mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-20 07:31:30 -07:00
Files
751 lines
23 KiB
C
751 lines
23 KiB
C
/*
|
|
* Standalone test program for hat.c, which generates patches of hat
|
|
* tiling in multiple output formats without also generating a Loopy
|
|
* puzzle around them.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#ifdef NO_TGMATH_H
|
|
# include <math.h>
|
|
#else
|
|
# include <tgmath.h>
|
|
#endif
|
|
#include <stdarg.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#include "hat-internal.h"
|
|
|
|
static HatCoords *hat_coords_construct_v(TileType type, va_list ap)
|
|
{
|
|
HatCoords *hc = hat_coords_new();
|
|
while (true) {
|
|
int index = va_arg(ap, int);
|
|
|
|
hat_coords_make_space(hc, hc->nc + 1);
|
|
hc->c[hc->nc].type = type;
|
|
hc->c[hc->nc].index = index;
|
|
hc->nc++;
|
|
|
|
if (index < 0)
|
|
return hc;
|
|
|
|
type = va_arg(ap, TileType);
|
|
}
|
|
}
|
|
|
|
static HatCoords *hat_coords_construct(TileType type, ...)
|
|
{
|
|
HatCoords *hc;
|
|
va_list ap;
|
|
|
|
va_start(ap, type);
|
|
hc = hat_coords_construct_v(type, ap);
|
|
va_end(ap);
|
|
|
|
return hc;
|
|
}
|
|
|
|
static bool hat_coords_equal(HatCoords *hc1, HatCoords *hc2)
|
|
{
|
|
size_t i;
|
|
|
|
if (hc1->nc != hc2->nc)
|
|
return false;
|
|
|
|
for (i = 0; i < hc1->nc; i++) {
|
|
if (hc1->c[i].type != hc2->c[i].type ||
|
|
hc1->c[i].index != hc2->c[i].index)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool hat_coords_expect(const char *file, int line, HatCoords *hc,
|
|
TileType type, ...)
|
|
{
|
|
bool equal;
|
|
va_list ap;
|
|
HatCoords *hce;
|
|
|
|
va_start(ap, type);
|
|
hce = hat_coords_construct_v(type, ap);
|
|
va_end(ap);
|
|
|
|
equal = hat_coords_equal(hc, hce);
|
|
|
|
if (!equal) {
|
|
fprintf(stderr, "%s:%d: coordinate mismatch\n", file, line);
|
|
hat_coords_debug(" expected: ", hce, "\n");
|
|
hat_coords_debug(" actual: ", hc, "\n");
|
|
}
|
|
|
|
hat_coords_free(hce);
|
|
return equal;
|
|
}
|
|
|
|
#define EXPECT(hc, ...) do { \
|
|
if (!hat_coords_expect(__FILE__, __LINE__, hc, __VA_ARGS__)) \
|
|
fails++; \
|
|
} while (0)
|
|
|
|
/*
|
|
* For four-colouring the tiling: these tables give a colouring of
|
|
* each kitemap, with colour 3 assigned to the reflected tiles in the
|
|
* middle of the H, and 0,1,2 chosen arbitrarily.
|
|
*/
|
|
|
|
static const int fourcolours_H[] = {
|
|
/* 0 */ 0, 2, 1, 3,
|
|
/* 1 */ 1, 0, 2, 3,
|
|
/* 2 */ 0, 2, 1, 3,
|
|
/* 3 */ 1, -1, -1, -1,
|
|
/* 4 */ 1, 2, -1, -1,
|
|
/* 5 */ 1, 2, -1, -1,
|
|
/* 6 */ 2, 1, -1, -1,
|
|
/* 7 */ 0, 1, -1, -1,
|
|
/* 8 */ 2, 0, -1, -1,
|
|
/* 9 */ 2, 0, -1, -1,
|
|
/* 10 */ 0, 1, -1, -1,
|
|
/* 11 */ 0, 1, -1, -1,
|
|
/* 12 */ 2, 0, -1, -1,
|
|
};
|
|
static const int fourcolours_T[] = {
|
|
/* 0 */ 1, 2, 0, 3,
|
|
/* 1 */ 2, 1, -1, -1,
|
|
/* 2 */ 0, 1, -1, -1,
|
|
/* 3 */ 0, 2, -1, -1,
|
|
/* 4 */ 2, 0, -1, -1,
|
|
/* 5 */ 0, 1, -1, -1,
|
|
/* 6 */ 1, 2, -1, -1,
|
|
};
|
|
static const int fourcolours_P[] = {
|
|
/* 0 */ 2, 1, 0, 3,
|
|
/* 1 */ 1, 2, 0, 3,
|
|
/* 2 */ 2, 1, -1, -1,
|
|
/* 3 */ 0, 2, -1, -1,
|
|
/* 4 */ 0, 1, -1, -1,
|
|
/* 5 */ 1, 2, -1, -1,
|
|
/* 6 */ 2, 0, -1, -1,
|
|
/* 7 */ 0, 1, -1, -1,
|
|
/* 8 */ 1, 0, -1, -1,
|
|
/* 9 */ 2, 1, -1, -1,
|
|
/* 10 */ 0, 2, -1, -1,
|
|
};
|
|
static const int fourcolours_F[] = {
|
|
/* 0 */ 2, 0, 1, 3,
|
|
/* 1 */ 0, 2, 1, 3,
|
|
/* 2 */ 1, 2, -1, -1,
|
|
/* 3 */ 1, 0, -1, -1,
|
|
/* 4 */ 0, 2, -1, -1,
|
|
/* 5 */ 2, 1, -1, -1,
|
|
/* 6 */ 2, 0, -1, -1,
|
|
/* 7 */ 0, 1, -1, -1,
|
|
/* 8 */ 0, 1, -1, -1,
|
|
/* 9 */ 2, 0, -1, -1,
|
|
/* 10 */ 1, 2, -1, -1,
|
|
};
|
|
static const int *const fourcolours[] = {
|
|
fourcolours_H, fourcolours_T, fourcolours_P, fourcolours_F,
|
|
};
|
|
|
|
static bool unit_tests(void)
|
|
{
|
|
int fails = 0;
|
|
HatContext ctx[1];
|
|
HatCoords *hc_in, *hc_out;
|
|
|
|
ctx->rs = NULL;
|
|
ctx->prototype = hat_coords_construct(TT_KITE, 0, TT_HAT, 0, TT_H, -1);
|
|
|
|
/* Simple steps within a hat */
|
|
|
|
hc_in = hat_coords_construct(TT_KITE, 6, TT_HAT, 2, TT_H, 1, TT_H, -1);
|
|
hc_out = hatctx_step(ctx, hc_in, KS_LEFT);
|
|
EXPECT(hc_out, TT_KITE, 5, TT_HAT, 2, TT_H, 1, TT_H, -1);
|
|
hat_coords_free(hc_in);
|
|
hat_coords_free(hc_out);
|
|
|
|
hc_in = hat_coords_construct(TT_KITE, 6, TT_HAT, 2, TT_H, 1, TT_H, -1);
|
|
hc_out = hatctx_step(ctx, hc_in, KS_RIGHT);
|
|
EXPECT(hc_out, TT_KITE, 7, TT_HAT, 2, TT_H, 1, TT_H, -1);
|
|
hat_coords_free(hc_in);
|
|
hat_coords_free(hc_out);
|
|
|
|
hc_in = hat_coords_construct(TT_KITE, 5, TT_HAT, 2, TT_H, 1, TT_H, -1);
|
|
hc_out = hatctx_step(ctx, hc_in, KS_F_LEFT);
|
|
EXPECT(hc_out, TT_KITE, 2, TT_HAT, 2, TT_H, 1, TT_H, -1);
|
|
hat_coords_free(hc_in);
|
|
hat_coords_free(hc_out);
|
|
|
|
hc_in = hat_coords_construct(TT_KITE, 5, TT_HAT, 2, TT_H, 1, TT_H, -1);
|
|
hc_out = hatctx_step(ctx, hc_in, KS_F_RIGHT);
|
|
EXPECT(hc_out, TT_KITE, 1, TT_HAT, 2, TT_H, 1, TT_H, -1);
|
|
hat_coords_free(hc_in);
|
|
hat_coords_free(hc_out);
|
|
|
|
/* Step between hats in the same kitemap, which can change the
|
|
* metatile type at layer 2 */
|
|
|
|
hc_in = hat_coords_construct(TT_KITE, 6, TT_HAT, 2, TT_H, 1, TT_H, -1);
|
|
hc_out = hatctx_step(ctx, hc_in, KS_F_LEFT);
|
|
EXPECT(hc_out, TT_KITE, 3, TT_HAT, 0, TT_H, 0, TT_H, -1);
|
|
hat_coords_free(hc_in);
|
|
hat_coords_free(hc_out);
|
|
|
|
hc_in = hat_coords_construct(TT_KITE, 7, TT_HAT, 2, TT_H, 1, TT_H, -1);
|
|
hc_out = hatctx_step(ctx, hc_in, KS_F_RIGHT);
|
|
EXPECT(hc_out, TT_KITE, 4, TT_HAT, 0, TT_T, 3, TT_H, -1);
|
|
hat_coords_free(hc_in);
|
|
hat_coords_free(hc_out);
|
|
|
|
/* Step off the edge of one kitemap, necessitating a metamap
|
|
* rewrite of layers 2,3 to get into a different kitemap where
|
|
* that step can be made */
|
|
|
|
hc_in = hat_coords_construct(TT_KITE, 6, TT_HAT, 0, TT_P, 2, TT_P, 3,
|
|
TT_P, -1);
|
|
hc_out = hatctx_step(ctx, hc_in, KS_F_RIGHT);
|
|
/* Working:
|
|
* kite 6 . hat 0 . P 2 . P 3 . P ?
|
|
* -> kite 6 . hat 0 . P 6 . H 0 . P ? (P metamap says 2.3 = 6.0)
|
|
*/
|
|
EXPECT(hc_out, TT_KITE, 7, TT_HAT, 1, TT_H, 1, TT_H, 0, TT_P, -1);
|
|
hat_coords_free(hc_in);
|
|
hat_coords_free(hc_out);
|
|
|
|
hatctx_cleanup(ctx);
|
|
return fails == 0;
|
|
}
|
|
|
|
/*
|
|
* Structure that describes how the colours in the above maps are
|
|
* translated to output colours. This will vary with each kitemap our
|
|
* coordinates pass through, in order to maintain consistency.
|
|
*/
|
|
typedef struct FourColourMap {
|
|
unsigned char map[4];
|
|
} FourColourMap;
|
|
|
|
/*
|
|
* Make an initial FourColourMap by choosing the initial permutation
|
|
* of the three 'normal' hat colours randomly.
|
|
*/
|
|
static inline FourColourMap fourcolourmap_initial(random_state *rs)
|
|
{
|
|
FourColourMap f;
|
|
unsigned i;
|
|
|
|
/* Start with the identity mapping */
|
|
for (i = 0; i < 4; i++)
|
|
f.map[i] = i;
|
|
|
|
/* Randomly permute colours 0,1,2, leaving 3 as the distinguished
|
|
* colour for reflected hats */
|
|
shuffle(f.map, 3, sizeof(f.map[0]), rs);
|
|
|
|
return f;
|
|
}
|
|
|
|
static inline FourColourMap fourcolourmap_update(
|
|
FourColourMap prevm, HatCoords *prevc, HatCoords *currc, KiteStep step,
|
|
HatContext *ctx)
|
|
{
|
|
size_t i, m1, m2;
|
|
const int *f1, *f2;
|
|
unsigned sum;
|
|
int missing;
|
|
FourColourMap newm;
|
|
HatCoords *prev2c;
|
|
|
|
/*
|
|
* If prevc and currc are in the same kitemap anyway, that's the
|
|
* easy case: the colour map for the new kitemap is the same as
|
|
* for the old one, because they're the same kitemap.
|
|
*/
|
|
hatctx_extend_coords(ctx, prevc, currc->nc);
|
|
hatctx_extend_coords(ctx, currc, prevc->nc);
|
|
for (i = 3; i < prevc->nc; i++)
|
|
if (currc->c[i].index != prevc->c[i].index)
|
|
goto mismatch;
|
|
return prevm;
|
|
mismatch:
|
|
|
|
/*
|
|
* The hatctx_step algorithm guarantees that the _new_ coordinate
|
|
* currc is expected to be in a kitemap containing both this kite
|
|
* and the previous one (because it first transformed the previous
|
|
* coordinate until it _could_ take a step within the same
|
|
* kitemap, and then did).
|
|
*
|
|
* So if we reverse the last step we took, we should get a second
|
|
* HatCoords describing the same kite as prevc but showing its
|
|
* position in the _new_ kitemap. This lets us figure out a pair
|
|
* of corresponding metatile indices within the old and new
|
|
* kitemaps (by looking at which metatile prevc and prev2c claim
|
|
* to be in).
|
|
*
|
|
* That metatile will also always be a P or an F (because all
|
|
* metatiles overlapping the next kitemap are of those types),
|
|
* which means it will have two hats in it. And those hats will be
|
|
* adjacent, so differently coloured. Hence, we have enough
|
|
* information to decide how two of the new kitemap's three normal
|
|
* colours map to the colours we were using in the old kitemap -
|
|
* and then the third is determined by process of elimination.
|
|
*/
|
|
prev2c = hatctx_step(
|
|
ctx, currc, (step == KS_LEFT ? KS_RIGHT :
|
|
step == KS_RIGHT ? KS_LEFT :
|
|
step == KS_F_LEFT ? KS_F_RIGHT : KS_F_LEFT));
|
|
|
|
/* Metatile indices within the old and new kitemaps */
|
|
m1 = prevc->c[2].index;
|
|
m2 = prev2c->c[2].index;
|
|
|
|
/* The colourings of those metatiles' hats in our fixed fourcolours[] */
|
|
f1 = fourcolours[prevc->c[3].type] + 4*m1;
|
|
f2 = fourcolours[prev2c->c[3].type] + 4*m2;
|
|
|
|
hat_coords_free(prev2c);
|
|
|
|
/*
|
|
* Start making our new output map, filling in all three normal
|
|
* colours to 255 = "don't know yet".
|
|
*/
|
|
newm.map[3] = 3;
|
|
newm.map[0] = newm.map[1] = newm.map[2] = 255;
|
|
|
|
/*
|
|
* Iterate over the tile colourings in fourcolours[] for these
|
|
* metatiles, matching up our mappings.
|
|
*/
|
|
for (i = 0; i < 4; i++) {
|
|
/* They should be the same metatile, so have same number of hats! */
|
|
if (f1[i] == -1 && f2[i] == -1)
|
|
continue;
|
|
assert(f1[i] != -1 && f2[i] != -1);
|
|
|
|
if (f1[i] != 255)
|
|
newm.map[f2[i]] = prevm.map[f1[i]];
|
|
}
|
|
|
|
/*
|
|
* We expect to have filled in exactly two of the three normal
|
|
* colours. Find the missing index, and fill in its colour by
|
|
* arithmetic (using the fact that the three colours add up to 3).
|
|
*/
|
|
sum = 0;
|
|
missing = -1;
|
|
for (i = 0; i < 3; i++) {
|
|
if (newm.map[i] == 255) {
|
|
assert(missing == -1); /* shouldn't have two missing colours */
|
|
missing = i;
|
|
} else {
|
|
sum += newm.map[i];
|
|
}
|
|
}
|
|
assert(missing != -1);
|
|
assert(0 < sum && sum <= 3);
|
|
newm.map[missing] = 3 - sum;
|
|
|
|
return newm;
|
|
}
|
|
|
|
typedef struct pspoint {
|
|
float x, y;
|
|
} pspoint;
|
|
|
|
typedef struct psbbox {
|
|
bool started;
|
|
pspoint bl, tr;
|
|
} psbbox;
|
|
|
|
static inline void psbbox_add(psbbox *bbox, pspoint p)
|
|
{
|
|
if (!bbox->started || bbox->bl.x > p.x)
|
|
bbox->bl.x = p.x;
|
|
if (!bbox->started || bbox->tr.x < p.x)
|
|
bbox->tr.x = p.x;
|
|
if (!bbox->started || bbox->bl.y > p.y)
|
|
bbox->bl.y = p.y;
|
|
if (!bbox->started || bbox->tr.y < p.y)
|
|
bbox->tr.y = p.y;
|
|
bbox->started = true;
|
|
}
|
|
|
|
typedef enum OutFmt { OF_POSTSCRIPT, OF_SVG, OF_PYTHON } OutFmt;
|
|
typedef enum ColourMode { CM_SEMANTIC, CM_FOURCOLOUR } ColourMode;
|
|
|
|
typedef struct drawctx {
|
|
OutFmt outfmt;
|
|
ColourMode colourmode;
|
|
psbbox *bbox;
|
|
KiteEnum *kiteenum;
|
|
FourColourMap fourcolourmap[KE_NKEEP];
|
|
bool natural_scale, clip;
|
|
|
|
float xoff, xscale, yoff, yscale; /* used for SVG only */
|
|
} drawctx;
|
|
|
|
static void bbox_add_hat(void *vctx, Kite kite0, HatCoords *hc, int *coords)
|
|
{
|
|
drawctx *ctx = (drawctx *)vctx;
|
|
pspoint p;
|
|
size_t i;
|
|
|
|
for (i = 0; i < 14; i++) {
|
|
p.x = coords[2*i] * 1.5;
|
|
p.y = coords[2*i+1] * sqrt(0.75);
|
|
psbbox_add(ctx->bbox, p);
|
|
}
|
|
}
|
|
|
|
static void header(drawctx *ctx)
|
|
{
|
|
float scale, ox, oy;
|
|
|
|
/* Optionally clip to an inner rectangle that guarantees
|
|
* the whole visible area is covered in hats. */
|
|
if (ctx->clip) {
|
|
ctx->bbox->bl.x += 9;
|
|
ctx->bbox->tr.x -= 9;
|
|
ctx->bbox->bl.y += 12 * sqrt(0.75);
|
|
ctx->bbox->tr.y -= 12 * sqrt(0.75);
|
|
}
|
|
|
|
if (!ctx->natural_scale) {
|
|
/* Scale the output to fit on an A4 page, for test prints. */
|
|
float w = 595, h = 842, margin = 12;
|
|
float xext = ctx->bbox->tr.x - ctx->bbox->bl.x;
|
|
float yext = ctx->bbox->tr.y - ctx->bbox->bl.y;
|
|
float xscale = (w - 2*margin) / xext;
|
|
float yscale = (h - 2*margin) / yext;
|
|
scale = xscale < yscale ? xscale : yscale;
|
|
ox = (w - scale * (ctx->bbox->bl.x + ctx->bbox->tr.x)) / 2;
|
|
oy = (h - scale * (ctx->bbox->bl.y + ctx->bbox->tr.y)) / 2;
|
|
} else {
|
|
/* Leave the patch at its natural scale. */
|
|
scale = 1.0;
|
|
|
|
/* And translate the lower left corner of the bounding box to 0. */
|
|
ox = -ctx->bbox->bl.x;
|
|
oy = -ctx->bbox->bl.y;
|
|
}
|
|
|
|
switch (ctx->outfmt) {
|
|
case OF_POSTSCRIPT: {
|
|
printf("%%!PS-Adobe-2.0\n%%%%Creator: hat-test from Simon Tatham's "
|
|
"Portable Puzzle Collection\n%%%%Pages: 1\n"
|
|
"%%%%BoundingBox: %f %f %f %f\n"
|
|
"%%%%EndComments\n%%%%Page: 1 1\n",
|
|
ox + scale * ctx->bbox->bl.x,
|
|
oy + scale * ctx->bbox->bl.y,
|
|
ox + scale * ctx->bbox->tr.x,
|
|
oy + scale * ctx->bbox->tr.y);
|
|
|
|
if (ctx->clip) {
|
|
printf("%f %f moveto %f %f lineto %f %f lineto %f %f lineto "
|
|
"closepath clip\n",
|
|
ox + scale * ctx->bbox->bl.x,
|
|
oy + scale * ctx->bbox->bl.y,
|
|
ox + scale * ctx->bbox->bl.x,
|
|
oy + scale * ctx->bbox->tr.y,
|
|
ox + scale * ctx->bbox->tr.x,
|
|
oy + scale * ctx->bbox->tr.y,
|
|
ox + scale * ctx->bbox->tr.x,
|
|
oy + scale * ctx->bbox->bl.y);
|
|
}
|
|
printf("%f %f translate %f dup scale\n", ox, oy, scale);
|
|
printf("%f setlinewidth\n", 0.06);
|
|
printf("0 setgray 1 setlinejoin 1 setlinecap\n");
|
|
break;
|
|
}
|
|
case OF_SVG: {
|
|
printf("<?xml version=\"1.0\" encoding=\"UTF-8\" "
|
|
"standalone=\"no\"?>\n");
|
|
printf("<svg xmlns=\"http://www.w3.org/2000/svg\" "
|
|
"version=\"1.1\" width=\"%f\" height=\"%f\">\n",
|
|
scale * (ctx->bbox->tr.x - ctx->bbox->bl.x),
|
|
scale * (ctx->bbox->tr.y - ctx->bbox->bl.y));
|
|
printf("<style type=\"text/css\">\n");
|
|
printf("path { fill: none; stroke: black; stroke-width: %f; "
|
|
"stroke-linejoin: round; stroke-linecap: round; }\n",
|
|
0.06 * scale);
|
|
switch (ctx->colourmode) {
|
|
case CM_SEMANTIC:
|
|
printf(".H { fill: rgb(153, 204, 255); }\n");
|
|
printf(".H3 { fill: rgb( 0, 128, 204); }\n");
|
|
printf(".T, .P { fill: rgb(255, 255, 255); }\n");
|
|
printf(".F { fill: rgb(178, 178, 178); }\n");
|
|
break;
|
|
|
|
default /* case CM_FOURCOLOUR */:
|
|
printf(".c0 { fill: rgb(255, 178, 178); }\n");
|
|
printf(".c1 { fill: rgb(255, 255, 178); }\n");
|
|
printf(".c2 { fill: rgb(178, 255, 178); }\n");
|
|
printf(".c3 { fill: rgb(153, 153, 255); }\n");
|
|
break;
|
|
}
|
|
printf("</style>\n");
|
|
|
|
ctx->xoff = -ctx->bbox->bl.x * scale;
|
|
ctx->xscale = scale;
|
|
ctx->yoff = ctx->bbox->tr.y * scale;
|
|
ctx->yscale = -scale;
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void draw_hat(void *vctx, Kite kite0, HatCoords *hc, int *coords)
|
|
{
|
|
drawctx *ctx = (drawctx *)vctx;
|
|
pspoint p;
|
|
size_t i;
|
|
int orientation;
|
|
|
|
/*
|
|
* Determine an index for the hat's orientation, based on the axis
|
|
* of symmetry of its kite #0.
|
|
*/
|
|
{
|
|
int dx = kite0.outer.x - kite0.centre.x;
|
|
int dy = kite0.outer.y - kite0.centre.y;
|
|
orientation = 0;
|
|
while (dx < 0 || dy < 0) {
|
|
int newdx = dx + dy;
|
|
int newdy = -dx;
|
|
dx = newdx;
|
|
dy = newdy;
|
|
orientation++;
|
|
assert(orientation < 6);
|
|
}
|
|
}
|
|
|
|
switch (ctx->outfmt) {
|
|
case OF_POSTSCRIPT: {
|
|
const char *colour;
|
|
|
|
printf("newpath");
|
|
for (i = 0; i < 14; i++) {
|
|
p.x = coords[2*i] * 1.5;
|
|
p.y = coords[2*i+1] * sqrt(0.75);
|
|
printf(" %f %f %s", p.x, p.y, i ? "lineto" : "moveto");
|
|
}
|
|
printf(" closepath gsave");
|
|
|
|
switch (ctx->colourmode) {
|
|
case CM_SEMANTIC:
|
|
if (hc->c[2].type == TT_H) {
|
|
colour = (hc->c[1].index == 3 ? "0 0.5 0.8 setrgbcolor" :
|
|
"0.6 0.8 1 setrgbcolor");
|
|
} else if (hc->c[2].type == TT_F) {
|
|
colour = "0.7 setgray";
|
|
} else {
|
|
colour = "1 setgray";
|
|
}
|
|
break;
|
|
|
|
default /* case CM_FOURCOLOUR */: {
|
|
/*
|
|
* Determine the colour of this tile by translating the
|
|
* fixed colour from fourcolours[] through our current
|
|
* FourColourMap.
|
|
*/
|
|
FourColourMap f = ctx->fourcolourmap[ctx->kiteenum->curr_index];
|
|
const int *m = fourcolours[hc->c[3].type];
|
|
static const char *const colours[] = {
|
|
"1 0.7 0.7 setrgbcolor",
|
|
"1 1 0.7 setrgbcolor",
|
|
"0.7 1 0.7 setrgbcolor",
|
|
"0.6 0.6 1 setrgbcolor",
|
|
};
|
|
colour = colours[f.map[m[hc->c[2].index * 4 + hc->c[1].index]]];
|
|
break;
|
|
}
|
|
}
|
|
printf(" %s fill grestore", colour);
|
|
printf(" stroke\n");
|
|
break;
|
|
}
|
|
case OF_SVG: {
|
|
const char *class;
|
|
|
|
switch (ctx->colourmode) {
|
|
case CM_SEMANTIC: {
|
|
static const char *const classes[] = {"H", "T", "P", "F"};
|
|
|
|
if (hc->c[2].type == TT_H && hc->c[1].index == 3)
|
|
class = "H3";
|
|
else
|
|
class = classes[hc->c[2].type];
|
|
break;
|
|
}
|
|
|
|
default /* case CM_FOURCOLOUR */: {
|
|
static const char *const classes[] = {"c0", "c1", "c2", "c3"};
|
|
FourColourMap f = ctx->fourcolourmap[ctx->kiteenum->curr_index];
|
|
const int *m = fourcolours[hc->c[3].type];
|
|
class = classes[f.map[m[hc->c[2].index * 4 + hc->c[1].index]]];
|
|
break;
|
|
}
|
|
}
|
|
|
|
printf("<path class=\"%s\" d=\"", class);
|
|
|
|
for (i = 0; i < 14; i++) {
|
|
p.x = coords[2*i] * 1.5;
|
|
p.y = coords[2*i+1] * sqrt(0.75);
|
|
printf("%s %f %f", i == 0 ? "M" : " L",
|
|
ctx->xoff + ctx->xscale * p.x,
|
|
ctx->yoff + ctx->yscale * p.y);
|
|
}
|
|
printf(" z\"/>\n");
|
|
break;
|
|
}
|
|
case OF_PYTHON: {
|
|
printf("hat('%c', %d, %d, [", "HTPF"[hc->c[2].type], hc->c[1].index,
|
|
orientation);
|
|
for (i = 0; i < 14; i++)
|
|
printf("%s(%d,%d)", i ? ", " : "", coords[2*i], coords[2*i+1]);
|
|
printf("])\n");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void trailer(drawctx *dctx)
|
|
{
|
|
switch (dctx->outfmt) {
|
|
case OF_POSTSCRIPT: {
|
|
printf("showpage\n");
|
|
printf("%%%%Trailer\n");
|
|
printf("%%%%EOF\n");
|
|
break;
|
|
}
|
|
case OF_SVG: {
|
|
printf("</svg>\n");
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
psbbox bbox[1];
|
|
KiteEnum s[1];
|
|
HatContext ctx[1];
|
|
HatCoords *coords[KE_NKEEP];
|
|
random_state *rs;
|
|
const char *random_seed = "12345";
|
|
int w = 10, h = 10;
|
|
int argpos = 0;
|
|
size_t i;
|
|
drawctx dctx[1];
|
|
|
|
dctx->outfmt = OF_POSTSCRIPT;
|
|
dctx->colourmode = CM_SEMANTIC;
|
|
dctx->natural_scale = false;
|
|
dctx->clip = false;
|
|
dctx->kiteenum = s;
|
|
|
|
while (--argc > 0) {
|
|
const char *arg = *++argv;
|
|
if (!strcmp(arg, "--help")) {
|
|
printf(" usage: hat-test [options] [<width>] [<height>]\n"
|
|
"options: --python write a Python function call per hat\n"
|
|
" --seed=STR vary the starting random seed\n"
|
|
" also: hat-test --test\n");
|
|
return 0;
|
|
} else if (!strcmp(arg, "--test")) {
|
|
return unit_tests() ? 0 : 1;
|
|
} else if (!strcmp(arg, "--svg")) {
|
|
dctx->outfmt = OF_SVG;
|
|
} else if (!strcmp(arg, "--python")) {
|
|
dctx->outfmt = OF_PYTHON;
|
|
} else if (!strcmp(arg, "--fourcolour")) {
|
|
dctx->colourmode = CM_FOURCOLOUR;
|
|
} else if (!strcmp(arg, "--unscaled")) {
|
|
dctx->natural_scale = true;
|
|
} else if (!strcmp(arg, "--clip")) {
|
|
dctx->clip = true;
|
|
} else if (!strncmp(arg, "--seed=", 7)) {
|
|
random_seed = arg+7;
|
|
} else if (arg[0] == '-') {
|
|
fprintf(stderr, "unrecognised option '%s'\n", arg);
|
|
return 1;
|
|
} else {
|
|
switch (argpos++) {
|
|
case 0:
|
|
w = atoi(arg);
|
|
break;
|
|
case 1:
|
|
h = atoi(arg);
|
|
break;
|
|
default:
|
|
fprintf(stderr, "unexpected extra argument '%s'\n", arg);
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < lenof(coords); i++)
|
|
coords[i] = NULL;
|
|
|
|
rs = random_new(random_seed, strlen(random_seed));
|
|
hatctx_init_random(ctx, rs);
|
|
|
|
bbox->started = false;
|
|
dctx->bbox = bbox;
|
|
|
|
hat_kiteenum_first(s, w, h);
|
|
coords[s->curr_index] = hatctx_initial_coords(ctx);
|
|
maybe_report_hat(w, h, *s->curr, coords[s->curr_index],
|
|
bbox_add_hat, dctx);
|
|
while (hat_kiteenum_next(s)) {
|
|
hat_coords_free(coords[s->curr_index]);
|
|
coords[s->curr_index] = hatctx_step(
|
|
ctx, coords[s->last_index], s->last_step);
|
|
maybe_report_hat(w, h, *s->curr, coords[s->curr_index],
|
|
bbox_add_hat, dctx);
|
|
}
|
|
for (i = 0; i < lenof(coords); i++) {
|
|
hat_coords_free(coords[i]);
|
|
coords[i] = NULL;
|
|
}
|
|
|
|
header(dctx);
|
|
|
|
hat_kiteenum_first(s, w, h);
|
|
coords[s->curr_index] = hatctx_initial_coords(ctx);
|
|
dctx->fourcolourmap[s->curr_index] = fourcolourmap_initial(rs);
|
|
maybe_report_hat(w, h, *s->curr, coords[s->curr_index],
|
|
draw_hat, dctx);
|
|
while (hat_kiteenum_next(s)) {
|
|
hat_coords_free(coords[s->curr_index]);
|
|
coords[s->curr_index] = hatctx_step(
|
|
ctx, coords[s->last_index], s->last_step);
|
|
dctx->fourcolourmap[s->curr_index] = fourcolourmap_update(
|
|
dctx->fourcolourmap[s->last_index], coords[s->last_index],
|
|
coords[s->curr_index], s->last_step, ctx);
|
|
maybe_report_hat(w, h, *s->curr, coords[s->curr_index],
|
|
draw_hat, dctx);
|
|
}
|
|
for (i = 0; i < lenof(coords); i++) {
|
|
hat_coords_free(coords[i]);
|
|
coords[i] = NULL;
|
|
}
|
|
|
|
trailer(dctx);
|
|
|
|
hatctx_cleanup(ctx);
|
|
random_free(rs);
|
|
|
|
return 0;
|
|
}
|