Files
puzzles/icons/icon.pl
Simon Tatham cc7f5503dc Migrate to a CMake-based build system.
This completely removes the old system of mkfiles.pl + Recipe + .R
files that I used to manage the various per-platform makefiles and
other build scripts in this code base. In its place is a
CMakeLists.txt setup, which is still able to compile for Linux,
Windows, MacOS, NestedVM and Emscripten.

The main reason for doing this is because mkfiles.pl was a horrible
pile of unmaintainable cruft. It was hard to keep up to date (e.g.
didn't reliably support the latest Visual Studio project files); it
was so specific to me that nobody else could maintain it (or was even
interested in trying, and who can blame them?), and it wasn't even
easy to _use_ if you weren't me. And it didn't even produce very good
makefiles.

In fact I've been wanting to hurl mkfiles.pl in the bin for years, but
was blocked by CMake not quite being able to support my clang-cl based
system for cross-compiling for Windows on Linux. But CMake 3.20 was
released this month and fixes the last bug in that area (it had to do
with preprocessing of .rc files), so now I'm unblocked!

CMake is not perfect, but it's better at mkfiles.pl's job than
mkfiles.pl was, and it has the great advantage that lots of other
people already know about it.

Other advantages of the CMake system:

 - Easier to build with. At least for the big three platforms, it's
   possible to write down a list of build commands that's actually the
   same everywhere ("cmake ." followed by "cmake --build ."). There's
   endless scope for making your end-user cmake commands more fancy
   than that, for various advantages, but very few people _have_ to.

 - Less effort required to add a new puzzle. You just add a puzzle()
   statement to the top-level CMakeLists.txt, instead of needing to
   remember eight separate fiddly things to put in the .R file. (Look
   at the reduction in CHECKLST.txt!)

 - The 'unfinished' subdirectory is now _built_ unconditionally, even
   if the things in it don't go into the 'make install' target. So
   they won't bit-rot in future.

 - Unix build: unified the old icons makefile with the main build, so
   that each puzzle builds without an icon, runs to build its icon,
   then relinks with it.

 - Windows build: far easier to switch back and forth between debug
   and release than with the old makefiles.

 - MacOS build: CMake has its own .dmg generator, which is surely
   better thought out than my ten-line bodge.

 - net reduction in the number of lines of code in the code base. In
   fact, that's still true _even_ if you don't count the deletion of
   mkfiles.pl itself - that script didn't even have the virtue of
   allowing everything else to be done exceptionally concisely.
2021-03-29 19:02:23 +01:00

274 lines
8.6 KiB
Prolog
Executable File

#!/usr/bin/perl
# Take a collection of input image files and convert them into a
# multi-resolution Windows .ICO icon file.
#
# The input images can be treated as having four different colour
# depths:
#
# - 24-bit true colour
# - 8-bit with custom palette
# - 4-bit using the Windows 16-colour palette (see comment below
# for details)
# - 1-bit using black and white only.
#
# The images can be supplied in any input format acceptable to
# ImageMagick, but their actual colour usage must already be
# appropriate for the specified mode; this script will not do any
# substantive conversion. So if an image intended to be used in 4-
# or 1-bit mode contains any colour not in the appropriate fixed
# palette, that's a fatal error; if an image to be used in 8-bit
# mode contains more than 256 distinct colours, that's also a fatal
# error.
#
# Command-line syntax is:
#
# icon.pl -depth imagefile [imagefile...] [-depth imagefile [imagefile...]]
#
# where `-depth' is one of `-24', `-8', `-4' or `-1', and tells the
# script how to treat all the image files given after that option
# until the next depth option. For example, you might execute
#
# icon.pl -24 48x48x24.png 32x32x24.png -8 32x32x8.png -1 monochrome.png
#
# to build an icon file containing two differently sized 24-bit
# images, one 8-bit image and one black and white image.
#
# Windows .ICO files support a 1-bit alpha channel on all these
# image types. That is, any pixel can be either opaque or fully
# transparent, but not partially transparent. The alpha channel is
# separate from the main image data, meaning that `transparent' is
# not required to take up a palette entry. (So an 8-bit image can
# have 256 distinct _opaque_ colours, plus transparent pixels as
# well.) If the input images have alpha channels, they will be used
# to determine which pixels of the icon are transparent, by simple
# quantisation half way up (e.g. in a PNG image with an 8-bit alpha
# channel, alpha values of 00-7F will be mapped to transparent
# pixels, and 80-FF will become opaque).
# The Windows 16-colour palette consists of:
# - the eight corners of the colour cube (000000, 0000FF, 00FF00,
# 00FFFF, FF0000, FF00FF, FFFF00, FFFFFF)
# - dim versions of the seven non-black corners, at 128/255 of the
# brightness (000080, 008000, 008080, 800000, 800080, 808000,
# 808080)
# - light grey at 192/255 of full brightness (C0C0C0).
%win16pal = (
"\x00\x00\x00\x00" => 0,
"\x00\x00\x80\x00" => 1,
"\x00\x80\x00\x00" => 2,
"\x00\x80\x80\x00" => 3,
"\x80\x00\x00\x00" => 4,
"\x80\x00\x80\x00" => 5,
"\x80\x80\x00\x00" => 6,
"\xC0\xC0\xC0\x00" => 7,
"\x80\x80\x80\x00" => 8,
"\x00\x00\xFF\x00" => 9,
"\x00\xFF\x00\x00" => 10,
"\x00\xFF\xFF\x00" => 11,
"\xFF\x00\x00\x00" => 12,
"\xFF\x00\xFF\x00" => 13,
"\xFF\xFF\x00\x00" => 14,
"\xFF\xFF\xFF\x00" => 15,
);
@win16pal = sort { $win16pal{$a} <=> $win16pal{$b} } keys %win16pal;
# The black and white palette consists of black (000000) and white
# (FFFFFF), obviously.
%win2pal = (
"\x00\x00\x00\x00" => 0,
"\xFF\xFF\xFF\x00" => 1,
);
@win2pal = sort { $win16pal{$a} <=> $win2pal{$b} } keys %win2pal;
@hdr = ();
@dat = ();
$depth = undef;
$convert = "convert";
foreach $_ (@ARGV) {
if (/^-(24|8|4|1)$/) {
$depth = $1;
} elsif (/^--convert=(.*)$/) {
$convert = $1;
} elsif (defined $depth) {
&readicon($_, $depth);
} else {
$usage = 1;
}
}
if ($usage || length @hdr == 0) {
print "usage: icon.pl ( -24 | -8 | -4 | -1 ) image [image...]\n";
print " [ ( -24 | -8 | -4 | -1 ) image [image...] ...]\n";
exit 0;
}
# Now write out the output icon file.
print pack "vvv", 0, 1, scalar @hdr; # file-level header
$filepos = 6 + 16 * scalar @hdr;
for ($i = 0; $i < scalar @hdr; $i++) {
print $hdr[$i];
print pack "V", $filepos;
$filepos += length($dat[$i]);
}
for ($i = 0; $i < scalar @hdr; $i++) {
print $dat[$i];
}
sub readicon {
my $filename = shift @_;
my $depth = shift @_;
my $pix;
my $i;
my %pal;
# Determine the icon's width and height.
my $w = `identify -format %w $filename`;
my $h = `identify -format %h $filename`;
# Read the file in as RGBA data. We flip vertically at this
# point, to avoid having to do it ourselves (.BMP and hence
# .ICO are bottom-up).
my $data = [];
open IDATA, "-|", $convert, "-set", "colorspace", "sRGB", "-flip", "-depth", "8", $filename, "rgba:-";
push @$data, $rgb while (read IDATA,$rgb,4,0) == 4;
close IDATA;
# Check we have the right amount of data.
$xl = $w * $h;
$al = scalar @$data;
die "wrong amount of image data ($al, expected $xl) from $filename\n"
unless $al == $xl;
# Build the alpha channel now, so we can exclude transparent
# pixels from the palette analysis. We replace transparent
# pixels with undef in the data array.
#
# We quantise the alpha channel half way up, so that alpha of
# 0x80 or more is taken to be fully opaque and 0x7F or less is
# fully transparent. Nasty, but the best we can do without
# dithering (and don't even suggest we do that!).
my $x;
my $y;
my $alpha = "";
for ($y = 0; $y < $h; $y++) {
my $currbyte = 0, $currbits = 0;
for ($x = 0; $x < (($w+31)|31)-31; $x++) {
$pix = ($x < $w ? $data->[$y*$w+$x] : "\x00\x00\x00\xFF");
my @rgba = unpack "CCCC", $pix;
$currbyte <<= 1;
$currbits++;
if ($rgba[3] < 0x80) {
if ($x < $w) {
$data->[$y*$w+$x] = undef;
}
$currbyte |= 1; # MS has the alpha channel inverted :-)
} else {
# Might as well flip RGBA into BGR0 while we're here.
if ($x < $w) {
$data->[$y*$w+$x] = pack "CCCC",
$rgba[2], $rgba[1], $rgba[0], 0;
}
}
if ($currbits >= 8) {
$alpha .= pack "C", $currbyte;
$currbits -= 8;
}
}
}
# For an 8-bit image, check we have at most 256 distinct
# colours, and build the palette.
%pal = ();
if ($depth == 8) {
my $palindex = 0;
foreach $pix (@$data) {
next unless defined $pix;
$pal{$pix} = $palindex++ unless defined $pal{$pix};
}
die "too many colours in 8-bit image $filename\n" unless $palindex <= 256;
} elsif ($depth == 4) {
%pal = %win16pal;
} elsif ($depth == 1) {
%pal = %win2pal;
}
my $raster = "";
if ($depth < 24) {
# For a non-24-bit image, flatten the image into one palette
# index per pixel.
$pad = 32 / $depth; # number of pixels to pad scanline to 4-byte align
$pmask = $pad-1;
for ($y = 0; $y < $h; $y++) {
my $currbyte = 0, $currbits = 0;
for ($x = 0; $x < (($w+$pmask)|$pmask)-$pmask; $x++) {
$currbyte <<= $depth;
$currbits += $depth;
if ($x < $w && defined ($pix = $data->[$y*$w+$x])) {
if (!defined $pal{$pix}) {
my $pixprintable = unpack "H*", $pix;
die "illegal colour value $pixprintable at pixel ($x,$y) in $filename\n";
}
$currbyte |= $pal{$pix};
}
if ($currbits >= 8) {
$raster .= pack "C", $currbyte;
$currbits -= 8;
}
}
}
} else {
# For a 24-bit image, reverse the order of the R,G,B values
# and stick a padding zero on the end.
#
# (In this loop we don't need to bother padding the
# scanline out to a multiple of four bytes, because every
# pixel takes four whole bytes anyway.)
for ($i = 0; $i < scalar @$data; $i++) {
if (defined $data->[$i]) {
$raster .= $data->[$i];
} else {
$raster .= "\x00\x00\x00\x00";
}
}
$depth = 32; # and adjust this
}
# Prepare the icon data. First the header...
my $data = pack "VVVvvVVVVVV",
40, # size of bitmap info header
$w, # icon width
$h*2, # icon height (x2 to indicate the subsequent alpha channel)
1, # 1 plane (common to all MS image formats)
$depth, # bits per pixel
0, # no compression
length $raster, # image size
0, 0, 0, 0; # resolution, colours used, colours important (ignored)
# ... then the palette ...
if ($depth <= 8) {
my $ncols = (1 << $depth);
my $palette = "\x00\x00\x00\x00" x $ncols;
foreach $i (keys %pal) {
substr($palette, $pal{$i}*4, 4) = $i;
}
$data .= $palette;
}
# ... the raster data we already had ready ...
$data .= $raster;
# ... and the alpha channel we already had as well.
$data .= $alpha;
# Prepare the header which will represent this image in the
# icon file.
my $header = pack "CCCCvvV",
$w, $h, # width and height (this time the real height)
1 << $depth, # number of colours, if less than 256
0, # reserved
1, # planes
$depth, # bits per pixel
length $data; # size of real icon data
push @hdr, $header;
push @dat, $data;
}