mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-19 23:21:31 -07:00
Files

[Commit message added by SGT: this makes it easier to allocate indices in the config_item array, and keep them in sync between get_prefs and set_prefs for each game.]
3350 lines
108 KiB
C
3350 lines
108 KiB
C
/*
|
|
* bridges.c: Implementation of the Nikoli game 'Bridges'.
|
|
*
|
|
* Things still to do:
|
|
*
|
|
* - The solver's algorithmic design is not really ideal. It makes
|
|
* use of the same data representation as gameplay uses, which
|
|
* often looks like a tempting reuse of code but isn't always a
|
|
* good idea. In this case, it's unpleasant that each edge of the
|
|
* graph ends up represented as multiple squares on a grid, with
|
|
* flags indicating when edges and non-edges cross; that's useful
|
|
* when the result can be directly translated into positions of
|
|
* graphics on the display, but in purely internal work it makes
|
|
* even simple manipulations during solving more painful than they
|
|
* should be, and complex ones have no choice but to modify the
|
|
* data structures temporarily, test things, and put them back. I
|
|
* envisage a complete solver rewrite along the following lines:
|
|
* + We have a collection of vertices (islands) and edges
|
|
* (potential bridge locations, i.e. pairs of horizontal or
|
|
* vertical islands with no other island in between).
|
|
* + Each edge has an associated list of edges that cross it, and
|
|
* hence with which it is mutually exclusive.
|
|
* + For each edge, we track the min and max number of bridges we
|
|
* currently think possible.
|
|
* + For each vertex, we track the number of _liberties_ it has,
|
|
* i.e. its clue number minus the min bridge count for each edge
|
|
* out of it.
|
|
* + We also maintain a dsf that identifies sets of vertices which
|
|
* are connected components of the puzzle so far, and for each
|
|
* equivalence class we track the total number of liberties for
|
|
* that component. (The dsf mechanism will also already track
|
|
* the size of each component, i.e. number of islands.)
|
|
* + So incrementing the min for an edge requires processing along
|
|
* the lines of:
|
|
* - set the max for all edges crossing that one to zero
|
|
* - decrement the liberty count for the vertex at each end,
|
|
* and also for each vertex's equivalence class (NB they may
|
|
* be the same class)
|
|
* - unify the two equivalence classes if they're not already,
|
|
* and if so, set the liberty count for the new class to be
|
|
* the sum of the previous two.
|
|
* + Decrementing the max is much easier, however.
|
|
* + With this data structure the really fiddly stuff in stage3()
|
|
* becomes more or less trivial, because it's now a quick job to
|
|
* find out whether an island would form an isolated subgraph if
|
|
* connected to a given subset of its neighbours:
|
|
* - identify the connected components containing the test
|
|
* vertex and its putative new neighbours (but be careful not
|
|
* to count a component more than once if two or more of the
|
|
* vertices involved are already in the same one)
|
|
* - find the sum of those components' liberty counts, and also
|
|
* the total number of islands involved
|
|
* - if the total liberty count of the connected components is
|
|
* exactly equal to twice the number of edges we'd be adding
|
|
* (of course each edge destroys two liberties, one at each
|
|
* end) then these components would become a subgraph with
|
|
* zero liberties if connected together.
|
|
* - therefore, if that subgraph also contains fewer than the
|
|
* total number of islands, it's disallowed.
|
|
* - As mentioned in stage3(), once we've identified such a
|
|
* disallowed pattern, we have two choices for what to do
|
|
* with it: if the candidate set of neighbours has size 1 we
|
|
* can reduce the max for the edge to that one neighbour,
|
|
* whereas if its complement has size 1 we can increase the
|
|
* min for the edge to the _omitted_ neighbour.
|
|
*
|
|
* - write a recursive solver?
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <ctype.h>
|
|
#include <limits.h>
|
|
#ifdef NO_TGMATH_H
|
|
# include <math.h>
|
|
#else
|
|
# include <tgmath.h>
|
|
#endif
|
|
|
|
#include "puzzles.h"
|
|
|
|
#undef DRAW_GRID
|
|
|
|
/* --- structures for params, state, etc. --- */
|
|
|
|
#define MAX_BRIDGES 4
|
|
|
|
#define PREFERRED_TILE_SIZE 24
|
|
#define TILE_SIZE (ds->tilesize)
|
|
#define BORDER (TILE_SIZE / 2)
|
|
|
|
#define COORD(x) ( (x) * TILE_SIZE + BORDER )
|
|
#define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 )
|
|
|
|
#define FLASH_TIME 0.50F
|
|
|
|
enum {
|
|
COL_BACKGROUND,
|
|
COL_FOREGROUND,
|
|
COL_HIGHLIGHT, COL_LOWLIGHT,
|
|
COL_SELECTED, COL_MARK,
|
|
COL_HINT, COL_GRID,
|
|
COL_WARNING,
|
|
COL_CURSOR,
|
|
NCOLOURS
|
|
};
|
|
|
|
enum {
|
|
PREF_SHOW_HINTS,
|
|
N_PREF_ITEMS
|
|
};
|
|
|
|
struct game_params {
|
|
int w, h, maxb;
|
|
int islands, expansion; /* %age of island squares, %age chance of expansion */
|
|
bool allowloops;
|
|
int difficulty;
|
|
};
|
|
|
|
/* general flags used by all structs */
|
|
#define G_ISLAND 0x0001
|
|
#define G_LINEV 0x0002 /* contains a vert. line */
|
|
#define G_LINEH 0x0004 /* contains a horiz. line (mutex with LINEV) */
|
|
#define G_LINE (G_LINEV|G_LINEH)
|
|
#define G_MARKV 0x0008
|
|
#define G_MARKH 0x0010
|
|
#define G_MARK (G_MARKV|G_MARKH)
|
|
#define G_NOLINEV 0x0020
|
|
#define G_NOLINEH 0x0040
|
|
#define G_NOLINE (G_NOLINEV|G_NOLINEH)
|
|
|
|
/* flags used by the error checker */
|
|
#define G_WARN 0x0080
|
|
|
|
/* flags used by the solver etc. */
|
|
#define G_SWEEP 0x1000
|
|
|
|
#define G_FLAGSH (G_LINEH|G_MARKH|G_NOLINEH)
|
|
#define G_FLAGSV (G_LINEV|G_MARKV|G_NOLINEV)
|
|
|
|
typedef unsigned int grid_type; /* change me later if we invent > 16 bits of flags. */
|
|
|
|
struct solver_state {
|
|
DSF *dsf, *tmpdsf;
|
|
int *comptspaces, *tmpcompspaces;
|
|
int refcount;
|
|
};
|
|
|
|
/* state->gridi is an optimisation; it stores the pointer to the island
|
|
* structs indexed by (x,y). It's not strictly necessary (we could use
|
|
* find234 instead), but Purify showed that board generation (mostly the solver)
|
|
* was spending 60% of its time in find234. */
|
|
|
|
struct surrounds { /* cloned from lightup.c */
|
|
struct { int x, y, dx, dy, off; } points[4];
|
|
int npoints, nislands;
|
|
};
|
|
|
|
struct island {
|
|
game_state *state;
|
|
int x, y, count;
|
|
struct surrounds adj;
|
|
};
|
|
|
|
struct game_state {
|
|
int w, h, maxb;
|
|
bool completed, solved;
|
|
bool allowloops;
|
|
grid_type *grid;
|
|
struct island *islands;
|
|
int n_islands, n_islands_alloc;
|
|
game_params params; /* used by the aux solver. */
|
|
#define N_WH_ARRAYS 5
|
|
char *wha, *possv, *possh, *lines, *maxv, *maxh;
|
|
struct island **gridi;
|
|
struct solver_state *solver; /* refcounted */
|
|
};
|
|
|
|
#define GRIDSZ(s) ((s)->w * (s)->h * sizeof(grid_type))
|
|
|
|
#define INGRID(s,x,y) ((x) >= 0 && (x) < (s)->w && (y) >= 0 && (y) < (s)->h)
|
|
|
|
#define DINDEX(x,y) ((y)*state->w + (x))
|
|
|
|
#define INDEX(s,g,x,y) ((s)->g[(y)*((s)->w) + (x)])
|
|
#define IDX(s,g,i) ((s)->g[(i)])
|
|
#define GRID(s,x,y) INDEX(s,grid,x,y)
|
|
#define POSSIBLES(s,dx,x,y) ((dx) ? (INDEX(s,possh,x,y)) : (INDEX(s,possv,x,y)))
|
|
#define MAXIMUM(s,dx,x,y) ((dx) ? (INDEX(s,maxh,x,y)) : (INDEX(s,maxv,x,y)))
|
|
|
|
#define GRIDCOUNT(s,x,y,f) ((GRID(s,x,y) & (f)) ? (INDEX(s,lines,x,y)) : 0)
|
|
|
|
#define WITHIN2(x,min,max) ((x) >= (min) && (x) <= (max))
|
|
#define WITHIN(x,min,max) ((min) > (max) ? \
|
|
WITHIN2(x,max,min) : WITHIN2(x,min,max))
|
|
|
|
/* --- island struct and tree support functions --- */
|
|
|
|
#define ISLAND_ORTH(is,j,f,df) \
|
|
(is->f + (is->adj.points[(j)].off*is->adj.points[(j)].df))
|
|
|
|
#define ISLAND_ORTHX(is,j) ISLAND_ORTH(is,j,x,dx)
|
|
#define ISLAND_ORTHY(is,j) ISLAND_ORTH(is,j,y,dy)
|
|
|
|
static void fixup_islands_for_realloc(game_state *state)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < state->w*state->h; i++) state->gridi[i] = NULL;
|
|
for (i = 0; i < state->n_islands; i++) {
|
|
struct island *is = &state->islands[i];
|
|
is->state = state;
|
|
INDEX(state, gridi, is->x, is->y) = is;
|
|
}
|
|
}
|
|
|
|
static bool game_can_format_as_text_now(const game_params *params)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static char *game_text_format(const game_state *state)
|
|
{
|
|
int x, y, len, nl;
|
|
char *ret, *p;
|
|
struct island *is;
|
|
grid_type grid;
|
|
|
|
len = (state->h) * (state->w+1) + 1;
|
|
ret = snewn(len, char);
|
|
p = ret;
|
|
|
|
for (y = 0; y < state->h; y++) {
|
|
for (x = 0; x < state->w; x++) {
|
|
grid = GRID(state,x,y);
|
|
nl = INDEX(state,lines,x,y);
|
|
is = INDEX(state, gridi, x, y);
|
|
if (is) {
|
|
*p++ = '0' + is->count;
|
|
} else if (grid & G_LINEV) {
|
|
*p++ = (nl > 1) ? '"' : (nl == 1) ? '|' : '!'; /* gaah, want a double-bar. */
|
|
} else if (grid & G_LINEH) {
|
|
*p++ = (nl > 1) ? '=' : (nl == 1) ? '-' : '~';
|
|
} else {
|
|
*p++ = '.';
|
|
}
|
|
}
|
|
*p++ = '\n';
|
|
}
|
|
*p++ = '\0';
|
|
|
|
assert(p - ret == len);
|
|
return ret;
|
|
}
|
|
|
|
static void debug_state(game_state *state)
|
|
{
|
|
char *textversion = game_text_format(state);
|
|
debug(("%s", textversion));
|
|
sfree(textversion);
|
|
}
|
|
|
|
/*static void debug_possibles(game_state *state)
|
|
{
|
|
int x, y;
|
|
debug(("possh followed by possv\n"));
|
|
for (y = 0; y < state->h; y++) {
|
|
for (x = 0; x < state->w; x++) {
|
|
debug(("%d", POSSIBLES(state, 1, x, y)));
|
|
}
|
|
debug((" "));
|
|
for (x = 0; x < state->w; x++) {
|
|
debug(("%d", POSSIBLES(state, 0, x, y)));
|
|
}
|
|
debug(("\n"));
|
|
}
|
|
debug(("\n"));
|
|
for (y = 0; y < state->h; y++) {
|
|
for (x = 0; x < state->w; x++) {
|
|
debug(("%d", MAXIMUM(state, 1, x, y)));
|
|
}
|
|
debug((" "));
|
|
for (x = 0; x < state->w; x++) {
|
|
debug(("%d", MAXIMUM(state, 0, x, y)));
|
|
}
|
|
debug(("\n"));
|
|
}
|
|
debug(("\n"));
|
|
}*/
|
|
|
|
static void island_set_surrounds(struct island *is)
|
|
{
|
|
assert(INGRID(is->state,is->x,is->y));
|
|
is->adj.npoints = is->adj.nislands = 0;
|
|
#define ADDPOINT(cond,ddx,ddy) do {\
|
|
if (cond) { \
|
|
is->adj.points[is->adj.npoints].x = is->x+(ddx); \
|
|
is->adj.points[is->adj.npoints].y = is->y+(ddy); \
|
|
is->adj.points[is->adj.npoints].dx = (ddx); \
|
|
is->adj.points[is->adj.npoints].dy = (ddy); \
|
|
is->adj.points[is->adj.npoints].off = 0; \
|
|
is->adj.npoints++; \
|
|
} } while(0)
|
|
ADDPOINT(is->x > 0, -1, 0);
|
|
ADDPOINT(is->x < (is->state->w-1), +1, 0);
|
|
ADDPOINT(is->y > 0, 0, -1);
|
|
ADDPOINT(is->y < (is->state->h-1), 0, +1);
|
|
}
|
|
|
|
static void island_find_orthogonal(struct island *is)
|
|
{
|
|
/* fills in the rest of the 'surrounds' structure, assuming
|
|
* all other islands are now in place. */
|
|
int i, x, y, dx, dy, off;
|
|
|
|
is->adj.nislands = 0;
|
|
for (i = 0; i < is->adj.npoints; i++) {
|
|
dx = is->adj.points[i].dx;
|
|
dy = is->adj.points[i].dy;
|
|
x = is->x + dx;
|
|
y = is->y + dy;
|
|
off = 1;
|
|
is->adj.points[i].off = 0;
|
|
while (INGRID(is->state, x, y)) {
|
|
if (GRID(is->state, x, y) & G_ISLAND) {
|
|
is->adj.points[i].off = off;
|
|
is->adj.nislands++;
|
|
/*debug(("island (%d,%d) has orth is. %d*(%d,%d) away at (%d,%d).\n",
|
|
is->x, is->y, off, dx, dy,
|
|
ISLAND_ORTHX(is,i), ISLAND_ORTHY(is,i)));*/
|
|
goto foundisland;
|
|
}
|
|
off++; x += dx; y += dy;
|
|
}
|
|
foundisland:
|
|
;
|
|
}
|
|
}
|
|
|
|
static bool island_hasbridge(struct island *is, int direction)
|
|
{
|
|
int x = is->adj.points[direction].x;
|
|
int y = is->adj.points[direction].y;
|
|
grid_type gline = is->adj.points[direction].dx ? G_LINEH : G_LINEV;
|
|
|
|
if (GRID(is->state, x, y) & gline) return true;
|
|
return false;
|
|
}
|
|
|
|
static struct island *island_find_connection(struct island *is, int adjpt)
|
|
{
|
|
struct island *is_r;
|
|
|
|
assert(adjpt < is->adj.npoints);
|
|
if (!is->adj.points[adjpt].off) return NULL;
|
|
if (!island_hasbridge(is, adjpt)) return NULL;
|
|
|
|
is_r = INDEX(is->state, gridi,
|
|
ISLAND_ORTHX(is, adjpt), ISLAND_ORTHY(is, adjpt));
|
|
assert(is_r);
|
|
|
|
return is_r;
|
|
}
|
|
|
|
static struct island *island_add(game_state *state, int x, int y, int count)
|
|
{
|
|
struct island *is;
|
|
bool realloced = false;
|
|
|
|
assert(!(GRID(state,x,y) & G_ISLAND));
|
|
GRID(state,x,y) |= G_ISLAND;
|
|
|
|
state->n_islands++;
|
|
if (state->n_islands > state->n_islands_alloc) {
|
|
state->n_islands_alloc = state->n_islands * 2;
|
|
state->islands =
|
|
sresize(state->islands, state->n_islands_alloc, struct island);
|
|
realloced = true;
|
|
}
|
|
is = &state->islands[state->n_islands-1];
|
|
|
|
memset(is, 0, sizeof(struct island));
|
|
is->state = state;
|
|
is->x = x;
|
|
is->y = y;
|
|
is->count = count;
|
|
island_set_surrounds(is);
|
|
|
|
if (realloced)
|
|
fixup_islands_for_realloc(state);
|
|
else
|
|
INDEX(state, gridi, x, y) = is;
|
|
|
|
return is;
|
|
}
|
|
|
|
|
|
/* n = -1 means 'flip NOLINE flags [and set line to 0].' */
|
|
static void island_join(struct island *i1, struct island *i2, int n, bool is_max)
|
|
{
|
|
game_state *state = i1->state;
|
|
int s, e, x, y;
|
|
|
|
assert(i1->state == i2->state);
|
|
assert(n >= -1 && n <= i1->state->maxb);
|
|
|
|
if (i1->x == i2->x) {
|
|
x = i1->x;
|
|
if (i1->y < i2->y) {
|
|
s = i1->y+1; e = i2->y-1;
|
|
} else {
|
|
s = i2->y+1; e = i1->y-1;
|
|
}
|
|
for (y = s; y <= e; y++) {
|
|
if (is_max) {
|
|
INDEX(state,maxv,x,y) = n;
|
|
} else {
|
|
if (n < 0) {
|
|
GRID(state,x,y) ^= G_NOLINEV;
|
|
} else if (n == 0) {
|
|
GRID(state,x,y) &= ~G_LINEV;
|
|
} else {
|
|
GRID(state,x,y) |= G_LINEV;
|
|
INDEX(state,lines,x,y) = n;
|
|
}
|
|
}
|
|
}
|
|
} else if (i1->y == i2->y) {
|
|
y = i1->y;
|
|
if (i1->x < i2->x) {
|
|
s = i1->x+1; e = i2->x-1;
|
|
} else {
|
|
s = i2->x+1; e = i1->x-1;
|
|
}
|
|
for (x = s; x <= e; x++) {
|
|
if (is_max) {
|
|
INDEX(state,maxh,x,y) = n;
|
|
} else {
|
|
if (n < 0) {
|
|
GRID(state,x,y) ^= G_NOLINEH;
|
|
} else if (n == 0) {
|
|
GRID(state,x,y) &= ~G_LINEH;
|
|
} else {
|
|
GRID(state,x,y) |= G_LINEH;
|
|
INDEX(state,lines,x,y) = n;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
assert(!"island_join: islands not orthogonal.");
|
|
}
|
|
}
|
|
|
|
/* Counts the number of bridges currently attached to the island. */
|
|
static int island_countbridges(struct island *is)
|
|
{
|
|
int i, c = 0;
|
|
|
|
for (i = 0; i < is->adj.npoints; i++) {
|
|
c += GRIDCOUNT(is->state,
|
|
is->adj.points[i].x, is->adj.points[i].y,
|
|
is->adj.points[i].dx ? G_LINEH : G_LINEV);
|
|
}
|
|
/*debug(("island count for (%d,%d) is %d.\n", is->x, is->y, c));*/
|
|
return c;
|
|
}
|
|
|
|
static int island_adjspace(struct island *is, bool marks, int missing,
|
|
int direction)
|
|
{
|
|
int x, y, poss, curr, dx;
|
|
grid_type gline, mline;
|
|
|
|
x = is->adj.points[direction].x;
|
|
y = is->adj.points[direction].y;
|
|
dx = is->adj.points[direction].dx;
|
|
gline = dx ? G_LINEH : G_LINEV;
|
|
|
|
if (marks) {
|
|
mline = dx ? G_MARKH : G_MARKV;
|
|
if (GRID(is->state,x,y) & mline) return 0;
|
|
}
|
|
poss = POSSIBLES(is->state, dx, x, y);
|
|
poss = min(poss, missing);
|
|
|
|
curr = GRIDCOUNT(is->state, x, y, gline);
|
|
poss = min(poss, MAXIMUM(is->state, dx, x, y) - curr);
|
|
|
|
return poss;
|
|
}
|
|
|
|
/* Counts the number of bridge spaces left around the island;
|
|
* expects the possibles to be up-to-date. */
|
|
static int island_countspaces(struct island *is, bool marks)
|
|
{
|
|
int i, c = 0, missing;
|
|
|
|
missing = is->count - island_countbridges(is);
|
|
if (missing < 0) return 0;
|
|
|
|
for (i = 0; i < is->adj.npoints; i++) {
|
|
c += island_adjspace(is, marks, missing, i);
|
|
}
|
|
return c;
|
|
}
|
|
|
|
/* Returns a bridge count rather than a boolean */
|
|
static int island_isadj(struct island *is, int direction)
|
|
{
|
|
int x, y;
|
|
grid_type gline, mline;
|
|
|
|
x = is->adj.points[direction].x;
|
|
y = is->adj.points[direction].y;
|
|
|
|
mline = is->adj.points[direction].dx ? G_MARKH : G_MARKV;
|
|
gline = is->adj.points[direction].dx ? G_LINEH : G_LINEV;
|
|
if (GRID(is->state, x, y) & mline) {
|
|
/* If we're marked (i.e. the thing to attach to is complete)
|
|
* only count an adjacency if we're already attached. */
|
|
return GRIDCOUNT(is->state, x, y, gline);
|
|
} else {
|
|
/* If we're unmarked, count possible adjacency iff it's
|
|
* flagged as POSSIBLE. */
|
|
return POSSIBLES(is->state, is->adj.points[direction].dx, x, y);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Counts the no. of possible adjacent islands (including islands
|
|
* we're already connected to). */
|
|
static int island_countadj(struct island *is)
|
|
{
|
|
int i, nadj = 0;
|
|
|
|
for (i = 0; i < is->adj.npoints; i++) {
|
|
if (island_isadj(is, i)) nadj++;
|
|
}
|
|
return nadj;
|
|
}
|
|
|
|
static void island_togglemark(struct island *is)
|
|
{
|
|
int i, j, x, y, o;
|
|
struct island *is_loop;
|
|
|
|
/* mark the island... */
|
|
GRID(is->state, is->x, is->y) ^= G_MARK;
|
|
|
|
/* ...remove all marks on non-island squares... */
|
|
for (x = 0; x < is->state->w; x++) {
|
|
for (y = 0; y < is->state->h; y++) {
|
|
if (!(GRID(is->state, x, y) & G_ISLAND))
|
|
GRID(is->state, x, y) &= ~G_MARK;
|
|
}
|
|
}
|
|
|
|
/* ...and add marks to squares around marked islands. */
|
|
for (i = 0; i < is->state->n_islands; i++) {
|
|
is_loop = &is->state->islands[i];
|
|
if (!(GRID(is_loop->state, is_loop->x, is_loop->y) & G_MARK))
|
|
continue;
|
|
|
|
for (j = 0; j < is_loop->adj.npoints; j++) {
|
|
/* if this direction takes us to another island, mark all
|
|
* squares between the two islands. */
|
|
if (!is_loop->adj.points[j].off) continue;
|
|
assert(is_loop->adj.points[j].off > 1);
|
|
for (o = 1; o < is_loop->adj.points[j].off; o++) {
|
|
GRID(is_loop->state,
|
|
is_loop->x + is_loop->adj.points[j].dx*o,
|
|
is_loop->y + is_loop->adj.points[j].dy*o) |=
|
|
is_loop->adj.points[j].dy ? G_MARKV : G_MARKH;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool island_impossible(struct island *is, bool strict)
|
|
{
|
|
int curr = island_countbridges(is), nspc = is->count - curr, nsurrspc;
|
|
int i, poss;
|
|
struct island *is_orth;
|
|
|
|
if (nspc < 0) {
|
|
debug(("island at (%d,%d) impossible because full.\n", is->x, is->y));
|
|
return true; /* too many bridges */
|
|
} else if ((curr + island_countspaces(is, false)) < is->count) {
|
|
debug(("island at (%d,%d) impossible because not enough spaces.\n", is->x, is->y));
|
|
return true; /* impossible to create enough bridges */
|
|
} else if (strict && curr < is->count) {
|
|
debug(("island at (%d,%d) impossible because locked.\n", is->x, is->y));
|
|
return true; /* not enough bridges and island is locked */
|
|
}
|
|
|
|
/* Count spaces in surrounding islands. */
|
|
nsurrspc = 0;
|
|
for (i = 0; i < is->adj.npoints; i++) {
|
|
int ifree, dx = is->adj.points[i].dx;
|
|
|
|
if (!is->adj.points[i].off) continue;
|
|
poss = POSSIBLES(is->state, dx,
|
|
is->adj.points[i].x, is->adj.points[i].y);
|
|
if (poss == 0) continue;
|
|
is_orth = INDEX(is->state, gridi,
|
|
ISLAND_ORTHX(is,i), ISLAND_ORTHY(is,i));
|
|
assert(is_orth);
|
|
|
|
ifree = is_orth->count - island_countbridges(is_orth);
|
|
if (ifree > 0) {
|
|
/*
|
|
* ifree is the number of bridges unfilled in the other
|
|
* island, which is clearly an upper bound on the number
|
|
* of extra bridges this island may run to it.
|
|
*
|
|
* Another upper bound is the number of bridges unfilled
|
|
* on the specific line between here and there. We must
|
|
* take the minimum of both.
|
|
*/
|
|
int bmax = MAXIMUM(is->state, dx,
|
|
is->adj.points[i].x, is->adj.points[i].y);
|
|
int bcurr = GRIDCOUNT(is->state,
|
|
is->adj.points[i].x, is->adj.points[i].y,
|
|
dx ? G_LINEH : G_LINEV);
|
|
assert(bcurr <= bmax);
|
|
nsurrspc += min(ifree, bmax - bcurr);
|
|
}
|
|
}
|
|
if (nsurrspc < nspc) {
|
|
debug(("island at (%d,%d) impossible: surr. islands %d spc, need %d.\n",
|
|
is->x, is->y, nsurrspc, nspc));
|
|
return true; /* not enough spaces around surrounding islands to fill this one. */
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* --- Game parameter functions --- */
|
|
|
|
#define DEFAULT_PRESET 0
|
|
|
|
static const struct game_params bridges_presets[] = {
|
|
{ 7, 7, 2, 30, 10, 1, 0 },
|
|
{ 7, 7, 2, 30, 10, 1, 1 },
|
|
{ 7, 7, 2, 30, 10, 1, 2 },
|
|
{ 10, 10, 2, 30, 10, 1, 0 },
|
|
{ 10, 10, 2, 30, 10, 1, 1 },
|
|
{ 10, 10, 2, 30, 10, 1, 2 },
|
|
{ 15, 15, 2, 30, 10, 1, 0 },
|
|
{ 15, 15, 2, 30, 10, 1, 1 },
|
|
{ 15, 15, 2, 30, 10, 1, 2 },
|
|
};
|
|
|
|
static game_params *default_params(void)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
*ret = bridges_presets[DEFAULT_PRESET];
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool game_fetch_preset(int i, char **name, game_params **params)
|
|
{
|
|
game_params *ret;
|
|
char buf[80];
|
|
|
|
if (i < 0 || i >= lenof(bridges_presets))
|
|
return false;
|
|
|
|
ret = default_params();
|
|
*ret = bridges_presets[i];
|
|
*params = ret;
|
|
|
|
sprintf(buf, "%dx%d %s", ret->w, ret->h,
|
|
ret->difficulty == 0 ? "easy" :
|
|
ret->difficulty == 1 ? "medium" : "hard");
|
|
*name = dupstr(buf);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void free_params(game_params *params)
|
|
{
|
|
sfree(params);
|
|
}
|
|
|
|
static game_params *dup_params(const game_params *params)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
*ret = *params; /* structure copy */
|
|
return ret;
|
|
}
|
|
|
|
#define EATNUM(x) do { \
|
|
(x) = atoi(string); \
|
|
while (*string && isdigit((unsigned char)*string)) string++; \
|
|
} while(0)
|
|
|
|
static void decode_params(game_params *params, char const *string)
|
|
{
|
|
EATNUM(params->w);
|
|
params->h = params->w;
|
|
if (*string == 'x') {
|
|
string++;
|
|
EATNUM(params->h);
|
|
}
|
|
if (*string == 'i') {
|
|
string++;
|
|
EATNUM(params->islands);
|
|
}
|
|
if (*string == 'e') {
|
|
string++;
|
|
EATNUM(params->expansion);
|
|
}
|
|
if (*string == 'm') {
|
|
string++;
|
|
EATNUM(params->maxb);
|
|
}
|
|
params->allowloops = true;
|
|
if (*string == 'L') {
|
|
string++;
|
|
params->allowloops = false;
|
|
}
|
|
if (*string == 'd') {
|
|
string++;
|
|
EATNUM(params->difficulty);
|
|
}
|
|
}
|
|
|
|
static char *encode_params(const game_params *params, bool full)
|
|
{
|
|
char buf[80];
|
|
|
|
if (full) {
|
|
sprintf(buf, "%dx%di%de%dm%d%sd%d",
|
|
params->w, params->h, params->islands, params->expansion,
|
|
params->maxb, params->allowloops ? "" : "L",
|
|
params->difficulty);
|
|
} else {
|
|
sprintf(buf, "%dx%dm%d%s", params->w, params->h,
|
|
params->maxb, params->allowloops ? "" : "L");
|
|
}
|
|
return dupstr(buf);
|
|
}
|
|
|
|
static config_item *game_configure(const game_params *params)
|
|
{
|
|
config_item *ret;
|
|
char buf[80];
|
|
|
|
ret = snewn(8, config_item);
|
|
|
|
ret[0].name = "Width";
|
|
ret[0].type = C_STRING;
|
|
sprintf(buf, "%d", params->w);
|
|
ret[0].u.string.sval = dupstr(buf);
|
|
|
|
ret[1].name = "Height";
|
|
ret[1].type = C_STRING;
|
|
sprintf(buf, "%d", params->h);
|
|
ret[1].u.string.sval = dupstr(buf);
|
|
|
|
ret[2].name = "Difficulty";
|
|
ret[2].type = C_CHOICES;
|
|
ret[2].u.choices.choicenames = ":Easy:Medium:Hard";
|
|
ret[2].u.choices.selected = params->difficulty;
|
|
|
|
ret[3].name = "Allow loops";
|
|
ret[3].type = C_BOOLEAN;
|
|
ret[3].u.boolean.bval = params->allowloops;
|
|
|
|
ret[4].name = "Max. bridges per direction";
|
|
ret[4].type = C_CHOICES;
|
|
ret[4].u.choices.choicenames = ":1:2:3:4"; /* keep up-to-date with
|
|
* MAX_BRIDGES */
|
|
ret[4].u.choices.selected = params->maxb - 1;
|
|
|
|
ret[5].name = "%age of island squares";
|
|
ret[5].type = C_CHOICES;
|
|
ret[5].u.choices.choicenames = ":5%:10%:15%:20%:25%:30%";
|
|
ret[5].u.choices.selected = (params->islands / 5)-1;
|
|
|
|
ret[6].name = "Expansion factor (%age)";
|
|
ret[6].type = C_CHOICES;
|
|
ret[6].u.choices.choicenames = ":0%:10%:20%:30%:40%:50%:60%:70%:80%:90%:100%";
|
|
ret[6].u.choices.selected = params->expansion / 10;
|
|
|
|
ret[7].name = NULL;
|
|
ret[7].type = C_END;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static game_params *custom_params(const config_item *cfg)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->w = atoi(cfg[0].u.string.sval);
|
|
ret->h = atoi(cfg[1].u.string.sval);
|
|
ret->difficulty = cfg[2].u.choices.selected;
|
|
ret->allowloops = cfg[3].u.boolean.bval;
|
|
ret->maxb = cfg[4].u.choices.selected + 1;
|
|
ret->islands = (cfg[5].u.choices.selected + 1) * 5;
|
|
ret->expansion = cfg[6].u.choices.selected * 10;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const char *validate_params(const game_params *params, bool full)
|
|
{
|
|
if (params->w < 3 || params->h < 3)
|
|
return "Width and height must be at least 3";
|
|
if (params->w > INT_MAX / params->h)
|
|
return "Width times height must not be unreasonably large";
|
|
if (params->maxb < 1 || params->maxb > MAX_BRIDGES)
|
|
return "Too many bridges.";
|
|
if (full) {
|
|
if (params->islands <= 0 || params->islands > 30)
|
|
return "%age of island squares must be between 1% and 30%";
|
|
if (params->expansion < 0 || params->expansion > 100)
|
|
return "Expansion factor must be between 0 and 100";
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* --- Game encoding and differences --- */
|
|
|
|
static char *encode_game(game_state *state)
|
|
{
|
|
char *ret, *p;
|
|
int wh = state->w*state->h, run, x, y;
|
|
struct island *is;
|
|
|
|
ret = snewn(wh + 1, char);
|
|
p = ret;
|
|
run = 0;
|
|
for (y = 0; y < state->h; y++) {
|
|
for (x = 0; x < state->w; x++) {
|
|
is = INDEX(state, gridi, x, y);
|
|
if (is) {
|
|
if (run) {
|
|
*p++ = ('a'-1) + run;
|
|
run = 0;
|
|
}
|
|
if (is->count < 10)
|
|
*p++ = '0' + is->count;
|
|
else
|
|
*p++ = 'A' + (is->count - 10);
|
|
} else {
|
|
if (run == 26) {
|
|
*p++ = ('a'-1) + run;
|
|
run = 0;
|
|
}
|
|
run++;
|
|
}
|
|
}
|
|
}
|
|
if (run) {
|
|
*p++ = ('a'-1) + run;
|
|
run = 0;
|
|
}
|
|
*p = '\0';
|
|
assert(p - ret <= wh);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static char *game_state_diff(const game_state *src, const game_state *dest)
|
|
{
|
|
int movesize = 256, movelen = 0;
|
|
char *move = snewn(movesize, char), buf[80];
|
|
int i, d, x, y, len;
|
|
grid_type gline, nline;
|
|
struct island *is_s, *is_d, *is_orth;
|
|
|
|
#define APPEND do { \
|
|
if (movelen + len >= movesize) { \
|
|
movesize = movelen + len + 256; \
|
|
move = sresize(move, movesize, char); \
|
|
} \
|
|
strcpy(move + movelen, buf); \
|
|
movelen += len; \
|
|
} while(0)
|
|
|
|
move[movelen++] = 'S';
|
|
move[movelen] = '\0';
|
|
|
|
assert(src->n_islands == dest->n_islands);
|
|
|
|
for (i = 0; i < src->n_islands; i++) {
|
|
is_s = &src->islands[i];
|
|
is_d = &dest->islands[i];
|
|
assert(is_s->x == is_d->x);
|
|
assert(is_s->y == is_d->y);
|
|
assert(is_s->adj.npoints == is_d->adj.npoints); /* more paranoia */
|
|
|
|
for (d = 0; d < is_s->adj.npoints; d++) {
|
|
if (is_s->adj.points[d].dx == -1 ||
|
|
is_s->adj.points[d].dy == -1) continue;
|
|
|
|
x = is_s->adj.points[d].x;
|
|
y = is_s->adj.points[d].y;
|
|
gline = is_s->adj.points[d].dx ? G_LINEH : G_LINEV;
|
|
nline = is_s->adj.points[d].dx ? G_NOLINEH : G_NOLINEV;
|
|
is_orth = INDEX(dest, gridi,
|
|
ISLAND_ORTHX(is_d, d), ISLAND_ORTHY(is_d, d));
|
|
|
|
if (GRIDCOUNT(src, x, y, gline) != GRIDCOUNT(dest, x, y, gline)) {
|
|
assert(is_orth);
|
|
len = sprintf(buf, ";L%d,%d,%d,%d,%d",
|
|
is_s->x, is_s->y, is_orth->x, is_orth->y,
|
|
GRIDCOUNT(dest, x, y, gline));
|
|
APPEND;
|
|
}
|
|
if ((GRID(src,x,y) & nline) != (GRID(dest, x, y) & nline)) {
|
|
assert(is_orth);
|
|
len = sprintf(buf, ";N%d,%d,%d,%d",
|
|
is_s->x, is_s->y, is_orth->x, is_orth->y);
|
|
APPEND;
|
|
}
|
|
}
|
|
if ((GRID(src, is_s->x, is_s->y) & G_MARK) !=
|
|
(GRID(dest, is_d->x, is_d->y) & G_MARK)) {
|
|
len = sprintf(buf, ";M%d,%d", is_s->x, is_s->y);
|
|
APPEND;
|
|
}
|
|
}
|
|
return move;
|
|
}
|
|
|
|
/* --- Game setup and solving utilities --- */
|
|
|
|
/* This function is optimised; a Quantify showed that lots of grid-generation time
|
|
* (>50%) was spent in here. Hence the IDX() stuff. */
|
|
|
|
static void map_update_possibles(game_state *state)
|
|
{
|
|
int x, y, s, e, i, np, maxb, w = state->w, idx;
|
|
bool bl;
|
|
struct island *is_s = NULL, *is_f = NULL;
|
|
|
|
/* Run down vertical stripes [un]setting possv... */
|
|
for (x = 0; x < state->w; x++) {
|
|
idx = x;
|
|
s = e = -1;
|
|
bl = false;
|
|
maxb = state->params.maxb; /* placate optimiser */
|
|
/* Unset possible flags until we find an island. */
|
|
for (y = 0; y < state->h; y++) {
|
|
is_s = IDX(state, gridi, idx);
|
|
if (is_s) {
|
|
maxb = is_s->count;
|
|
break;
|
|
}
|
|
|
|
IDX(state, possv, idx) = 0;
|
|
idx += w;
|
|
}
|
|
for (; y < state->h; y++) {
|
|
maxb = min(maxb, IDX(state, maxv, idx));
|
|
is_f = IDX(state, gridi, idx);
|
|
if (is_f) {
|
|
assert(is_s);
|
|
np = min(maxb, is_f->count);
|
|
|
|
if (s != -1) {
|
|
for (i = s; i <= e; i++) {
|
|
INDEX(state, possv, x, i) = bl ? 0 : np;
|
|
}
|
|
}
|
|
s = y+1;
|
|
bl = false;
|
|
is_s = is_f;
|
|
maxb = is_s->count;
|
|
} else {
|
|
e = y;
|
|
if (IDX(state,grid,idx) & (G_LINEH|G_NOLINEV)) bl = true;
|
|
}
|
|
idx += w;
|
|
}
|
|
if (s != -1) {
|
|
for (i = s; i <= e; i++)
|
|
INDEX(state, possv, x, i) = 0;
|
|
}
|
|
}
|
|
|
|
/* ...and now do horizontal stripes [un]setting possh. */
|
|
/* can we lose this clone'n'hack? */
|
|
for (y = 0; y < state->h; y++) {
|
|
idx = y*w;
|
|
s = e = -1;
|
|
bl = false;
|
|
maxb = state->params.maxb; /* placate optimiser */
|
|
for (x = 0; x < state->w; x++) {
|
|
is_s = IDX(state, gridi, idx);
|
|
if (is_s) {
|
|
maxb = is_s->count;
|
|
break;
|
|
}
|
|
|
|
IDX(state, possh, idx) = 0;
|
|
idx += 1;
|
|
}
|
|
for (; x < state->w; x++) {
|
|
maxb = min(maxb, IDX(state, maxh, idx));
|
|
is_f = IDX(state, gridi, idx);
|
|
if (is_f) {
|
|
assert(is_s);
|
|
np = min(maxb, is_f->count);
|
|
|
|
if (s != -1) {
|
|
for (i = s; i <= e; i++) {
|
|
INDEX(state, possh, i, y) = bl ? 0 : np;
|
|
}
|
|
}
|
|
s = x+1;
|
|
bl = false;
|
|
is_s = is_f;
|
|
maxb = is_s->count;
|
|
} else {
|
|
e = x;
|
|
if (IDX(state,grid,idx) & (G_LINEV|G_NOLINEH)) bl = true;
|
|
}
|
|
idx += 1;
|
|
}
|
|
if (s != -1) {
|
|
for (i = s; i <= e; i++)
|
|
INDEX(state, possh, i, y) = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void map_count(game_state *state)
|
|
{
|
|
int i, n, ax, ay;
|
|
grid_type flag, grid;
|
|
struct island *is;
|
|
|
|
for (i = 0; i < state->n_islands; i++) {
|
|
is = &state->islands[i];
|
|
is->count = 0;
|
|
for (n = 0; n < is->adj.npoints; n++) {
|
|
ax = is->adj.points[n].x;
|
|
ay = is->adj.points[n].y;
|
|
flag = (ax == is->x) ? G_LINEV : G_LINEH;
|
|
grid = GRID(state,ax,ay);
|
|
if (grid & flag) {
|
|
is->count += INDEX(state,lines,ax,ay);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void map_find_orthogonal(game_state *state)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < state->n_islands; i++) {
|
|
island_find_orthogonal(&state->islands[i]);
|
|
}
|
|
}
|
|
|
|
struct bridges_neighbour_ctx {
|
|
game_state *state;
|
|
int i, n, neighbours[4];
|
|
};
|
|
static int bridges_neighbour(int vertex, void *vctx)
|
|
{
|
|
struct bridges_neighbour_ctx *ctx = (struct bridges_neighbour_ctx *)vctx;
|
|
if (vertex >= 0) {
|
|
game_state *state = ctx->state;
|
|
int w = state->w, x = vertex % w, y = vertex / w;
|
|
grid_type grid = GRID(state, x, y), gline = grid & G_LINE;
|
|
struct island *is;
|
|
int x1, y1, x2, y2, i;
|
|
|
|
ctx->i = ctx->n = 0;
|
|
|
|
is = INDEX(state, gridi, x, y);
|
|
if (is) {
|
|
for (i = 0; i < is->adj.npoints; i++) {
|
|
gline = is->adj.points[i].dx ? G_LINEH : G_LINEV;
|
|
if (GRID(state, is->adj.points[i].x,
|
|
is->adj.points[i].y) & gline) {
|
|
ctx->neighbours[ctx->n++] =
|
|
(is->adj.points[i].y * w + is->adj.points[i].x);
|
|
}
|
|
}
|
|
} else if (gline) {
|
|
if (gline & G_LINEV) {
|
|
x1 = x2 = x;
|
|
y1 = y-1; y2 = y+1;
|
|
} else {
|
|
x1 = x-1; x2 = x+1;
|
|
y1 = y2 = y;
|
|
}
|
|
/* Non-island squares with edges in should never be
|
|
* pointing off the edge of the grid. */
|
|
assert(INGRID(state, x1, y1));
|
|
assert(INGRID(state, x2, y2));
|
|
if (GRID(state, x1, y1) & (gline | G_ISLAND))
|
|
ctx->neighbours[ctx->n++] = y1 * w + x1;
|
|
if (GRID(state, x2, y2) & (gline | G_ISLAND))
|
|
ctx->neighbours[ctx->n++] = y2 * w + x2;
|
|
}
|
|
}
|
|
|
|
if (ctx->i < ctx->n)
|
|
return ctx->neighbours[ctx->i++];
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
static bool map_hasloops(game_state *state, bool mark)
|
|
{
|
|
int x, y;
|
|
struct findloopstate *fls;
|
|
struct bridges_neighbour_ctx ctx;
|
|
bool ret;
|
|
|
|
fls = findloop_new_state(state->w * state->h);
|
|
ctx.state = state;
|
|
ret = findloop_run(fls, state->w * state->h, bridges_neighbour, &ctx);
|
|
|
|
if (mark) {
|
|
for (y = 0; y < state->h; y++) {
|
|
for (x = 0; x < state->w; x++) {
|
|
int u, v;
|
|
|
|
u = y * state->w + x;
|
|
for (v = bridges_neighbour(u, &ctx); v >= 0;
|
|
v = bridges_neighbour(-1, &ctx))
|
|
if (findloop_is_loop_edge(fls, u, v))
|
|
GRID(state,x,y) |= G_WARN;
|
|
}
|
|
}
|
|
}
|
|
|
|
findloop_free_state(fls);
|
|
return ret;
|
|
}
|
|
|
|
static void map_group(game_state *state)
|
|
{
|
|
int i, d1, d2;
|
|
int x, y, x2, y2;
|
|
DSF *dsf = state->solver->dsf;
|
|
struct island *is, *is_join;
|
|
|
|
/* Initialise dsf. */
|
|
dsf_reinit(dsf);
|
|
|
|
/* For each island, find connected islands right or down
|
|
* and merge the dsf for the island squares as well as the
|
|
* bridge squares. */
|
|
for (x = 0; x < state->w; x++) {
|
|
for (y = 0; y < state->h; y++) {
|
|
GRID(state,x,y) &= ~(G_SWEEP|G_WARN); /* for group_full. */
|
|
|
|
is = INDEX(state, gridi, x, y);
|
|
if (!is) continue;
|
|
d1 = DINDEX(x,y);
|
|
for (i = 0; i < is->adj.npoints; i++) {
|
|
/* only want right/down */
|
|
if (is->adj.points[i].dx == -1 ||
|
|
is->adj.points[i].dy == -1) continue;
|
|
|
|
is_join = island_find_connection(is, i);
|
|
if (!is_join) continue;
|
|
|
|
d2 = DINDEX(is_join->x, is_join->y);
|
|
if (dsf_equivalent(dsf, d1, d2)) {
|
|
; /* we have a loop. See comment in map_hasloops. */
|
|
/* However, we still want to merge all squares joining
|
|
* this side-that-makes-a-loop. */
|
|
}
|
|
/* merge all squares between island 1 and island 2. */
|
|
for (x2 = x; x2 <= is_join->x; x2++) {
|
|
for (y2 = y; y2 <= is_join->y; y2++) {
|
|
d2 = DINDEX(x2,y2);
|
|
if (d1 != d2) dsf_merge(dsf,d1,d2);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool map_group_check(game_state *state, int canon, bool warn,
|
|
int *nislands_r)
|
|
{
|
|
DSF *dsf = state->solver->dsf;
|
|
int nislands = 0;
|
|
int x, y, i;
|
|
bool allfull = true;
|
|
struct island *is;
|
|
|
|
for (i = 0; i < state->n_islands; i++) {
|
|
is = &state->islands[i];
|
|
if (dsf_canonify(dsf, DINDEX(is->x,is->y)) != canon) continue;
|
|
|
|
GRID(state, is->x, is->y) |= G_SWEEP;
|
|
nislands++;
|
|
if (island_countbridges(is) != is->count)
|
|
allfull = false;
|
|
}
|
|
if (warn && allfull && nislands != state->n_islands) {
|
|
/* we're full and this island group isn't the whole set.
|
|
* Mark all squares with this dsf canon as ERR. */
|
|
for (x = 0; x < state->w; x++) {
|
|
for (y = 0; y < state->h; y++) {
|
|
if (dsf_canonify(dsf, DINDEX(x,y)) == canon) {
|
|
GRID(state,x,y) |= G_WARN;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
if (nislands_r) *nislands_r = nislands;
|
|
return allfull;
|
|
}
|
|
|
|
static bool map_group_full(game_state *state, int *ngroups_r)
|
|
{
|
|
DSF *dsf = state->solver->dsf;
|
|
int ngroups = 0;
|
|
int i;
|
|
bool anyfull = false;
|
|
struct island *is;
|
|
|
|
/* NB this assumes map_group (or sth else) has cleared G_SWEEP. */
|
|
|
|
for (i = 0; i < state->n_islands; i++) {
|
|
is = &state->islands[i];
|
|
if (GRID(state,is->x,is->y) & G_SWEEP) continue;
|
|
|
|
ngroups++;
|
|
if (map_group_check(state, dsf_canonify(dsf, DINDEX(is->x,is->y)),
|
|
true, NULL))
|
|
anyfull = true;
|
|
}
|
|
|
|
*ngroups_r = ngroups;
|
|
return anyfull;
|
|
}
|
|
|
|
static bool map_check(game_state *state)
|
|
{
|
|
int ngroups;
|
|
|
|
/* Check for loops, if necessary. */
|
|
if (!state->allowloops) {
|
|
if (map_hasloops(state, true))
|
|
return false;
|
|
}
|
|
|
|
/* Place islands into island groups and check for early
|
|
* satisfied-groups. */
|
|
map_group(state); /* clears WARN and SWEEP */
|
|
if (map_group_full(state, &ngroups)) {
|
|
if (ngroups == 1) return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void map_clear(game_state *state)
|
|
{
|
|
int x, y;
|
|
|
|
for (x = 0; x < state->w; x++) {
|
|
for (y = 0; y < state->h; y++) {
|
|
/* clear most flags; might want to be slightly more careful here. */
|
|
GRID(state,x,y) &= G_ISLAND;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void solve_join(struct island *is, int direction, int n, bool is_max)
|
|
{
|
|
struct island *is_orth;
|
|
int d1, d2;
|
|
DSF *dsf = is->state->solver->dsf;
|
|
game_state *state = is->state; /* for DINDEX */
|
|
|
|
is_orth = INDEX(is->state, gridi,
|
|
ISLAND_ORTHX(is, direction),
|
|
ISLAND_ORTHY(is, direction));
|
|
assert(is_orth);
|
|
/*debug(("...joining (%d,%d) to (%d,%d) with %d bridge(s).\n",
|
|
is->x, is->y, is_orth->x, is_orth->y, n));*/
|
|
island_join(is, is_orth, n, is_max);
|
|
|
|
if (n > 0 && !is_max) {
|
|
d1 = DINDEX(is->x, is->y);
|
|
d2 = DINDEX(is_orth->x, is_orth->y);
|
|
if (!dsf_equivalent(dsf, d1, d2))
|
|
dsf_merge(dsf, d1, d2);
|
|
}
|
|
}
|
|
|
|
static int solve_fillone(struct island *is)
|
|
{
|
|
int i, nadded = 0;
|
|
|
|
debug(("solve_fillone for island (%d,%d).\n", is->x, is->y));
|
|
|
|
for (i = 0; i < is->adj.npoints; i++) {
|
|
if (island_isadj(is, i)) {
|
|
if (island_hasbridge(is, i)) {
|
|
/* already attached; do nothing. */;
|
|
} else {
|
|
solve_join(is, i, 1, false);
|
|
nadded++;
|
|
}
|
|
}
|
|
}
|
|
return nadded;
|
|
}
|
|
|
|
static int solve_fill(struct island *is)
|
|
{
|
|
/* for each unmarked adjacent, make sure we convert every possible bridge
|
|
* to a real one, and then work out the possibles afresh. */
|
|
int i, nnew, ncurr, nadded = 0, missing;
|
|
|
|
debug(("solve_fill for island (%d,%d).\n", is->x, is->y));
|
|
|
|
missing = is->count - island_countbridges(is);
|
|
if (missing < 0) return 0;
|
|
|
|
/* very like island_countspaces. */
|
|
for (i = 0; i < is->adj.npoints; i++) {
|
|
nnew = island_adjspace(is, true, missing, i);
|
|
if (nnew) {
|
|
ncurr = GRIDCOUNT(is->state,
|
|
is->adj.points[i].x, is->adj.points[i].y,
|
|
is->adj.points[i].dx ? G_LINEH : G_LINEV);
|
|
|
|
solve_join(is, i, nnew + ncurr, false);
|
|
nadded += nnew;
|
|
}
|
|
}
|
|
return nadded;
|
|
}
|
|
|
|
static bool solve_island_stage1(struct island *is, bool *didsth_r)
|
|
{
|
|
int bridges = island_countbridges(is);
|
|
int nspaces = island_countspaces(is, true);
|
|
int nadj = island_countadj(is);
|
|
bool didsth = false;
|
|
|
|
assert(didsth_r);
|
|
|
|
/*debug(("island at (%d,%d) filled %d/%d (%d spc) nadj %d\n",
|
|
is->x, is->y, bridges, is->count, nspaces, nadj));*/
|
|
if (bridges > is->count) {
|
|
/* We only ever add bridges when we're sure they fit, or that's
|
|
* the only place they can go. If we've added bridges such that
|
|
* another island has become wrong, the puzzle must not have had
|
|
* a solution. */
|
|
debug(("...island at (%d,%d) is overpopulated!\n", is->x, is->y));
|
|
return false;
|
|
} else if (bridges == is->count) {
|
|
/* This island is full. Make sure it's marked (and update
|
|
* possibles if we did). */
|
|
if (!(GRID(is->state, is->x, is->y) & G_MARK)) {
|
|
debug(("...marking island (%d,%d) as full.\n", is->x, is->y));
|
|
island_togglemark(is);
|
|
didsth = true;
|
|
}
|
|
} else if (GRID(is->state, is->x, is->y) & G_MARK) {
|
|
debug(("...island (%d,%d) is marked but unfinished!\n",
|
|
is->x, is->y));
|
|
return false; /* island has been marked unfinished; no solution from here. */
|
|
} else {
|
|
/* This is the interesting bit; we try and fill in more information
|
|
* about this island. */
|
|
if (is->count == bridges + nspaces) {
|
|
if (solve_fill(is) > 0) didsth = true;
|
|
} else if (is->count > ((nadj-1) * is->state->maxb)) {
|
|
/* must have at least one bridge in each possible direction. */
|
|
if (solve_fillone(is) > 0) didsth = true;
|
|
}
|
|
}
|
|
if (didsth) {
|
|
map_update_possibles(is->state);
|
|
*didsth_r = true;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* returns true if a new line here would cause a loop. */
|
|
static bool solve_island_checkloop(struct island *is, int direction)
|
|
{
|
|
struct island *is_orth;
|
|
DSF *dsf = is->state->solver->dsf;
|
|
int d1, d2;
|
|
game_state *state = is->state;
|
|
|
|
if (is->state->allowloops)
|
|
return false; /* don't care anyway */
|
|
if (island_hasbridge(is, direction))
|
|
return false; /* already has a bridge */
|
|
if (island_isadj(is, direction) == 0)
|
|
return false; /* no adj island */
|
|
|
|
is_orth = INDEX(is->state, gridi,
|
|
ISLAND_ORTHX(is,direction),
|
|
ISLAND_ORTHY(is,direction));
|
|
if (!is_orth) return false;
|
|
|
|
d1 = DINDEX(is->x, is->y);
|
|
d2 = DINDEX(is_orth->x, is_orth->y);
|
|
if (dsf_equivalent(dsf, d1, d2)) {
|
|
/* two islands are connected already; don't join them. */
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool solve_island_stage2(struct island *is, bool *didsth_r)
|
|
{
|
|
int navail = 0, nadj, i;
|
|
bool added = false, removed = false;
|
|
|
|
assert(didsth_r);
|
|
|
|
for (i = 0; i < is->adj.npoints; i++) {
|
|
if (solve_island_checkloop(is, i)) {
|
|
debug(("removing possible loop at (%d,%d) direction %d.\n",
|
|
is->x, is->y, i));
|
|
solve_join(is, i, -1, false);
|
|
map_update_possibles(is->state);
|
|
removed = true;
|
|
} else {
|
|
navail += island_isadj(is, i);
|
|
/*debug(("stage2: navail for (%d,%d) direction (%d,%d) is %d.\n",
|
|
is->x, is->y,
|
|
is->adj.points[i].dx, is->adj.points[i].dy,
|
|
island_isadj(is, i)));*/
|
|
}
|
|
}
|
|
|
|
/*debug(("island at (%d,%d) navail %d: checking...\n", is->x, is->y, navail));*/
|
|
|
|
for (i = 0; i < is->adj.npoints; i++) {
|
|
if (!island_hasbridge(is, i)) {
|
|
nadj = island_isadj(is, i);
|
|
if (nadj > 0 && (navail - nadj) < is->count) {
|
|
/* we couldn't now complete the island without at
|
|
* least one bridge here; put it in. */
|
|
/*debug(("nadj %d, navail %d, is->count %d.\n",
|
|
nadj, navail, is->count));*/
|
|
debug(("island at (%d,%d) direction (%d,%d) must have 1 bridge\n",
|
|
is->x, is->y,
|
|
is->adj.points[i].dx, is->adj.points[i].dy));
|
|
solve_join(is, i, 1, false);
|
|
added = true;
|
|
/*debug_state(is->state);
|
|
debug_possibles(is->state);*/
|
|
}
|
|
}
|
|
}
|
|
if (added) map_update_possibles(is->state);
|
|
if (added || removed) *didsth_r = true;
|
|
return true;
|
|
}
|
|
|
|
static bool solve_island_subgroup(struct island *is, int direction)
|
|
{
|
|
struct island *is_join;
|
|
int nislands;
|
|
DSF *dsf = is->state->solver->dsf;
|
|
game_state *state = is->state;
|
|
|
|
debug(("..checking subgroups.\n"));
|
|
|
|
/* if is isn't full, return 0. */
|
|
if (island_countbridges(is) < is->count) {
|
|
debug(("...orig island (%d,%d) not full.\n", is->x, is->y));
|
|
return false;
|
|
}
|
|
|
|
if (direction >= 0) {
|
|
is_join = INDEX(state, gridi,
|
|
ISLAND_ORTHX(is, direction),
|
|
ISLAND_ORTHY(is, direction));
|
|
assert(is_join);
|
|
|
|
/* if is_join isn't full, return 0. */
|
|
if (island_countbridges(is_join) < is_join->count) {
|
|
debug(("...dest island (%d,%d) not full.\n",
|
|
is_join->x, is_join->y));
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Check group membership for is->dsf; if it's full return 1. */
|
|
if (map_group_check(state, dsf_canonify(dsf, DINDEX(is->x,is->y)),
|
|
false, &nislands)) {
|
|
if (nislands < state->n_islands) {
|
|
/* we have a full subgroup that isn't the whole set.
|
|
* This isn't allowed. */
|
|
debug(("island at (%d,%d) makes full subgroup, disallowing.\n",
|
|
is->x, is->y));
|
|
return true;
|
|
} else {
|
|
debug(("...has finished puzzle.\n"));
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool solve_island_impossible(game_state *state)
|
|
{
|
|
struct island *is;
|
|
int i;
|
|
|
|
/* If any islands are impossible, return 1. */
|
|
for (i = 0; i < state->n_islands; i++) {
|
|
is = &state->islands[i];
|
|
if (island_impossible(is, false)) {
|
|
debug(("island at (%d,%d) has become impossible, disallowing.\n",
|
|
is->x, is->y));
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Bear in mind that this function is really rather inefficient. */
|
|
static bool solve_island_stage3(struct island *is, bool *didsth_r)
|
|
{
|
|
int i, n, x, y, missing, spc, curr, maxb;
|
|
bool didsth = false;
|
|
struct solver_state *ss = is->state->solver;
|
|
|
|
assert(didsth_r);
|
|
|
|
missing = is->count - island_countbridges(is);
|
|
if (missing <= 0) return true;
|
|
|
|
for (i = 0; i < is->adj.npoints; i++) {
|
|
x = is->adj.points[i].x;
|
|
y = is->adj.points[i].y;
|
|
spc = island_adjspace(is, true, missing, i);
|
|
if (spc == 0) continue;
|
|
|
|
curr = GRIDCOUNT(is->state, x, y,
|
|
is->adj.points[i].dx ? G_LINEH : G_LINEV);
|
|
debug(("island at (%d,%d) s3, trying %d - %d bridges.\n",
|
|
is->x, is->y, curr+1, curr+spc));
|
|
|
|
/* Now we know that this island could have more bridges,
|
|
* to bring the total from curr+1 to curr+spc. */
|
|
maxb = -1;
|
|
/* We have to squirrel the dsf away and restore it afterwards;
|
|
* it is additive only, and can't be removed from. */
|
|
dsf_copy(ss->tmpdsf, ss->dsf);
|
|
for (n = curr+1; n <= curr+spc; n++) {
|
|
solve_join(is, i, n, false);
|
|
map_update_possibles(is->state);
|
|
|
|
if (solve_island_subgroup(is, i) ||
|
|
solve_island_impossible(is->state)) {
|
|
maxb = n-1;
|
|
debug(("island at (%d,%d) d(%d,%d) new max of %d bridges:\n",
|
|
is->x, is->y,
|
|
is->adj.points[i].dx, is->adj.points[i].dy,
|
|
maxb));
|
|
break;
|
|
}
|
|
}
|
|
solve_join(is, i, curr, false); /* put back to before. */
|
|
dsf_copy(ss->dsf, ss->tmpdsf);
|
|
|
|
if (maxb != -1) {
|
|
/*debug_state(is->state);*/
|
|
if (maxb == 0) {
|
|
debug(("...adding NOLINE.\n"));
|
|
solve_join(is, i, -1, false); /* we can't have any bridges here. */
|
|
} else {
|
|
debug(("...setting maximum\n"));
|
|
solve_join(is, i, maxb, true);
|
|
}
|
|
didsth = true;
|
|
}
|
|
map_update_possibles(is->state);
|
|
}
|
|
|
|
for (i = 0; i < is->adj.npoints; i++) {
|
|
/*
|
|
* Now check to see if any currently empty direction must have
|
|
* at least one bridge in order to avoid forming an isolated
|
|
* subgraph. This differs from the check above in that it
|
|
* considers multiple target islands. For example:
|
|
*
|
|
* 2 2 4
|
|
* 1 3 2
|
|
* 3
|
|
* 4
|
|
*
|
|
* The example on the left can be handled by the above loop:
|
|
* it will observe that connecting the central 2 twice to the
|
|
* left would form an isolated subgraph, and hence it will
|
|
* restrict that 2 to at most one bridge in that direction.
|
|
* But the example on the right won't be handled by that loop,
|
|
* because the deduction requires us to imagine connecting the
|
|
* 3 to _both_ the 1 and 2 at once to form an isolated
|
|
* subgraph.
|
|
*
|
|
* This pass is necessary _as well_ as the above one, because
|
|
* neither can do the other's job. In the left one,
|
|
* restricting the direction which _would_ cause trouble can
|
|
* be done even if it's not yet clear which of the remaining
|
|
* directions has to have a compensatory bridge; whereas the
|
|
* pass below that can handle the right-hand example does need
|
|
* to know what direction to point the necessary bridge in.
|
|
*
|
|
* Neither pass can handle the most general case, in which we
|
|
* observe that an arbitrary subset of an island's neighbours
|
|
* would form an isolated subgraph with it if it connected
|
|
* maximally to them, and hence that at least one bridge must
|
|
* point to some neighbour outside that subset but we don't
|
|
* know which neighbour. To handle that, we'd have to have a
|
|
* richer data format for the solver, which could cope with
|
|
* recording the idea that at least one of two edges must have
|
|
* a bridge.
|
|
*/
|
|
bool got = false;
|
|
int before[4];
|
|
int j;
|
|
|
|
spc = island_adjspace(is, true, missing, i);
|
|
if (spc == 0) continue;
|
|
|
|
for (j = 0; j < is->adj.npoints; j++)
|
|
before[j] = GRIDCOUNT(is->state,
|
|
is->adj.points[j].x,
|
|
is->adj.points[j].y,
|
|
is->adj.points[j].dx ? G_LINEH : G_LINEV);
|
|
if (before[i] != 0) continue; /* this idea is pointless otherwise */
|
|
|
|
dsf_copy(ss->tmpdsf, ss->dsf);
|
|
|
|
for (j = 0; j < is->adj.npoints; j++) {
|
|
spc = island_adjspace(is, true, missing, j);
|
|
if (spc == 0) continue;
|
|
if (j == i) continue;
|
|
solve_join(is, j, before[j] + spc, false);
|
|
}
|
|
map_update_possibles(is->state);
|
|
|
|
if (solve_island_subgroup(is, -1))
|
|
got = true;
|
|
|
|
for (j = 0; j < is->adj.npoints; j++)
|
|
solve_join(is, j, before[j], false);
|
|
dsf_copy(ss->dsf, ss->tmpdsf);
|
|
|
|
if (got) {
|
|
debug(("island at (%d,%d) must connect in direction (%d,%d) to"
|
|
" avoid full subgroup.\n",
|
|
is->x, is->y, is->adj.points[i].dx, is->adj.points[i].dy));
|
|
solve_join(is, i, 1, false);
|
|
didsth = true;
|
|
}
|
|
|
|
map_update_possibles(is->state);
|
|
}
|
|
|
|
if (didsth) *didsth_r = didsth;
|
|
return true;
|
|
}
|
|
|
|
#define CONTINUE_IF_FULL do { \
|
|
if (GRID(state, is->x, is->y) & G_MARK) { \
|
|
/* island full, don't try fixing it */ \
|
|
continue; \
|
|
} } while(0)
|
|
|
|
static int solve_sub(game_state *state, int difficulty, int depth)
|
|
{
|
|
struct island *is;
|
|
int i;
|
|
|
|
while (1) {
|
|
bool didsth = false;
|
|
|
|
/* First island iteration: things we can work out by looking at
|
|
* properties of the island as a whole. */
|
|
for (i = 0; i < state->n_islands; i++) {
|
|
is = &state->islands[i];
|
|
if (!solve_island_stage1(is, &didsth)) return 0;
|
|
}
|
|
if (didsth) continue;
|
|
else if (difficulty < 1) break;
|
|
|
|
/* Second island iteration: thing we can work out by looking at
|
|
* properties of individual island connections. */
|
|
for (i = 0; i < state->n_islands; i++) {
|
|
is = &state->islands[i];
|
|
CONTINUE_IF_FULL;
|
|
if (!solve_island_stage2(is, &didsth)) return 0;
|
|
}
|
|
if (didsth) continue;
|
|
else if (difficulty < 2) break;
|
|
|
|
/* Third island iteration: things we can only work out by looking
|
|
* at groups of islands. */
|
|
for (i = 0; i < state->n_islands; i++) {
|
|
is = &state->islands[i];
|
|
if (!solve_island_stage3(is, &didsth)) return 0;
|
|
}
|
|
if (didsth) continue;
|
|
else if (difficulty < 3) break;
|
|
|
|
/* If we can be bothered, write a recursive solver to finish here. */
|
|
break;
|
|
}
|
|
if (map_check(state)) return 1; /* solved it */
|
|
return 0;
|
|
}
|
|
|
|
static void solve_for_hint(game_state *state)
|
|
{
|
|
map_group(state);
|
|
solve_sub(state, 10, 0);
|
|
}
|
|
|
|
static int solve_from_scratch(game_state *state, int difficulty)
|
|
{
|
|
map_clear(state);
|
|
map_group(state);
|
|
map_update_possibles(state);
|
|
return solve_sub(state, difficulty, 0);
|
|
}
|
|
|
|
/* --- New game functions --- */
|
|
|
|
static game_state *new_state(const game_params *params)
|
|
{
|
|
game_state *ret = snew(game_state);
|
|
int wh = params->w * params->h, i;
|
|
|
|
ret->w = params->w;
|
|
ret->h = params->h;
|
|
ret->allowloops = params->allowloops;
|
|
ret->maxb = params->maxb;
|
|
ret->params = *params;
|
|
|
|
ret->grid = snewn(wh, grid_type);
|
|
memset(ret->grid, 0, GRIDSZ(ret));
|
|
|
|
ret->wha = snewn(wh*N_WH_ARRAYS, char);
|
|
memset(ret->wha, 0, wh*N_WH_ARRAYS*sizeof(char));
|
|
|
|
ret->possv = ret->wha;
|
|
ret->possh = ret->wha + wh;
|
|
ret->lines = ret->wha + wh*2;
|
|
ret->maxv = ret->wha + wh*3;
|
|
ret->maxh = ret->wha + wh*4;
|
|
|
|
memset(ret->maxv, ret->maxb, wh*sizeof(char));
|
|
memset(ret->maxh, ret->maxb, wh*sizeof(char));
|
|
|
|
ret->islands = NULL;
|
|
ret->n_islands = 0;
|
|
ret->n_islands_alloc = 0;
|
|
|
|
ret->gridi = snewn(wh, struct island *);
|
|
for (i = 0; i < wh; i++) ret->gridi[i] = NULL;
|
|
|
|
ret->solved = false;
|
|
ret->completed = false;
|
|
|
|
ret->solver = snew(struct solver_state);
|
|
ret->solver->dsf = dsf_new(wh);
|
|
ret->solver->tmpdsf = dsf_new(wh);
|
|
|
|
ret->solver->refcount = 1;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static game_state *dup_game(const game_state *state)
|
|
{
|
|
game_state *ret = snew(game_state);
|
|
int wh = state->w*state->h;
|
|
|
|
ret->w = state->w;
|
|
ret->h = state->h;
|
|
ret->allowloops = state->allowloops;
|
|
ret->maxb = state->maxb;
|
|
ret->params = state->params;
|
|
|
|
ret->grid = snewn(wh, grid_type);
|
|
memcpy(ret->grid, state->grid, GRIDSZ(ret));
|
|
|
|
ret->wha = snewn(wh*N_WH_ARRAYS, char);
|
|
memcpy(ret->wha, state->wha, wh*N_WH_ARRAYS*sizeof(char));
|
|
|
|
ret->possv = ret->wha;
|
|
ret->possh = ret->wha + wh;
|
|
ret->lines = ret->wha + wh*2;
|
|
ret->maxv = ret->wha + wh*3;
|
|
ret->maxh = ret->wha + wh*4;
|
|
|
|
ret->islands = snewn(state->n_islands, struct island);
|
|
memcpy(ret->islands, state->islands, state->n_islands * sizeof(struct island));
|
|
ret->n_islands = ret->n_islands_alloc = state->n_islands;
|
|
|
|
ret->gridi = snewn(wh, struct island *);
|
|
fixup_islands_for_realloc(ret);
|
|
|
|
ret->solved = state->solved;
|
|
ret->completed = state->completed;
|
|
|
|
ret->solver = state->solver;
|
|
ret->solver->refcount++;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void free_game(game_state *state)
|
|
{
|
|
if (--state->solver->refcount <= 0) {
|
|
dsf_free(state->solver->dsf);
|
|
dsf_free(state->solver->tmpdsf);
|
|
sfree(state->solver);
|
|
}
|
|
|
|
sfree(state->islands);
|
|
sfree(state->gridi);
|
|
|
|
sfree(state->wha);
|
|
|
|
sfree(state->grid);
|
|
sfree(state);
|
|
}
|
|
|
|
#define MAX_NEWISLAND_TRIES 50
|
|
#define MIN_SENSIBLE_ISLANDS 3
|
|
|
|
#define ORDER(a,b) do { if (a < b) { int tmp=a; int a=b; int b=tmp; } } while(0)
|
|
|
|
static char *new_game_desc(const game_params *params, random_state *rs,
|
|
char **aux, bool interactive)
|
|
{
|
|
game_state *tobuild = NULL;
|
|
int i, j, wh = params->w * params->h, x, y, dx, dy;
|
|
int minx, miny, maxx, maxy, joinx, joiny, newx, newy, diffx, diffy;
|
|
int ni_req = max((params->islands * wh) / 100, MIN_SENSIBLE_ISLANDS), ni_curr, ni_bad;
|
|
struct island *is, *is2;
|
|
char *ret;
|
|
unsigned int echeck;
|
|
|
|
/* pick a first island position randomly. */
|
|
generate:
|
|
if (tobuild) free_game(tobuild);
|
|
tobuild = new_state(params);
|
|
|
|
x = random_upto(rs, params->w);
|
|
y = random_upto(rs, params->h);
|
|
island_add(tobuild, x, y, 0);
|
|
ni_curr = 1;
|
|
ni_bad = 0;
|
|
debug(("Created initial island at (%d,%d).\n", x, y));
|
|
|
|
while (ni_curr < ni_req) {
|
|
/* Pick a random island to try and extend from. */
|
|
i = random_upto(rs, tobuild->n_islands);
|
|
is = &tobuild->islands[i];
|
|
|
|
/* Pick a random direction to extend in. */
|
|
j = random_upto(rs, is->adj.npoints);
|
|
dx = is->adj.points[j].x - is->x;
|
|
dy = is->adj.points[j].y - is->y;
|
|
|
|
/* Find out limits of where we could put a new island. */
|
|
joinx = joiny = -1;
|
|
minx = is->x + 2*dx; miny = is->y + 2*dy; /* closest is 2 units away. */
|
|
x = is->x+dx; y = is->y+dy;
|
|
if (GRID(tobuild,x,y) & (G_LINEV|G_LINEH)) {
|
|
/* already a line next to the island, continue. */
|
|
goto bad;
|
|
}
|
|
while (1) {
|
|
if (x < 0 || x >= params->w || y < 0 || y >= params->h) {
|
|
/* got past the edge; put a possible at the island
|
|
* and exit. */
|
|
maxx = x-dx; maxy = y-dy;
|
|
goto foundmax;
|
|
}
|
|
if (GRID(tobuild,x,y) & G_ISLAND) {
|
|
/* could join up to an existing island... */
|
|
joinx = x; joiny = y;
|
|
/* ... or make a new one 2 spaces away. */
|
|
maxx = x - 2*dx; maxy = y - 2*dy;
|
|
goto foundmax;
|
|
} else if (GRID(tobuild,x,y) & (G_LINEV|G_LINEH)) {
|
|
/* could make a new one 1 space away from the line. */
|
|
maxx = x - dx; maxy = y - dy;
|
|
goto foundmax;
|
|
}
|
|
x += dx; y += dy;
|
|
}
|
|
|
|
foundmax:
|
|
debug(("Island at (%d,%d) with d(%d,%d) has new positions "
|
|
"(%d,%d) -> (%d,%d), join (%d,%d).\n",
|
|
is->x, is->y, dx, dy, minx, miny, maxx, maxy, joinx, joiny));
|
|
/* Now we know where we could either put a new island
|
|
* (between min and max), or (if loops are allowed) could join on
|
|
* to an existing island (at join). */
|
|
if (params->allowloops && joinx != -1 && joiny != -1) {
|
|
if (random_upto(rs, 100) < (unsigned long)params->expansion) {
|
|
is2 = INDEX(tobuild, gridi, joinx, joiny);
|
|
debug(("Joining island at (%d,%d) to (%d,%d).\n",
|
|
is->x, is->y, is2->x, is2->y));
|
|
goto join;
|
|
}
|
|
}
|
|
diffx = (maxx - minx) * dx;
|
|
diffy = (maxy - miny) * dy;
|
|
if (diffx < 0 || diffy < 0) goto bad;
|
|
if (random_upto(rs,100) < (unsigned long)params->expansion) {
|
|
newx = maxx; newy = maxy;
|
|
debug(("Creating new island at (%d,%d) (expanded).\n", newx, newy));
|
|
} else {
|
|
newx = minx + random_upto(rs,diffx+1)*dx;
|
|
newy = miny + random_upto(rs,diffy+1)*dy;
|
|
debug(("Creating new island at (%d,%d).\n", newx, newy));
|
|
}
|
|
/* check we're not next to island in the other orthogonal direction. */
|
|
if ((INGRID(tobuild,newx+dy,newy+dx) && (GRID(tobuild,newx+dy,newy+dx) & G_ISLAND)) ||
|
|
(INGRID(tobuild,newx-dy,newy-dx) && (GRID(tobuild,newx-dy,newy-dx) & G_ISLAND))) {
|
|
debug(("New location is adjacent to island, skipping.\n"));
|
|
goto bad;
|
|
}
|
|
is2 = island_add(tobuild, newx, newy, 0);
|
|
/* Must get is again at this point; the array might have
|
|
* been realloced by island_add... */
|
|
is = &tobuild->islands[i]; /* ...but order will not change. */
|
|
|
|
ni_curr++; ni_bad = 0;
|
|
join:
|
|
island_join(is, is2, random_upto(rs, tobuild->maxb)+1, false);
|
|
debug_state(tobuild);
|
|
continue;
|
|
|
|
bad:
|
|
ni_bad++;
|
|
if (ni_bad > MAX_NEWISLAND_TRIES) {
|
|
debug(("Unable to create any new islands after %d tries; "
|
|
"created %d [%d%%] (instead of %d [%d%%] requested).\n",
|
|
MAX_NEWISLAND_TRIES,
|
|
ni_curr, ni_curr * 100 / wh,
|
|
ni_req, ni_req * 100 / wh));
|
|
goto generated;
|
|
}
|
|
}
|
|
|
|
generated:
|
|
if (ni_curr == 1) {
|
|
debug(("Only generated one island (!), retrying.\n"));
|
|
goto generate;
|
|
}
|
|
/* Check we have at least one island on each extremity of the grid. */
|
|
echeck = 0;
|
|
for (x = 0; x < params->w; x++) {
|
|
if (INDEX(tobuild, gridi, x, 0)) echeck |= 1;
|
|
if (INDEX(tobuild, gridi, x, params->h-1)) echeck |= 2;
|
|
}
|
|
for (y = 0; y < params->h; y++) {
|
|
if (INDEX(tobuild, gridi, 0, y)) echeck |= 4;
|
|
if (INDEX(tobuild, gridi, params->w-1, y)) echeck |= 8;
|
|
}
|
|
if (echeck != 15) {
|
|
debug(("Generated grid doesn't fill to sides, retrying.\n"));
|
|
goto generate;
|
|
}
|
|
|
|
map_count(tobuild);
|
|
map_find_orthogonal(tobuild);
|
|
|
|
if (params->difficulty > 0) {
|
|
if ((ni_curr > MIN_SENSIBLE_ISLANDS) &&
|
|
(solve_from_scratch(tobuild, params->difficulty-1) > 0)) {
|
|
debug(("Grid is solvable at difficulty %d (too easy); retrying.\n",
|
|
params->difficulty-1));
|
|
goto generate;
|
|
}
|
|
}
|
|
|
|
if (solve_from_scratch(tobuild, params->difficulty) == 0) {
|
|
debug(("Grid not solvable at difficulty %d, (too hard); retrying.\n",
|
|
params->difficulty));
|
|
goto generate;
|
|
}
|
|
|
|
/* ... tobuild is now solved. We rely on this making the diff for aux. */
|
|
debug_state(tobuild);
|
|
ret = encode_game(tobuild);
|
|
{
|
|
game_state *clean = dup_game(tobuild);
|
|
map_clear(clean);
|
|
map_update_possibles(clean);
|
|
*aux = game_state_diff(clean, tobuild);
|
|
free_game(clean);
|
|
}
|
|
free_game(tobuild);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const char *validate_desc(const game_params *params, const char *desc)
|
|
{
|
|
int i, j, wh = params->w * params->h, nislands = 0;
|
|
bool *last_row = snewn(params->w, bool);
|
|
|
|
memset(last_row, 0, params->w * sizeof(bool));
|
|
for (i = 0; i < wh; i++) {
|
|
if ((*desc >= '1' && *desc <= '9') || (*desc >= 'A' && *desc <= 'G')) {
|
|
nislands++;
|
|
/* Look for other islands to the left and above. */
|
|
if ((i % params->w > 0 && last_row[i % params->w - 1]) ||
|
|
last_row[i % params->w]) {
|
|
sfree(last_row);
|
|
return "Game description contains joined islands";
|
|
}
|
|
last_row[i % params->w] = true;
|
|
} else if (*desc >= 'a' && *desc <= 'z') {
|
|
for (j = 0; j < *desc - 'a' + 1; j++)
|
|
last_row[(i + j) % params->w] = false;
|
|
i += *desc - 'a'; /* plus the i++ */
|
|
} else if (!*desc) {
|
|
sfree(last_row);
|
|
return "Game description shorter than expected";
|
|
} else {
|
|
sfree(last_row);
|
|
return "Game description contains unexpected character";
|
|
}
|
|
desc++;
|
|
}
|
|
sfree(last_row);
|
|
if (*desc || i > wh)
|
|
return "Game description longer than expected";
|
|
if (nislands < 2)
|
|
return "Game description has too few islands";
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static game_state *new_game_sub(const game_params *params, const char *desc)
|
|
{
|
|
game_state *state = new_state(params);
|
|
int x, y, run = 0;
|
|
|
|
debug(("new_game[_sub]: desc = '%s'.\n", desc));
|
|
|
|
for (y = 0; y < params->h; y++) {
|
|
for (x = 0; x < params->w; x++) {
|
|
char c = '\0';
|
|
|
|
if (run == 0) {
|
|
c = *desc++;
|
|
assert(c != 'S');
|
|
if (c >= 'a' && c <= 'z')
|
|
run = c - 'a' + 1;
|
|
}
|
|
|
|
if (run > 0) {
|
|
c = 'S';
|
|
run--;
|
|
}
|
|
|
|
switch (c) {
|
|
case '1': case '2': case '3': case '4':
|
|
case '5': case '6': case '7': case '8': case '9':
|
|
island_add(state, x, y, (c - '0'));
|
|
break;
|
|
|
|
case 'A': case 'B': case 'C': case 'D':
|
|
case 'E': case 'F': case 'G':
|
|
island_add(state, x, y, (c - 'A') + 10);
|
|
break;
|
|
|
|
case 'S':
|
|
/* empty square */
|
|
break;
|
|
|
|
default:
|
|
assert(!"Malformed desc.");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (*desc) assert(!"Over-long desc.");
|
|
|
|
map_find_orthogonal(state);
|
|
map_update_possibles(state);
|
|
|
|
return state;
|
|
}
|
|
|
|
static game_state *new_game(midend *me, const game_params *params,
|
|
const char *desc)
|
|
{
|
|
return new_game_sub(params, desc);
|
|
}
|
|
|
|
struct game_ui {
|
|
int dragx_src, dragy_src; /* source; -1 means no drag */
|
|
int dragx_dst, dragy_dst; /* src's closest orth island. */
|
|
grid_type todraw;
|
|
bool dragging, drag_is_noline;
|
|
int nlines;
|
|
|
|
int cur_x, cur_y; /* cursor position */
|
|
bool cur_visible;
|
|
bool show_hints;
|
|
};
|
|
|
|
static char *ui_cancel_drag(game_ui *ui)
|
|
{
|
|
ui->dragx_src = ui->dragy_src = -1;
|
|
ui->dragx_dst = ui->dragy_dst = -1;
|
|
ui->dragging = false;
|
|
return MOVE_UI_UPDATE;
|
|
}
|
|
|
|
static game_ui *new_ui(const game_state *state)
|
|
{
|
|
game_ui *ui = snew(game_ui);
|
|
ui_cancel_drag(ui);
|
|
if (state != NULL) {
|
|
ui->cur_x = state->islands[0].x;
|
|
ui->cur_y = state->islands[0].y;
|
|
}
|
|
ui->cur_visible = getenv_bool("PUZZLES_SHOW_CURSOR", false);
|
|
ui->show_hints = false;
|
|
return ui;
|
|
}
|
|
|
|
static config_item *get_prefs(game_ui *ui)
|
|
{
|
|
config_item *ret;
|
|
|
|
ret = snewn(N_PREF_ITEMS+1, config_item);
|
|
|
|
ret[PREF_SHOW_HINTS].name = "Show possible bridge locations";
|
|
ret[PREF_SHOW_HINTS].kw = "show-hints";
|
|
ret[PREF_SHOW_HINTS].type = C_BOOLEAN;
|
|
ret[PREF_SHOW_HINTS].u.boolean.bval = ui->show_hints;
|
|
|
|
ret[N_PREF_ITEMS].name = NULL;
|
|
ret[N_PREF_ITEMS].type = C_END;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void set_prefs(game_ui *ui, const config_item *cfg)
|
|
{
|
|
ui->show_hints = cfg[PREF_SHOW_HINTS].u.boolean.bval;
|
|
}
|
|
|
|
static void free_ui(game_ui *ui)
|
|
{
|
|
sfree(ui);
|
|
}
|
|
|
|
static void game_changed_state(game_ui *ui, const game_state *oldstate,
|
|
const game_state *newstate)
|
|
{
|
|
}
|
|
|
|
static const char *current_key_label(const game_ui *ui,
|
|
const game_state *state, int button)
|
|
{
|
|
if (IS_CURSOR_SELECT(button)) {
|
|
if (!ui->cur_visible)
|
|
return ""; /* Actually shows cursor. */
|
|
if (ui->dragging || button == CURSOR_SELECT2)
|
|
return "Finished";
|
|
if (GRID(state, ui->cur_x, ui->cur_y) & G_ISLAND)
|
|
return "Select";
|
|
}
|
|
return "";
|
|
}
|
|
|
|
struct game_drawstate {
|
|
int tilesize;
|
|
int w, h;
|
|
unsigned long *grid, *newgrid;
|
|
int *lv, *lh;
|
|
bool started, dragging;
|
|
};
|
|
|
|
|
|
static void game_get_cursor_location(const game_ui *ui,
|
|
const game_drawstate *ds,
|
|
const game_state *state,
|
|
const game_params *params,
|
|
int *x, int *y, int *w, int *h)
|
|
{
|
|
if(ui->cur_visible) {
|
|
*x = COORD(ui->cur_x);
|
|
*y = COORD(ui->cur_y);
|
|
*w = *h = TILE_SIZE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The contents of ds->grid are complicated, because of the circular
|
|
* islands which overlap their own grid square into neighbouring
|
|
* squares. An island square can contain pieces of the bridges in all
|
|
* directions, and conversely a bridge square can be intruded on by
|
|
* islands from any direction.
|
|
*
|
|
* So we define one group of flags describing what's important about
|
|
* an island, and another describing a bridge. Island squares' entries
|
|
* in ds->grid contain one of the former and four of the latter; bridge
|
|
* squares, four of the former and _two_ of the latter - because a
|
|
* horizontal and vertical 'bridge' can cross, when one of them is a
|
|
* 'no bridge here' pencil mark.
|
|
*
|
|
* Bridge flags need to indicate 0-4 actual bridges (3 bits), a 'no
|
|
* bridge' row of crosses, or a grey hint line; that's 7
|
|
* possibilities, so 3 bits suffice. But then we also need to vary the
|
|
* colours: the bridges can turn COL_WARNING if they're part of a loop
|
|
* in no-loops mode, COL_HIGHLIGHT during a victory flash, or
|
|
* COL_SELECTED if they're the bridge the user is currently dragging,
|
|
* so that's 2 more bits for foreground colour. Also bridges can be
|
|
* backed by COL_MARK if they're locked by the user, so that's one
|
|
* more bit, making 6 bits per bridge direction.
|
|
*
|
|
* Island flags omit the actual island clue (it never changes during
|
|
* the game, so doesn't have to be stored in ds->grid to check against
|
|
* the previous version), so they just need to include 2 bits for
|
|
* foreground colour (an island can be normal, COL_HIGHLIGHT during
|
|
* victory, COL_WARNING if its clue is unsatisfiable, or COL_SELECTED
|
|
* if it's part of the user's drag) and 2 bits for background (normal,
|
|
* COL_MARK for a locked island, COL_CURSOR for the keyboard cursor).
|
|
* That's 4 bits per island direction. We must also indicate whether
|
|
* no island is present at all (in the case where the island is
|
|
* potentially intruding into the side of a line square), which we do
|
|
* using the unused 4th value of the background field.
|
|
*
|
|
* So an island square needs 4 + 4*6 = 28 bits, while a bridge square
|
|
* needs 4*4 + 2*6 = 28 bits too. Both only just fit in 32 bits, which
|
|
* is handy, because otherwise we'd have to faff around forever with
|
|
* little structs!
|
|
*/
|
|
/* Flags for line data */
|
|
#define DL_COUNTMASK 0x07
|
|
#define DL_COUNT_CROSS 0x06
|
|
#define DL_COUNT_HINT 0x07
|
|
#define DL_COLMASK 0x18
|
|
#define DL_COL_NORMAL 0x00
|
|
#define DL_COL_WARNING 0x08
|
|
#define DL_COL_FLASH 0x10
|
|
#define DL_COL_SELECTED 0x18
|
|
#define DL_LOCK 0x20
|
|
#define DL_MASK 0x3F
|
|
/* Flags for island data */
|
|
#define DI_COLMASK 0x03
|
|
#define DI_COL_NORMAL 0x00
|
|
#define DI_COL_FLASH 0x01
|
|
#define DI_COL_WARNING 0x02
|
|
#define DI_COL_SELECTED 0x03
|
|
#define DI_BGMASK 0x0C
|
|
#define DI_BG_NO_ISLAND 0x00
|
|
#define DI_BG_NORMAL 0x04
|
|
#define DI_BG_MARK 0x08
|
|
#define DI_BG_CURSOR 0x0C
|
|
#define DI_MASK 0x0F
|
|
/* Shift counts for the format of a 32-bit word in an island square */
|
|
#define D_I_ISLAND_SHIFT 0
|
|
#define D_I_LINE_SHIFT_L 4
|
|
#define D_I_LINE_SHIFT_R 10
|
|
#define D_I_LINE_SHIFT_U 16
|
|
#define D_I_LINE_SHIFT_D 24
|
|
/* Shift counts for the format of a 32-bit word in a line square */
|
|
#define D_L_ISLAND_SHIFT_L 0
|
|
#define D_L_ISLAND_SHIFT_R 4
|
|
#define D_L_ISLAND_SHIFT_U 8
|
|
#define D_L_ISLAND_SHIFT_D 12
|
|
#define D_L_LINE_SHIFT_H 16
|
|
#define D_L_LINE_SHIFT_V 22
|
|
|
|
static char *update_drag_dst(const game_state *state, game_ui *ui,
|
|
const game_drawstate *ds, int nx, int ny)
|
|
{
|
|
int ox, oy, dx, dy, i, currl, maxb;
|
|
struct island *is;
|
|
grid_type gtype, ntype, mtype, curr;
|
|
|
|
if (ui->dragx_src == -1 || ui->dragy_src == -1) return NULL;
|
|
|
|
ui->dragx_dst = -1;
|
|
ui->dragy_dst = -1;
|
|
|
|
/* work out which of the four directions we're closest to... */
|
|
ox = COORD(ui->dragx_src) + TILE_SIZE/2;
|
|
oy = COORD(ui->dragy_src) + TILE_SIZE/2;
|
|
|
|
if (abs(nx-ox) < abs(ny-oy)) {
|
|
dx = 0;
|
|
dy = (ny-oy) < 0 ? -1 : 1;
|
|
if (!INGRID(state, ui->dragx_src+dx, ui->dragy_src+dy))
|
|
return MOVE_UI_UPDATE;
|
|
gtype = G_LINEV; ntype = G_NOLINEV; mtype = G_MARKV;
|
|
maxb = INDEX(state, maxv, ui->dragx_src+dx, ui->dragy_src+dy);
|
|
} else {
|
|
dy = 0;
|
|
dx = (nx-ox) < 0 ? -1 : 1;
|
|
if (!INGRID(state, ui->dragx_src+dx, ui->dragy_src+dy))
|
|
return MOVE_UI_UPDATE;
|
|
gtype = G_LINEH; ntype = G_NOLINEH; mtype = G_MARKH;
|
|
maxb = INDEX(state, maxh, ui->dragx_src+dx, ui->dragy_src+dy);
|
|
}
|
|
if (ui->drag_is_noline) {
|
|
ui->todraw = ntype;
|
|
} else {
|
|
curr = GRID(state, ui->dragx_src+dx, ui->dragy_src+dy);
|
|
currl = INDEX(state, lines, ui->dragx_src+dx, ui->dragy_src+dy);
|
|
|
|
if (curr & gtype) {
|
|
if (currl == maxb) {
|
|
ui->todraw = 0;
|
|
ui->nlines = 0;
|
|
} else {
|
|
ui->todraw = gtype;
|
|
ui->nlines = currl + 1;
|
|
}
|
|
} else {
|
|
ui->todraw = gtype;
|
|
ui->nlines = 1;
|
|
}
|
|
}
|
|
|
|
/* ... and see if there's an island off in that direction. */
|
|
is = INDEX(state, gridi, ui->dragx_src, ui->dragy_src);
|
|
for (i = 0; i < is->adj.npoints; i++) {
|
|
if (is->adj.points[i].off == 0) continue;
|
|
curr = GRID(state, is->x+dx, is->y+dy);
|
|
if (curr & mtype) continue; /* don't allow changes to marked lines. */
|
|
if (ui->drag_is_noline) {
|
|
if (curr & gtype) continue; /* no no-line where already a line */
|
|
} else {
|
|
if (POSSIBLES(state, dx, is->x+dx, is->y+dy) == 0) continue; /* no line if !possible. */
|
|
if (curr & ntype) continue; /* can't have a bridge where there's a no-line. */
|
|
}
|
|
|
|
if (is->adj.points[i].dx == dx &&
|
|
is->adj.points[i].dy == dy) {
|
|
ui->dragx_dst = ISLAND_ORTHX(is,i);
|
|
ui->dragy_dst = ISLAND_ORTHY(is,i);
|
|
}
|
|
}
|
|
/*debug(("update_drag src (%d,%d) d(%d,%d) dst (%d,%d)\n",
|
|
ui->dragx_src, ui->dragy_src, dx, dy,
|
|
ui->dragx_dst, ui->dragy_dst));*/
|
|
return MOVE_UI_UPDATE;
|
|
}
|
|
|
|
static char *finish_drag(const game_state *state, game_ui *ui)
|
|
{
|
|
char buf[80];
|
|
|
|
if (ui->dragx_src == -1 || ui->dragy_src == -1)
|
|
return NULL;
|
|
if (ui->dragx_dst == -1 || ui->dragy_dst == -1)
|
|
return ui_cancel_drag(ui);
|
|
|
|
if (ui->drag_is_noline) {
|
|
sprintf(buf, "N%d,%d,%d,%d",
|
|
ui->dragx_src, ui->dragy_src,
|
|
ui->dragx_dst, ui->dragy_dst);
|
|
} else {
|
|
sprintf(buf, "L%d,%d,%d,%d,%d",
|
|
ui->dragx_src, ui->dragy_src,
|
|
ui->dragx_dst, ui->dragy_dst, ui->nlines);
|
|
}
|
|
|
|
ui_cancel_drag(ui);
|
|
|
|
return dupstr(buf);
|
|
}
|
|
|
|
static char *interpret_move(const game_state *state, game_ui *ui,
|
|
const game_drawstate *ds,
|
|
int x, int y, int button)
|
|
{
|
|
int gx = FROMCOORD(x), gy = FROMCOORD(y);
|
|
char buf[80], *ret;
|
|
grid_type ggrid = INGRID(state,gx,gy) ? GRID(state,gx,gy) : 0;
|
|
bool shift = button & MOD_SHFT, control = button & MOD_CTRL;
|
|
button = STRIP_BUTTON_MODIFIERS(button);
|
|
|
|
if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
|
|
if (!INGRID(state, gx, gy)) return MOVE_UNUSED;
|
|
ui->cur_visible = false;
|
|
if (ggrid & G_ISLAND) {
|
|
ui->dragx_src = gx;
|
|
ui->dragy_src = gy;
|
|
return MOVE_UI_UPDATE;
|
|
} else
|
|
return ui_cancel_drag(ui);
|
|
} else if (button == LEFT_DRAG || button == RIGHT_DRAG) {
|
|
if (INGRID(state, ui->dragx_src, ui->dragy_src)
|
|
&& (gx != ui->dragx_src || gy != ui->dragy_src)
|
|
&& !(GRID(state,ui->dragx_src,ui->dragy_src) & G_MARK)) {
|
|
ui->dragging = true;
|
|
ui->drag_is_noline = (button == RIGHT_DRAG);
|
|
return update_drag_dst(state, ui, ds, x, y);
|
|
} else {
|
|
/* cancel a drag when we go back to the starting point */
|
|
ui->dragx_dst = -1;
|
|
ui->dragy_dst = -1;
|
|
return MOVE_UI_UPDATE;
|
|
}
|
|
} else if (button == LEFT_RELEASE || button == RIGHT_RELEASE) {
|
|
if (ui->dragging) {
|
|
return finish_drag(state, ui);
|
|
} else {
|
|
if (!INGRID(state, ui->dragx_src, ui->dragy_src)
|
|
|| gx != ui->dragx_src || gy != ui->dragy_src) {
|
|
return ui_cancel_drag(ui);
|
|
}
|
|
ui_cancel_drag(ui);
|
|
if (!INGRID(state, gx, gy)) return MOVE_UNUSED;
|
|
if (!(GRID(state, gx, gy) & G_ISLAND)) return MOVE_NO_EFFECT;
|
|
sprintf(buf, "M%d,%d", gx, gy);
|
|
return dupstr(buf);
|
|
}
|
|
} else if (button == 'h' || button == 'H') {
|
|
game_state *solved = dup_game(state);
|
|
solve_for_hint(solved);
|
|
ret = game_state_diff(state, solved);
|
|
free_game(solved);
|
|
return ret;
|
|
} else if (IS_CURSOR_MOVE(button)) {
|
|
ui->cur_visible = true;
|
|
if (control || shift) {
|
|
ui->dragx_src = ui->cur_x;
|
|
ui->dragy_src = ui->cur_y;
|
|
ui->dragging = true;
|
|
ui->drag_is_noline = !control;
|
|
}
|
|
if (ui->dragging) {
|
|
int nx = ui->cur_x, ny = ui->cur_y;
|
|
|
|
move_cursor(button, &nx, &ny, state->w, state->h, false, NULL);
|
|
if (nx == ui->cur_x && ny == ui->cur_y)
|
|
return MOVE_NO_EFFECT;
|
|
update_drag_dst(state, ui, ds,
|
|
COORD(nx)+TILE_SIZE/2,
|
|
COORD(ny)+TILE_SIZE/2);
|
|
return finish_drag(state, ui);
|
|
} else {
|
|
int dx = (button == CURSOR_RIGHT) ? +1 : (button == CURSOR_LEFT) ? -1 : 0;
|
|
int dy = (button == CURSOR_DOWN) ? +1 : (button == CURSOR_UP) ? -1 : 0;
|
|
int dorthx = 1 - abs(dx), dorthy = 1 - abs(dy);
|
|
int dir, orth, nx = x, ny = y;
|
|
|
|
/* 'orthorder' is a tweak to ensure that if you press RIGHT and
|
|
* happen to move upwards, when you press LEFT you then tend
|
|
* downwards (rather than upwards again). */
|
|
int orthorder = (button == CURSOR_LEFT || button == CURSOR_UP) ? 1 : -1;
|
|
|
|
/* This attempts to find an island in the direction you're
|
|
* asking for, broadly speaking. If you ask to go right, for
|
|
* example, it'll look for islands to the right and slightly
|
|
* above or below your current horiz. position, allowing
|
|
* further above/below the further away it searches. */
|
|
|
|
assert(GRID(state, ui->cur_x, ui->cur_y) & G_ISLAND);
|
|
/* currently this is depth-first (so orthogonally-adjacent
|
|
* islands across the other side of the grid will be moved to
|
|
* before closer islands slightly offset). Swap the order of
|
|
* these two loops to change to breadth-first search. */
|
|
for (orth = 0; ; orth++) {
|
|
bool oingrid = false;
|
|
for (dir = 1; ; dir++) {
|
|
bool dingrid = false;
|
|
|
|
if (orth > dir) continue; /* only search in cone outwards. */
|
|
|
|
nx = ui->cur_x + dir*dx + orth*dorthx*orthorder;
|
|
ny = ui->cur_y + dir*dy + orth*dorthy*orthorder;
|
|
if (INGRID(state, nx, ny)) {
|
|
dingrid = true;
|
|
oingrid = true;
|
|
if (GRID(state, nx, ny) & G_ISLAND) goto found;
|
|
}
|
|
|
|
nx = ui->cur_x + dir*dx - orth*dorthx*orthorder;
|
|
ny = ui->cur_y + dir*dy - orth*dorthy*orthorder;
|
|
if (INGRID(state, nx, ny)) {
|
|
dingrid = true;
|
|
oingrid = true;
|
|
if (GRID(state, nx, ny) & G_ISLAND) goto found;
|
|
}
|
|
|
|
if (!dingrid) break;
|
|
}
|
|
if (!oingrid) return MOVE_UI_UPDATE;
|
|
}
|
|
/* not reached */
|
|
|
|
found:
|
|
ui->cur_x = nx;
|
|
ui->cur_y = ny;
|
|
return MOVE_UI_UPDATE;
|
|
}
|
|
} else if (IS_CURSOR_SELECT(button)) {
|
|
if (!ui->cur_visible) {
|
|
ui->cur_visible = true;
|
|
return MOVE_UI_UPDATE;
|
|
}
|
|
if (ui->dragging || button == CURSOR_SELECT2) {
|
|
ui_cancel_drag(ui);
|
|
if (ui->dragx_dst == -1 && ui->dragy_dst == -1) {
|
|
sprintf(buf, "M%d,%d", ui->cur_x, ui->cur_y);
|
|
return dupstr(buf);
|
|
} else
|
|
return MOVE_UI_UPDATE;
|
|
} else {
|
|
grid_type v = GRID(state, ui->cur_x, ui->cur_y);
|
|
if (v & G_ISLAND) {
|
|
ui->dragging = true;
|
|
ui->dragx_src = ui->cur_x;
|
|
ui->dragy_src = ui->cur_y;
|
|
ui->dragx_dst = ui->dragy_dst = -1;
|
|
ui->drag_is_noline = (button == CURSOR_SELECT2);
|
|
return MOVE_UI_UPDATE;
|
|
}
|
|
}
|
|
} else if ((button >= '0' && button <= '9') ||
|
|
(button >= 'a' && button <= 'f') ||
|
|
(button >= 'A' && button <= 'F')) {
|
|
/* jump to island with .count == number closest to cur_{x,y} */
|
|
int best_x = -1, best_y = -1, best_sqdist = -1, number = -1, i;
|
|
|
|
if (button >= '0' && button <= '9')
|
|
number = (button == '0' ? 16 : button - '0');
|
|
else if (button >= 'a' && button <= 'f')
|
|
number = 10 + button - 'a';
|
|
else if (button >= 'A' && button <= 'F')
|
|
number = 10 + button - 'A';
|
|
|
|
if (!ui->cur_visible) {
|
|
ui->cur_visible = true;
|
|
return MOVE_UI_UPDATE;
|
|
}
|
|
|
|
for (i = 0; i < state->n_islands; ++i) {
|
|
int x = state->islands[i].x, y = state->islands[i].y;
|
|
int dx = x - ui->cur_x, dy = y - ui->cur_y;
|
|
int sqdist = dx*dx + dy*dy;
|
|
|
|
if (state->islands[i].count != number)
|
|
continue;
|
|
if (x == ui->cur_x && y == ui->cur_y)
|
|
continue;
|
|
|
|
/* new_game() reads the islands in row-major order, so by
|
|
* breaking ties in favor of `first in state->islands' we
|
|
* also break ties by `lexicographically smallest (y, x)'.
|
|
* Thus, there's a stable pattern to how ties are broken
|
|
* which the user can learn and use to navigate faster. */
|
|
if (best_sqdist == -1 || sqdist < best_sqdist) {
|
|
best_x = x;
|
|
best_y = y;
|
|
best_sqdist = sqdist;
|
|
}
|
|
}
|
|
if (best_x != -1 && best_y != -1) {
|
|
ui->cur_x = best_x;
|
|
ui->cur_y = best_y;
|
|
return MOVE_UI_UPDATE;
|
|
} else
|
|
return MOVE_NO_EFFECT;
|
|
} else if (button == 'g' || button == 'G') {
|
|
ui->show_hints = !ui->show_hints;
|
|
return MOVE_UI_UPDATE;
|
|
}
|
|
|
|
return MOVE_UNUSED;
|
|
}
|
|
|
|
static game_state *execute_move(const game_state *state, const char *move)
|
|
{
|
|
game_state *ret = dup_game(state);
|
|
int x1, y1, x2, y2, nl, n;
|
|
struct island *is1, *is2;
|
|
char c;
|
|
|
|
debug(("execute_move: %s\n", move));
|
|
|
|
if (!*move) goto badmove;
|
|
while (*move) {
|
|
c = *move++;
|
|
if (c == 'S') {
|
|
ret->solved = true;
|
|
n = 0;
|
|
} else if (c == 'L') {
|
|
if (sscanf(move, "%d,%d,%d,%d,%d%n",
|
|
&x1, &y1, &x2, &y2, &nl, &n) != 5)
|
|
goto badmove;
|
|
if (!INGRID(ret, x1, y1) || !INGRID(ret, x2, y2))
|
|
goto badmove;
|
|
/* Precisely one co-ordinate must differ between islands. */
|
|
if ((x1 != x2) + (y1 != y2) != 1) goto badmove;
|
|
is1 = INDEX(ret, gridi, x1, y1);
|
|
is2 = INDEX(ret, gridi, x2, y2);
|
|
if (!is1 || !is2) goto badmove;
|
|
if (nl < 0 || nl > state->maxb) goto badmove;
|
|
island_join(is1, is2, nl, false);
|
|
} else if (c == 'N') {
|
|
if (sscanf(move, "%d,%d,%d,%d%n",
|
|
&x1, &y1, &x2, &y2, &n) != 4)
|
|
goto badmove;
|
|
if (!INGRID(ret, x1, y1) || !INGRID(ret, x2, y2))
|
|
goto badmove;
|
|
if ((x1 != x2) + (y1 != y2) != 1) goto badmove;
|
|
is1 = INDEX(ret, gridi, x1, y1);
|
|
is2 = INDEX(ret, gridi, x2, y2);
|
|
if (!is1 || !is2) goto badmove;
|
|
island_join(is1, is2, -1, false);
|
|
} else if (c == 'M') {
|
|
if (sscanf(move, "%d,%d%n",
|
|
&x1, &y1, &n) != 2)
|
|
goto badmove;
|
|
if (!INGRID(ret, x1, y1))
|
|
goto badmove;
|
|
is1 = INDEX(ret, gridi, x1, y1);
|
|
if (!is1) goto badmove;
|
|
island_togglemark(is1);
|
|
} else
|
|
goto badmove;
|
|
|
|
move += n;
|
|
if (*move == ';')
|
|
move++;
|
|
else if (*move) goto badmove;
|
|
}
|
|
|
|
map_update_possibles(ret);
|
|
if (map_check(ret)) {
|
|
debug(("Game completed.\n"));
|
|
ret->completed = true;
|
|
}
|
|
return ret;
|
|
|
|
badmove:
|
|
debug(("%s: unrecognised move.\n", move));
|
|
free_game(ret);
|
|
return NULL;
|
|
}
|
|
|
|
static char *solve_game(const game_state *state, const game_state *currstate,
|
|
const char *aux, const char **error)
|
|
{
|
|
char *ret;
|
|
game_state *solved;
|
|
|
|
if (aux) {
|
|
debug(("solve_game: aux = %s\n", aux));
|
|
solved = execute_move(state, aux);
|
|
if (!solved) {
|
|
*error = "Generated aux string is not a valid move (!).";
|
|
return NULL;
|
|
}
|
|
} else {
|
|
solved = dup_game(state);
|
|
/* solve with max strength... */
|
|
if (solve_from_scratch(solved, 10) == 0) {
|
|
free_game(solved);
|
|
*error = "Game does not have a (non-recursive) solution.";
|
|
return NULL;
|
|
}
|
|
}
|
|
ret = game_state_diff(currstate, solved);
|
|
free_game(solved);
|
|
debug(("solve_game: ret = %s\n", ret));
|
|
return ret;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Drawing routines.
|
|
*/
|
|
|
|
static void game_compute_size(const game_params *params, int tilesize,
|
|
const game_ui *ui, int *x, int *y)
|
|
{
|
|
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
|
|
struct { int tilesize; } ads, *ds = &ads;
|
|
ads.tilesize = tilesize;
|
|
|
|
*x = TILE_SIZE * params->w + 2 * BORDER;
|
|
*y = TILE_SIZE * params->h + 2 * BORDER;
|
|
}
|
|
|
|
static void game_set_size(drawing *dr, game_drawstate *ds,
|
|
const game_params *params, int tilesize)
|
|
{
|
|
ds->tilesize = tilesize;
|
|
}
|
|
|
|
static float *game_colours(frontend *fe, int *ncolours)
|
|
{
|
|
float *ret = snewn(3 * NCOLOURS, float);
|
|
int i;
|
|
|
|
game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT);
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
ret[COL_FOREGROUND * 3 + i] = 0.0F;
|
|
ret[COL_HINT * 3 + i] = ret[COL_LOWLIGHT * 3 + i];
|
|
ret[COL_GRID * 3 + i] =
|
|
(ret[COL_HINT * 3 + i] + ret[COL_BACKGROUND * 3 + i]) * 0.5F;
|
|
ret[COL_MARK * 3 + i] = ret[COL_HIGHLIGHT * 3 + i];
|
|
}
|
|
ret[COL_WARNING * 3 + 0] = 1.0F;
|
|
ret[COL_WARNING * 3 + 1] = 0.25F;
|
|
ret[COL_WARNING * 3 + 2] = 0.25F;
|
|
|
|
ret[COL_SELECTED * 3 + 0] = 0.25F;
|
|
ret[COL_SELECTED * 3 + 1] = 1.00F;
|
|
ret[COL_SELECTED * 3 + 2] = 0.25F;
|
|
|
|
ret[COL_CURSOR * 3 + 0] = min(ret[COL_BACKGROUND * 3 + 0] * 1.4F, 1.0F);
|
|
ret[COL_CURSOR * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.8F;
|
|
ret[COL_CURSOR * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 0.8F;
|
|
|
|
*ncolours = NCOLOURS;
|
|
return ret;
|
|
}
|
|
|
|
static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state)
|
|
{
|
|
struct game_drawstate *ds = snew(struct game_drawstate);
|
|
int wh = state->w*state->h;
|
|
int i;
|
|
|
|
ds->tilesize = 0;
|
|
ds->w = state->w;
|
|
ds->h = state->h;
|
|
ds->started = false;
|
|
ds->dragging = false;
|
|
ds->grid = snewn(wh, unsigned long);
|
|
for (i = 0; i < wh; i++)
|
|
ds->grid[i] = ~0UL;
|
|
ds->newgrid = snewn(wh, unsigned long);
|
|
ds->lv = snewn(wh, int);
|
|
ds->lh = snewn(wh, int);
|
|
memset(ds->lv, 0, wh*sizeof(int));
|
|
memset(ds->lh, 0, wh*sizeof(int));
|
|
|
|
return ds;
|
|
}
|
|
|
|
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
|
|
{
|
|
sfree(ds->lv);
|
|
sfree(ds->lh);
|
|
sfree(ds->newgrid);
|
|
sfree(ds->grid);
|
|
sfree(ds);
|
|
}
|
|
|
|
#define LINE_WIDTH (TILE_SIZE/8)
|
|
#define TS8(x) (((x)*TILE_SIZE)/8)
|
|
|
|
#define OFFSET(thing) ((TILE_SIZE/2) - ((thing)/2))
|
|
|
|
static bool between_island(const game_state *state, int sx, int sy,
|
|
int dx, int dy)
|
|
{
|
|
int x = sx - dx, y = sy - dy;
|
|
|
|
while (INGRID(state, x, y)) {
|
|
if (GRID(state, x, y) & G_ISLAND) goto found;
|
|
x -= dx; y -= dy;
|
|
}
|
|
return false;
|
|
found:
|
|
x = sx + dx, y = sy + dy;
|
|
while (INGRID(state, x, y)) {
|
|
if (GRID(state, x, y) & G_ISLAND) return true;
|
|
x += dx; y += dy;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void lines_lvlh(const game_state *state, const game_ui *ui,
|
|
int x, int y, grid_type v, int *lv_r, int *lh_r)
|
|
{
|
|
int lh = 0, lv = 0;
|
|
|
|
if (v & G_LINEV) lv = INDEX(state,lines,x,y);
|
|
if (v & G_LINEH) lh = INDEX(state,lines,x,y);
|
|
|
|
if (ui->show_hints) {
|
|
if (between_island(state, x, y, 0, 1) && !lv) lv = 1;
|
|
if (between_island(state, x, y, 1, 0) && !lh) lh = 1;
|
|
}
|
|
/*debug(("lvlh: (%d,%d) v 0x%x lv %d lh %d.\n", x, y, v, lv, lh));*/
|
|
*lv_r = lv; *lh_r = lh;
|
|
}
|
|
|
|
static void draw_cross(drawing *dr, game_drawstate *ds,
|
|
int ox, int oy, int col)
|
|
{
|
|
int off = TS8(2);
|
|
draw_line(dr, ox, oy, ox+off, oy+off, col);
|
|
draw_line(dr, ox+off, oy, ox, oy+off, col);
|
|
}
|
|
|
|
static void draw_general_line(drawing *dr, game_drawstate *ds,
|
|
int ox, int oy, int fx, int fy, int ax, int ay,
|
|
int len, unsigned long ldata, int which)
|
|
{
|
|
/*
|
|
* Draw one direction of lines in a square. To permit the same
|
|
* code to handle horizontal and vertical lines, fx,fy are the
|
|
* 'forward' direction (along the lines) and ax,ay are the
|
|
* 'across' direction.
|
|
*
|
|
* We draw the white background for a locked bridge if (which &
|
|
* 1), and draw the bridges themselves if (which & 2). This
|
|
* permits us to get two overlapping locked bridges right without
|
|
* one of them erasing part of the other.
|
|
*/
|
|
int fg;
|
|
|
|
fg = ((ldata & DL_COUNTMASK) == DL_COUNT_HINT ? COL_HINT :
|
|
(ldata & DL_COLMASK) == DL_COL_SELECTED ? COL_SELECTED :
|
|
(ldata & DL_COLMASK) == DL_COL_FLASH ? COL_HIGHLIGHT :
|
|
(ldata & DL_COLMASK) == DL_COL_WARNING ? COL_WARNING :
|
|
COL_FOREGROUND);
|
|
|
|
if ((ldata & DL_COUNTMASK) == DL_COUNT_CROSS) {
|
|
draw_cross(dr, ds,
|
|
ox + TS8(1)*fx + TS8(3)*ax,
|
|
oy + TS8(1)*fy + TS8(3)*ay, fg);
|
|
draw_cross(dr, ds,
|
|
ox + TS8(5)*fx + TS8(3)*ax,
|
|
oy + TS8(5)*fy + TS8(3)*ay, fg);
|
|
} else if ((ldata & DL_COUNTMASK) != 0) {
|
|
int lh, lw, gw, bw, i, loff;
|
|
|
|
lh = (ldata & DL_COUNTMASK);
|
|
if (lh == DL_COUNT_HINT)
|
|
lh = 1;
|
|
|
|
lw = gw = LINE_WIDTH;
|
|
while ((bw = lw * lh + gw * (lh+1)) > TILE_SIZE)
|
|
gw--;
|
|
|
|
loff = OFFSET(bw);
|
|
|
|
if (which & 1) {
|
|
if ((ldata & DL_LOCK) && fg != COL_HINT)
|
|
draw_rect(dr, ox + loff*ax, oy + loff*ay,
|
|
len*fx+bw*ax, len*fy+bw*ay, COL_MARK);
|
|
}
|
|
if (which & 2) {
|
|
for (i = 0; i < lh; i++, loff += lw + gw)
|
|
draw_rect(dr, ox + (loff+gw)*ax, oy + (loff+gw)*ay,
|
|
len*fx+lw*ax, len*fy+lw*ay, fg);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void draw_hline(drawing *dr, game_drawstate *ds,
|
|
int ox, int oy, int w, unsigned long vdata, int which)
|
|
{
|
|
draw_general_line(dr, ds, ox, oy, 1, 0, 0, 1, w, vdata, which);
|
|
}
|
|
|
|
static void draw_vline(drawing *dr, game_drawstate *ds,
|
|
int ox, int oy, int h, unsigned long vdata, int which)
|
|
{
|
|
draw_general_line(dr, ds, ox, oy, 0, 1, 1, 0, h, vdata, which);
|
|
}
|
|
|
|
#define ISLAND_RADIUS ((TILE_SIZE*12)/20)
|
|
#define ISLAND_NUMSIZE(clue) \
|
|
(((clue) < 10) ? (TILE_SIZE*7)/10 : (TILE_SIZE*5)/10)
|
|
|
|
static void draw_island(drawing *dr, game_drawstate *ds,
|
|
int ox, int oy, int clue, unsigned long idata)
|
|
{
|
|
int half, orad, irad, fg, bg;
|
|
|
|
if ((idata & DI_BGMASK) == DI_BG_NO_ISLAND)
|
|
return;
|
|
|
|
half = TILE_SIZE/2;
|
|
orad = ISLAND_RADIUS;
|
|
irad = orad - LINE_WIDTH;
|
|
fg = ((idata & DI_COLMASK) == DI_COL_SELECTED ? COL_SELECTED :
|
|
(idata & DI_COLMASK) == DI_COL_WARNING ? COL_WARNING :
|
|
(idata & DI_COLMASK) == DI_COL_FLASH ? COL_HIGHLIGHT :
|
|
COL_FOREGROUND);
|
|
bg = ((idata & DI_BGMASK) == DI_BG_CURSOR ? COL_CURSOR :
|
|
(idata & DI_BGMASK) == DI_BG_MARK ? COL_MARK :
|
|
COL_BACKGROUND);
|
|
|
|
/* draw a thick circle */
|
|
draw_circle(dr, ox+half, oy+half, orad, fg, fg);
|
|
draw_circle(dr, ox+half, oy+half, irad, bg, bg);
|
|
|
|
if (clue > 0) {
|
|
char str[32];
|
|
int textcolour = (fg == COL_SELECTED ? COL_FOREGROUND : fg);
|
|
sprintf(str, "%d", clue);
|
|
draw_text(dr, ox+half, oy+half, FONT_VARIABLE, ISLAND_NUMSIZE(clue),
|
|
ALIGN_VCENTRE | ALIGN_HCENTRE, textcolour, str);
|
|
}
|
|
}
|
|
|
|
static void draw_island_tile(drawing *dr, game_drawstate *ds,
|
|
int x, int y, int clue, unsigned long data)
|
|
{
|
|
int ox = COORD(x), oy = COORD(y);
|
|
int which;
|
|
|
|
clip(dr, ox, oy, TILE_SIZE, TILE_SIZE);
|
|
draw_rect(dr, ox, oy, TILE_SIZE, TILE_SIZE, COL_BACKGROUND);
|
|
|
|
/*
|
|
* Because of the possibility of incoming bridges just about
|
|
* meeting at one corner, we must split the line-drawing into
|
|
* background and foreground segments.
|
|
*/
|
|
for (which = 1; which <= 2; which <<= 1) {
|
|
draw_hline(dr, ds, ox, oy, TILE_SIZE/2,
|
|
(data >> D_I_LINE_SHIFT_L) & DL_MASK, which);
|
|
draw_hline(dr, ds, ox + TILE_SIZE - TILE_SIZE/2, oy, TILE_SIZE/2,
|
|
(data >> D_I_LINE_SHIFT_R) & DL_MASK, which);
|
|
draw_vline(dr, ds, ox, oy, TILE_SIZE/2,
|
|
(data >> D_I_LINE_SHIFT_U) & DL_MASK, which);
|
|
draw_vline(dr, ds, ox, oy + TILE_SIZE - TILE_SIZE/2, TILE_SIZE/2,
|
|
(data >> D_I_LINE_SHIFT_D) & DL_MASK, which);
|
|
}
|
|
draw_island(dr, ds, ox, oy, clue, (data >> D_I_ISLAND_SHIFT) & DI_MASK);
|
|
|
|
unclip(dr);
|
|
draw_update(dr, ox, oy, TILE_SIZE, TILE_SIZE);
|
|
}
|
|
|
|
static void draw_line_tile(drawing *dr, game_drawstate *ds,
|
|
int x, int y, unsigned long data)
|
|
{
|
|
int ox = COORD(x), oy = COORD(y);
|
|
unsigned long hdata, vdata;
|
|
|
|
clip(dr, ox, oy, TILE_SIZE, TILE_SIZE);
|
|
draw_rect(dr, ox, oy, TILE_SIZE, TILE_SIZE, COL_BACKGROUND);
|
|
|
|
/*
|
|
* We have to think about which of the horizontal and vertical
|
|
* line to draw first, if both exist.
|
|
*
|
|
* The rule is that hint lines are drawn at the bottom, then
|
|
* NOLINE crosses, then actual bridges. The enumeration in the
|
|
* DL_COUNTMASK field is set up so that this drops out of a
|
|
* straight comparison between the two.
|
|
*
|
|
* Since lines crossing in this type of square cannot both be
|
|
* actual bridges, there's no need to pass a nontrivial 'which'
|
|
* parameter to draw_[hv]line.
|
|
*/
|
|
hdata = (data >> D_L_LINE_SHIFT_H) & DL_MASK;
|
|
vdata = (data >> D_L_LINE_SHIFT_V) & DL_MASK;
|
|
if ((hdata & DL_COUNTMASK) > (vdata & DL_COUNTMASK)) {
|
|
draw_hline(dr, ds, ox, oy, TILE_SIZE, hdata, 3);
|
|
draw_vline(dr, ds, ox, oy, TILE_SIZE, vdata, 3);
|
|
} else {
|
|
draw_vline(dr, ds, ox, oy, TILE_SIZE, vdata, 3);
|
|
draw_hline(dr, ds, ox, oy, TILE_SIZE, hdata, 3);
|
|
}
|
|
|
|
/*
|
|
* The islands drawn at the edges of a line tile don't need clue
|
|
* numbers.
|
|
*/
|
|
draw_island(dr, ds, ox - TILE_SIZE, oy, -1,
|
|
(data >> D_L_ISLAND_SHIFT_L) & DI_MASK);
|
|
draw_island(dr, ds, ox + TILE_SIZE, oy, -1,
|
|
(data >> D_L_ISLAND_SHIFT_R) & DI_MASK);
|
|
draw_island(dr, ds, ox, oy - TILE_SIZE, -1,
|
|
(data >> D_L_ISLAND_SHIFT_U) & DI_MASK);
|
|
draw_island(dr, ds, ox, oy + TILE_SIZE, -1,
|
|
(data >> D_L_ISLAND_SHIFT_D) & DI_MASK);
|
|
|
|
unclip(dr);
|
|
draw_update(dr, ox, oy, TILE_SIZE, TILE_SIZE);
|
|
}
|
|
|
|
static void draw_edge_tile(drawing *dr, game_drawstate *ds,
|
|
int x, int y, int dx, int dy, unsigned long data)
|
|
{
|
|
int ox = COORD(x), oy = COORD(y);
|
|
int cx = ox, cy = oy, cw = TILE_SIZE, ch = TILE_SIZE;
|
|
|
|
if (dy) {
|
|
if (dy > 0)
|
|
cy += TILE_SIZE/2;
|
|
ch -= TILE_SIZE/2;
|
|
} else {
|
|
if (dx > 0)
|
|
cx += TILE_SIZE/2;
|
|
cw -= TILE_SIZE/2;
|
|
}
|
|
clip(dr, cx, cy, cw, ch);
|
|
draw_rect(dr, cx, cy, cw, ch, COL_BACKGROUND);
|
|
|
|
draw_island(dr, ds, ox + TILE_SIZE*dx, oy + TILE_SIZE*dy, -1,
|
|
(data >> D_I_ISLAND_SHIFT) & DI_MASK);
|
|
|
|
unclip(dr);
|
|
draw_update(dr, cx, cy, cw, ch);
|
|
}
|
|
|
|
static void game_redraw(drawing *dr, game_drawstate *ds,
|
|
const game_state *oldstate, const game_state *state,
|
|
int dir, const game_ui *ui,
|
|
float animtime, float flashtime)
|
|
{
|
|
int x, y, lv, lh;
|
|
grid_type v;
|
|
bool flash = false;
|
|
struct island *is, *is_drag_src = NULL, *is_drag_dst = NULL;
|
|
|
|
if (flashtime) {
|
|
int f = (int)(flashtime * 5 / FLASH_TIME);
|
|
if (f == 1 || f == 3) flash = true;
|
|
}
|
|
|
|
/* Clear screen, if required. */
|
|
if (!ds->started) {
|
|
#ifdef DRAW_GRID
|
|
draw_rect_outline(dr,
|
|
COORD(0)-1, COORD(0)-1,
|
|
TILE_SIZE * ds->w + 2, TILE_SIZE * ds->h + 2,
|
|
COL_GRID);
|
|
#endif
|
|
draw_update(dr, 0, 0,
|
|
TILE_SIZE * ds->w + 2 * BORDER,
|
|
TILE_SIZE * ds->h + 2 * BORDER);
|
|
ds->started = true;
|
|
}
|
|
|
|
if (ui->dragx_src != -1 && ui->dragy_src != -1) {
|
|
ds->dragging = true;
|
|
is_drag_src = INDEX(state, gridi, ui->dragx_src, ui->dragy_src);
|
|
assert(is_drag_src);
|
|
if (ui->dragx_dst != -1 && ui->dragy_dst != -1) {
|
|
is_drag_dst = INDEX(state, gridi, ui->dragx_dst, ui->dragy_dst);
|
|
assert(is_drag_dst);
|
|
}
|
|
} else
|
|
ds->dragging = false;
|
|
|
|
/*
|
|
* Set up ds->newgrid with the current grid contents.
|
|
*/
|
|
for (x = 0; x < ds->w; x++)
|
|
for (y = 0; y < ds->h; y++)
|
|
INDEX(ds,newgrid,x,y) = 0;
|
|
|
|
for (x = 0; x < ds->w; x++) {
|
|
for (y = 0; y < ds->h; y++) {
|
|
v = GRID(state, x, y);
|
|
|
|
if (v & G_ISLAND) {
|
|
/*
|
|
* An island square. Compute the drawing data for the
|
|
* island, and put it in this square and surrounding
|
|
* squares.
|
|
*/
|
|
unsigned long idata = 0;
|
|
|
|
is = INDEX(state, gridi, x, y);
|
|
|
|
if (flash)
|
|
idata |= DI_COL_FLASH;
|
|
if (is_drag_src && (is == is_drag_src ||
|
|
(is_drag_dst && is == is_drag_dst)))
|
|
idata |= DI_COL_SELECTED;
|
|
else if (island_impossible(is, v & G_MARK) || (v & G_WARN))
|
|
idata |= DI_COL_WARNING;
|
|
else
|
|
idata |= DI_COL_NORMAL;
|
|
|
|
if (ui->cur_visible &&
|
|
ui->cur_x == is->x && ui->cur_y == is->y)
|
|
idata |= DI_BG_CURSOR;
|
|
else if (v & G_MARK)
|
|
idata |= DI_BG_MARK;
|
|
else
|
|
idata |= DI_BG_NORMAL;
|
|
|
|
INDEX(ds,newgrid,x,y) |= idata << D_I_ISLAND_SHIFT;
|
|
if (x > 0 && !(GRID(state,x-1,y) & G_ISLAND))
|
|
INDEX(ds,newgrid,x-1,y) |= idata << D_L_ISLAND_SHIFT_R;
|
|
if (x+1 < state->w && !(GRID(state,x+1,y) & G_ISLAND))
|
|
INDEX(ds,newgrid,x+1,y) |= idata << D_L_ISLAND_SHIFT_L;
|
|
if (y > 0 && !(GRID(state,x,y-1) & G_ISLAND))
|
|
INDEX(ds,newgrid,x,y-1) |= idata << D_L_ISLAND_SHIFT_D;
|
|
if (y+1 < state->h && !(GRID(state,x,y+1) & G_ISLAND))
|
|
INDEX(ds,newgrid,x,y+1) |= idata << D_L_ISLAND_SHIFT_U;
|
|
} else {
|
|
unsigned long hdata, vdata;
|
|
bool selh = false, selv = false;
|
|
|
|
/*
|
|
* A line (non-island) square. Compute the drawing
|
|
* data for any horizontal and vertical lines in the
|
|
* square, and put them in this square's entry and
|
|
* optionally those for neighbouring islands too.
|
|
*/
|
|
|
|
if (is_drag_dst &&
|
|
WITHIN(x,is_drag_src->x, is_drag_dst->x) &&
|
|
WITHIN(y,is_drag_src->y, is_drag_dst->y)) {
|
|
if (is_drag_src->x != is_drag_dst->x)
|
|
selh = true;
|
|
else
|
|
selv = true;
|
|
}
|
|
lines_lvlh(state, ui, x, y, v, &lv, &lh);
|
|
|
|
hdata = (v & G_NOLINEH ? DL_COUNT_CROSS :
|
|
v & G_LINEH ? lh :
|
|
(ui->show_hints &&
|
|
between_island(state,x,y,1,0)) ? DL_COUNT_HINT : 0);
|
|
vdata = (v & G_NOLINEV ? DL_COUNT_CROSS :
|
|
v & G_LINEV ? lv :
|
|
(ui->show_hints &&
|
|
between_island(state,x,y,0,1)) ? DL_COUNT_HINT : 0);
|
|
|
|
hdata |= (flash ? DL_COL_FLASH :
|
|
v & G_WARN ? DL_COL_WARNING :
|
|
selh ? DL_COL_SELECTED :
|
|
DL_COL_NORMAL);
|
|
vdata |= (flash ? DL_COL_FLASH :
|
|
v & G_WARN ? DL_COL_WARNING :
|
|
selv ? DL_COL_SELECTED :
|
|
DL_COL_NORMAL);
|
|
|
|
if (v & G_MARKH)
|
|
hdata |= DL_LOCK;
|
|
if (v & G_MARKV)
|
|
vdata |= DL_LOCK;
|
|
|
|
INDEX(ds,newgrid,x,y) |= hdata << D_L_LINE_SHIFT_H;
|
|
INDEX(ds,newgrid,x,y) |= vdata << D_L_LINE_SHIFT_V;
|
|
if (x > 0 && (GRID(state,x-1,y) & G_ISLAND))
|
|
INDEX(ds,newgrid,x-1,y) |= hdata << D_I_LINE_SHIFT_R;
|
|
if (x+1 < state->w && (GRID(state,x+1,y) & G_ISLAND))
|
|
INDEX(ds,newgrid,x+1,y) |= hdata << D_I_LINE_SHIFT_L;
|
|
if (y > 0 && (GRID(state,x,y-1) & G_ISLAND))
|
|
INDEX(ds,newgrid,x,y-1) |= vdata << D_I_LINE_SHIFT_D;
|
|
if (y+1 < state->h && (GRID(state,x,y+1) & G_ISLAND))
|
|
INDEX(ds,newgrid,x,y+1) |= vdata << D_I_LINE_SHIFT_U;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now go through and draw any changed grid square.
|
|
*/
|
|
for (x = 0; x < ds->w; x++) {
|
|
for (y = 0; y < ds->h; y++) {
|
|
unsigned long newval = INDEX(ds,newgrid,x,y);
|
|
if (INDEX(ds,grid,x,y) != newval) {
|
|
v = GRID(state, x, y);
|
|
if (v & G_ISLAND) {
|
|
is = INDEX(state, gridi, x, y);
|
|
draw_island_tile(dr, ds, x, y, is->count, newval);
|
|
|
|
/*
|
|
* If this tile is right at the edge of the grid,
|
|
* we must also draw the part of the island that
|
|
* goes completely out of bounds. We don't bother
|
|
* keeping separate entries in ds->newgrid for
|
|
* these tiles; it's easier just to redraw them
|
|
* iff we redraw their parent island tile.
|
|
*/
|
|
if (x == 0)
|
|
draw_edge_tile(dr, ds, x-1, y, +1, 0, newval);
|
|
if (y == 0)
|
|
draw_edge_tile(dr, ds, x, y-1, 0, +1, newval);
|
|
if (x == state->w-1)
|
|
draw_edge_tile(dr, ds, x+1, y, -1, 0, newval);
|
|
if (y == state->h-1)
|
|
draw_edge_tile(dr, ds, x, y+1, 0, -1, newval);
|
|
} else {
|
|
draw_line_tile(dr, ds, x, y, newval);
|
|
}
|
|
INDEX(ds,grid,x,y) = newval;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static float game_anim_length(const game_state *oldstate,
|
|
const game_state *newstate, int dir, game_ui *ui)
|
|
{
|
|
return 0.0F;
|
|
}
|
|
|
|
static float game_flash_length(const game_state *oldstate,
|
|
const game_state *newstate, int dir, game_ui *ui)
|
|
{
|
|
if (!oldstate->completed && newstate->completed &&
|
|
!oldstate->solved && !newstate->solved)
|
|
return FLASH_TIME;
|
|
|
|
return 0.0F;
|
|
}
|
|
|
|
static int game_status(const game_state *state)
|
|
{
|
|
return state->completed ? +1 : 0;
|
|
}
|
|
|
|
static void game_print_size(const game_params *params, const game_ui *ui,
|
|
float *x, float *y)
|
|
{
|
|
int pw, ph;
|
|
|
|
/* 10mm squares by default. */
|
|
game_compute_size(params, 1000, ui, &pw, &ph);
|
|
*x = pw / 100.0F;
|
|
*y = ph / 100.0F;
|
|
}
|
|
|
|
static void game_print(drawing *dr, const game_state *state, const game_ui *ui,
|
|
int ts)
|
|
{
|
|
int ink = print_mono_colour(dr, 0);
|
|
int paper = print_mono_colour(dr, 1);
|
|
int x, y, cx, cy, i, nl;
|
|
int loff;
|
|
grid_type grid;
|
|
|
|
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
|
|
game_drawstate ads, *ds = &ads;
|
|
ads.tilesize = ts;
|
|
|
|
/* I don't think this wants a border. */
|
|
|
|
/* Bridges */
|
|
loff = ts / (8 * sqrt((state->params.maxb - 1)));
|
|
print_line_width(dr, ts / 12);
|
|
for (x = 0; x < state->w; x++) {
|
|
for (y = 0; y < state->h; y++) {
|
|
cx = COORD(x); cy = COORD(y);
|
|
grid = GRID(state,x,y);
|
|
nl = INDEX(state,lines,x,y);
|
|
|
|
if (grid & G_ISLAND) continue;
|
|
if (grid & G_LINEV) {
|
|
for (i = 0; i < nl; i++)
|
|
draw_line(dr, cx+ts/2+(2*i-nl+1)*loff, cy,
|
|
cx+ts/2+(2*i-nl+1)*loff, cy+ts, ink);
|
|
}
|
|
if (grid & G_LINEH) {
|
|
for (i = 0; i < nl; i++)
|
|
draw_line(dr, cx, cy+ts/2+(2*i-nl+1)*loff,
|
|
cx+ts, cy+ts/2+(2*i-nl+1)*loff, ink);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Islands */
|
|
for (i = 0; i < state->n_islands; i++) {
|
|
char str[32];
|
|
struct island *is = &state->islands[i];
|
|
grid = GRID(state, is->x, is->y);
|
|
cx = COORD(is->x) + ts/2;
|
|
cy = COORD(is->y) + ts/2;
|
|
|
|
draw_circle(dr, cx, cy, ISLAND_RADIUS, paper, ink);
|
|
|
|
sprintf(str, "%d", is->count);
|
|
draw_text(dr, cx, cy, FONT_VARIABLE, ISLAND_NUMSIZE(is->count),
|
|
ALIGN_VCENTRE | ALIGN_HCENTRE, ink, str);
|
|
}
|
|
}
|
|
|
|
#ifdef COMBINED
|
|
#define thegame bridges
|
|
#endif
|
|
|
|
const struct game thegame = {
|
|
"Bridges", "games.bridges", "bridges",
|
|
default_params,
|
|
game_fetch_preset, NULL,
|
|
decode_params,
|
|
encode_params,
|
|
free_params,
|
|
dup_params,
|
|
true, game_configure, custom_params,
|
|
validate_params,
|
|
new_game_desc,
|
|
validate_desc,
|
|
new_game,
|
|
dup_game,
|
|
free_game,
|
|
true, solve_game,
|
|
true, game_can_format_as_text_now, game_text_format,
|
|
get_prefs, set_prefs,
|
|
new_ui,
|
|
free_ui,
|
|
NULL, /* encode_ui */
|
|
NULL, /* decode_ui */
|
|
NULL, /* game_request_keys */
|
|
game_changed_state,
|
|
current_key_label,
|
|
interpret_move,
|
|
execute_move,
|
|
PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
|
|
game_colours,
|
|
game_new_drawstate,
|
|
game_free_drawstate,
|
|
game_redraw,
|
|
game_anim_length,
|
|
game_flash_length,
|
|
game_get_cursor_location,
|
|
game_status,
|
|
true, false, game_print_size, game_print,
|
|
false, /* wants_statusbar */
|
|
false, NULL, /* timing_state */
|
|
REQUIRE_RBUTTON, /* flags */
|
|
};
|
|
|
|
/* vim: set shiftwidth=4 tabstop=8: */
|