a non-recursive level above Easy, which therefore moves the
recursive Hard mode further up still. Play-testing suggests that in
fact Tricky is often _harder_ than the old Hard mode, since the
latter had limited depth of recursion and would therefore spot
complex deductions only if it happened to start a recursion on the
right square; Tricky may be limited in the sophistication of its
complex deductions, but it never misses one, so its puzzles tend to
be hard all over.
Also in this checkin, a new source file `nullfe.c', containing all
the annoying stub functions required to make command-line solvers
link successfully. James wrote this for (the new) lightupsolver, and
I've used it to simplify the other stand-alone solvers.
[originally from svn r6254]
as seen by the back ends from the one implemented by the front end,
and shoved a piece of middleware (drawing.c) in between to permit
interchange of multiple kinds of the latter. I've also added a
number of functions to the drawing API to permit printing as well as
on-screen drawing, and retired print.py in favour of integrated
printing done by means of that API.
The immediate visible change is that print.py is dead, and each
puzzle now does its own printing: where you would previously have
typed `print.py solo 2x3', you now type `solo --print 2x3' and it
should work in much the same way.
Advantages of the new mechanism available right now:
- Map is now printable, because the new print function can make use
of the output from the existing game ID decoder rather than me
having to replicate all those fiddly algorithms in Python.
- the new print functions can cope with non-initial game states,
which means each puzzle supporting --print also supports
--with-solutions.
- there's also a --scale option permitting users to adjust the size
of the printed puzzles.
Advantages which will be available at some point:
- the new API should permit me to implement native printing
mechanisms on Windows and OS X.
[originally from svn r6190]
Also in this checkin (committed by mistake - I meant to do it
separately), a behind-the-scenes change to Slant to colour the two
non-touching classes of diagonals in different colours. Both colours
are set to black by default, but configuration by way of
SLANT_COLOUR_* can distinguish them if you want.
[originally from svn r6164]