All the not-quite-puzzle GUI programs (only galaxieseditor at this
point) were using the extra source files from Null Game, presumably as a
convenient way of asking not to have an icon on platforms where icons
are provided as extra source files. Unfortunately, this all went wrong
if Null Game did have a save file for an icon, causing CMake to complain
about multiple definitions of a target.
Now these programs look for extra files under their own names, which
will work just as well since those have no save files to generate icons
from either.
I don't expect this to actually come up in any circumstance, but it
prevents a warning in some versions of gcc that would otherwise arise
from the use of 'int' to compute the input size: if gcc isn't
confident that the int is positive, then it complains that possible
inputs to malloc might be in the region of 2^64 - (small multiple of a
negative 32-bit int).
I would hope malloc would fail in any case on such an input, so
failing a couple of lines earlier makes no important difference.
Annoyingly, stdint.h is missing in my NestedVM build setup (though it
has stdbool.h - it's not _totally_ C90). So I have to check that at
cmake time.
Also, removed the #defines for smalloc and friends from the tree234
test mode. These were needed in the old build system, when
tree234-test was built ad-hoc without being linked against malloc.c.
But now tree234-test links against the same utils library as
everything else, and can use the real smalloc - and doing so prevents
another of these warnings when compiling with -flto.
It relied on reading gamedesc.txt to find a list of puzzle binaries to
run. But gamedesc.txt is now specific to the Windows build (since it
contains Windows executable names), and isn't available in the Unix
cmake build directory.
Fixed by making a simpler gamelist.txt available on all platforms.
These look like puzzles, in that they link against a frontend and
provide the usual 'struct game', but they don't count as a puzzle for
purposes of shipping, or even having to have descriptions and icons.
There's one of these buried in the code already under an ifdef, which
I'll re-enable in the next commit.
Various cmake variables that I was informally expecting users to set
on the cmake command line (e.g. cmake -DSTRICT=ON, or cmake
-DPUZZLES_GTK_VERSION=2) are now labelled explicitly with the CACHE
tag, and provided with a documentation string indicating what they're
for.
One effect of this is that GUI-like interfaces to your cmake build
directory, such as ccmake or cmake-gui, will show those variables
explicitly to give you a hint that you might want to change them.
Another is that when you do change them, cmake will recognise that it
needs to redo the rest of its configuration. Previously, if you sat in
an existing cmake build directory and did 'cmake -DSTRICT=ON .'
followed by 'cmake -DSTRICT=OFF .', nothing would happen, even though
you obviously meant it to.
This completely removes the old system of mkfiles.pl + Recipe + .R
files that I used to manage the various per-platform makefiles and
other build scripts in this code base. In its place is a
CMakeLists.txt setup, which is still able to compile for Linux,
Windows, MacOS, NestedVM and Emscripten.
The main reason for doing this is because mkfiles.pl was a horrible
pile of unmaintainable cruft. It was hard to keep up to date (e.g.
didn't reliably support the latest Visual Studio project files); it
was so specific to me that nobody else could maintain it (or was even
interested in trying, and who can blame them?), and it wasn't even
easy to _use_ if you weren't me. And it didn't even produce very good
makefiles.
In fact I've been wanting to hurl mkfiles.pl in the bin for years, but
was blocked by CMake not quite being able to support my clang-cl based
system for cross-compiling for Windows on Linux. But CMake 3.20 was
released this month and fixes the last bug in that area (it had to do
with preprocessing of .rc files), so now I'm unblocked!
CMake is not perfect, but it's better at mkfiles.pl's job than
mkfiles.pl was, and it has the great advantage that lots of other
people already know about it.
Other advantages of the CMake system:
- Easier to build with. At least for the big three platforms, it's
possible to write down a list of build commands that's actually the
same everywhere ("cmake ." followed by "cmake --build ."). There's
endless scope for making your end-user cmake commands more fancy
than that, for various advantages, but very few people _have_ to.
- Less effort required to add a new puzzle. You just add a puzzle()
statement to the top-level CMakeLists.txt, instead of needing to
remember eight separate fiddly things to put in the .R file. (Look
at the reduction in CHECKLST.txt!)
- The 'unfinished' subdirectory is now _built_ unconditionally, even
if the things in it don't go into the 'make install' target. So
they won't bit-rot in future.
- Unix build: unified the old icons makefile with the main build, so
that each puzzle builds without an icon, runs to build its icon,
then relinks with it.
- Windows build: far easier to switch back and forth between debug
and release than with the old makefiles.
- MacOS build: CMake has its own .dmg generator, which is surely
better thought out than my ten-line bodge.
- net reduction in the number of lines of code in the code base. In
fact, that's still true _even_ if you don't count the deletion of
mkfiles.pl itself - that script didn't even have the virtue of
allowing everything else to be done exceptionally concisely.