = ret;
int i;
for (i = 0; i < inlen*2; i++) {
int v = in[i/2];
if (i % 2 == 0) v >>= 4;
*p++ = "0123456789abcdef"[v & 0xF];
}
*p = '\0';
return ret;
}
unsigned char *hex2bin(const char *in, int outlen)
{
unsigned char *ret = snewn(outlen, unsigned char);
int i;
debug(("hex2bin: in '%s'", in));
memset(ret, 0, outlen*sizeof(unsigned char));
for (i = 0; i < outlen*2; i++) {
int c = in[i];
int v;
assert(c != 0);
if (c >= '0' && c <= '9')
v = c - '0';
else if (c >= 'a' && c <= 'f')
v = c - 'a' + 10;
else if (c >= 'A' && c <= 'F')
v = c - 'A' + 10;
else
v = 0;
ret[i / 2] |= v << (4 * (1 - (i % 2)));
}
return ret;
}
/* vim: set shiftwidth=4 tabstop=8: */

View File

@ -205,6 +205,13 @@ char *dupstr(const char *s);
* misc.c * misc.c
*/ */
void free_cfg(config_item *cfg); void free_cfg(config_item *cfg);
void obfuscate_bitmap(unsigned char *bmp, int bits, int decode);
/* allocates output each time. len is always in bytes of binary data.
* May assert (or just go wrong) if lengths are unchecked. */
char *bin2hex(const unsigned char *in, int inlen);
unsigned char *hex2bin(const char *in, int outlen);
/* /*
* version.c * version.c