mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-21 08:01:30 -07:00
Files
2696 lines
90 KiB
C
2696 lines
90 KiB
C
/*
|
|
* loopy.c: An implementation of the Nikoli game 'Loop the loop'.
|
|
* (c) Mike Pinna, 2005
|
|
*
|
|
* vim: set shiftwidth=4 :set textwidth=80:
|
|
*/
|
|
|
|
/*
|
|
* TODO:
|
|
*
|
|
* - setting very high recursion depth seems to cause memory
|
|
* munching: are we recursing before checking completion, by any
|
|
* chance?
|
|
*
|
|
* - there's an interesting deductive technique which makes use of
|
|
* topology rather than just graph theory. Each _square_ in the
|
|
* grid is either inside or outside the loop; you can tell that
|
|
* two squares are on the same side of the loop if they're
|
|
* separated by an x (or, more generally, by a path crossing no
|
|
* LINE_UNKNOWNs and an even number of LINE_YESes), and on the
|
|
* opposite side of the loop if they're separated by a line (or
|
|
* an odd number of LINE_YESes and no LINE_UNKNOWNs). Oh, and
|
|
* any square separated from the outside of the grid by a
|
|
* LINE_YES or a LINE_NO is on the inside or outside
|
|
* respectively. So if you can track this for all squares, you
|
|
* can occasionally spot that two squares are separated by a
|
|
* LINE_UNKNOWN but their relative insideness is known, and
|
|
* therefore deduce the state of the edge between them.
|
|
* + An efficient way to track this would be by augmenting the
|
|
* disjoint set forest data structure. Each element, along
|
|
* with a pointer to a parent member of its equivalence
|
|
* class, would also carry a one-bit field indicating whether
|
|
* it was equal or opposite to its parent. Then you could
|
|
* keep flipping a bit as you ascended the tree during
|
|
* dsf_canonify(), and hence you'd be able to return the
|
|
* relationship of the input value to its ultimate parent
|
|
* (and also you could then get all those bits right when you
|
|
* went back up the tree rewriting). So you'd be able to
|
|
* query whether any two elements were known-equal,
|
|
* known-opposite, or not-known, and you could add new
|
|
* equalities or oppositenesses to increase your knowledge.
|
|
* (Of course the algorithm would have to fail an assertion
|
|
* if you tried to tell it two things it already knew to be
|
|
* opposite were equal, or vice versa!)
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <ctype.h>
|
|
#include <math.h>
|
|
|
|
#include "puzzles.h"
|
|
#include "tree234.h"
|
|
|
|
#define PREFERRED_TILE_SIZE 32
|
|
#define TILE_SIZE (ds->tilesize)
|
|
#define LINEWIDTH TILE_SIZE / 16
|
|
#define BORDER (TILE_SIZE / 2)
|
|
|
|
#define FLASH_TIME 0.4F
|
|
|
|
#define HL_COUNT(state) ((state)->w * ((state)->h + 1))
|
|
#define VL_COUNT(state) (((state)->w + 1) * (state)->h)
|
|
#define DOT_COUNT(state) (((state)->w + 1) * ((state)->h + 1))
|
|
#define SQUARE_COUNT(state) ((state)->w * (state)->h)
|
|
|
|
#define ABOVE_SQUARE(state, i, j) ((state)->hl[(i) + (state)->w * (j)])
|
|
#define BELOW_SQUARE(state, i, j) ABOVE_SQUARE(state, i, (j)+1)
|
|
|
|
#define LEFTOF_SQUARE(state, i, j) ((state)->vl[(i) + ((state)->w + 1) * (j)])
|
|
#define RIGHTOF_SQUARE(state, i, j) LEFTOF_SQUARE(state, (i)+1, j)
|
|
|
|
#define LEGAL_DOT(state, i, j) ((i) >= 0 && (j) >= 0 && \
|
|
(i) <= (state)->w && (j) <= (state)->h)
|
|
|
|
/*
|
|
* These macros return rvalues only, but can cope with being passed
|
|
* out-of-range coordinates.
|
|
*/
|
|
#define ABOVE_DOT(state, i, j) ((!LEGAL_DOT(state, i, j) || j <= 0) ? \
|
|
LINE_NO : LV_ABOVE_DOT(state, i, j))
|
|
#define BELOW_DOT(state, i, j) ((!LEGAL_DOT(state, i, j) || j >= (state)->h) ? \
|
|
LINE_NO : LV_BELOW_DOT(state, i, j))
|
|
|
|
#define LEFTOF_DOT(state, i, j) ((!LEGAL_DOT(state, i, j) || i <= 0) ? \
|
|
LINE_NO : LV_LEFTOF_DOT(state, i, j))
|
|
#define RIGHTOF_DOT(state, i, j) ((!LEGAL_DOT(state, i, j) || i >= (state)->w)?\
|
|
LINE_NO : LV_RIGHTOF_DOT(state, i, j))
|
|
|
|
/*
|
|
* These macros expect to be passed valid coordinates, and return
|
|
* lvalues.
|
|
*/
|
|
#define LV_BELOW_DOT(state, i, j) ((state)->vl[(i) + ((state)->w + 1) * (j)])
|
|
#define LV_ABOVE_DOT(state, i, j) LV_BELOW_DOT(state, i, (j)-1)
|
|
|
|
#define LV_RIGHTOF_DOT(state, i, j) ((state)->hl[(i) + (state)->w * (j)])
|
|
#define LV_LEFTOF_DOT(state, i, j) LV_RIGHTOF_DOT(state, (i)-1, j)
|
|
|
|
#define CLUE_AT(state, i, j) ((i < 0 || i >= (state)->w || \
|
|
j < 0 || j >= (state)->h) ? \
|
|
' ' : LV_CLUE_AT(state, i, j))
|
|
|
|
#define LV_CLUE_AT(state, i, j) ((state)->clues[(i) + (state)->w * (j)])
|
|
|
|
#define OPP(dir) (dir == LINE_UNKNOWN ? LINE_UNKNOWN : \
|
|
dir == LINE_YES ? LINE_NO : LINE_YES)
|
|
|
|
static char *game_text_format(game_state *state);
|
|
|
|
enum {
|
|
COL_BACKGROUND,
|
|
COL_FOREGROUND,
|
|
COL_HIGHLIGHT,
|
|
NCOLOURS
|
|
};
|
|
|
|
enum line_state { LINE_UNKNOWN, LINE_YES, LINE_NO };
|
|
|
|
enum direction { UP, DOWN, LEFT, RIGHT };
|
|
|
|
struct game_params {
|
|
int w, h, rec;
|
|
};
|
|
|
|
struct game_state {
|
|
int w, h;
|
|
|
|
/* Put ' ' in a square that doesn't get a clue */
|
|
char *clues;
|
|
|
|
/* Arrays of line states, stored left-to-right, top-to-bottom */
|
|
char *hl, *vl;
|
|
|
|
int solved;
|
|
int cheated;
|
|
|
|
int recursion_depth;
|
|
};
|
|
|
|
static game_state *dup_game(game_state *state)
|
|
{
|
|
game_state *ret = snew(game_state);
|
|
|
|
ret->h = state->h;
|
|
ret->w = state->w;
|
|
ret->solved = state->solved;
|
|
ret->cheated = state->cheated;
|
|
|
|
ret->clues = snewn(SQUARE_COUNT(state), char);
|
|
memcpy(ret->clues, state->clues, SQUARE_COUNT(state));
|
|
|
|
ret->hl = snewn(HL_COUNT(state), char);
|
|
memcpy(ret->hl, state->hl, HL_COUNT(state));
|
|
|
|
ret->vl = snewn(VL_COUNT(state), char);
|
|
memcpy(ret->vl, state->vl, VL_COUNT(state));
|
|
|
|
ret->recursion_depth = state->recursion_depth;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void free_game(game_state *state)
|
|
{
|
|
if (state) {
|
|
sfree(state->clues);
|
|
sfree(state->hl);
|
|
sfree(state->vl);
|
|
sfree(state);
|
|
}
|
|
}
|
|
|
|
enum solver_status {
|
|
SOLVER_SOLVED, /* This is the only solution the solver could find */
|
|
SOLVER_MISTAKE, /* This is definitely not a solution */
|
|
SOLVER_AMBIGUOUS, /* This _might_ be an ambiguous solution */
|
|
SOLVER_INCOMPLETE /* This may be a partial solution */
|
|
};
|
|
|
|
typedef struct solver_state {
|
|
game_state *state;
|
|
/* XXX dot_atleastone[i,j, dline] is equivalent to */
|
|
/* dot_atmostone[i,j,OPP_DLINE(dline)] */
|
|
char *dot_atleastone;
|
|
char *dot_atmostone;
|
|
/* char *dline_identical; */
|
|
int recursion_remaining;
|
|
enum solver_status solver_status;
|
|
int *dotdsf, *looplen;
|
|
} solver_state;
|
|
|
|
static solver_state *new_solver_state(game_state *state) {
|
|
solver_state *ret = snew(solver_state);
|
|
int i;
|
|
|
|
ret->state = dup_game(state);
|
|
|
|
ret->dot_atmostone = snewn(DOT_COUNT(state), char);
|
|
memset(ret->dot_atmostone, 0, DOT_COUNT(state));
|
|
ret->dot_atleastone = snewn(DOT_COUNT(state), char);
|
|
memset(ret->dot_atleastone, 0, DOT_COUNT(state));
|
|
|
|
#if 0
|
|
dline_identical = snewn(DOT_COUNT(state), char);
|
|
memset(dline_identical, 0, DOT_COUNT(state));
|
|
#endif
|
|
|
|
ret->recursion_remaining = state->recursion_depth;
|
|
ret->solver_status = SOLVER_INCOMPLETE; /* XXX This may be a lie */
|
|
|
|
ret->dotdsf = snewn(DOT_COUNT(state), int);
|
|
ret->looplen = snewn(DOT_COUNT(state), int);
|
|
for (i = 0; i < DOT_COUNT(state); i++) {
|
|
ret->dotdsf[i] = i;
|
|
ret->looplen[i] = 1;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void free_solver_state(solver_state *sstate) {
|
|
if (sstate) {
|
|
free_game(sstate->state);
|
|
sfree(sstate->dot_atleastone);
|
|
sfree(sstate->dot_atmostone);
|
|
/* sfree(sstate->dline_identical); */
|
|
sfree(sstate->dotdsf);
|
|
sfree(sstate->looplen);
|
|
sfree(sstate);
|
|
}
|
|
}
|
|
|
|
static solver_state *dup_solver_state(solver_state *sstate) {
|
|
game_state *state;
|
|
|
|
solver_state *ret = snew(solver_state);
|
|
|
|
ret->state = state = dup_game(sstate->state);
|
|
|
|
ret->dot_atmostone = snewn(DOT_COUNT(state), char);
|
|
memcpy(ret->dot_atmostone, sstate->dot_atmostone, DOT_COUNT(state));
|
|
|
|
ret->dot_atleastone = snewn(DOT_COUNT(state), char);
|
|
memcpy(ret->dot_atleastone, sstate->dot_atleastone, DOT_COUNT(state));
|
|
|
|
#if 0
|
|
ret->dline_identical = snewn((state->w + 1) * (state->h + 1), char);
|
|
memcpy(ret->dline_identical, state->dot_atmostone,
|
|
(state->w + 1) * (state->h + 1));
|
|
#endif
|
|
|
|
ret->recursion_remaining = sstate->recursion_remaining;
|
|
ret->solver_status = sstate->solver_status;
|
|
|
|
ret->dotdsf = snewn(DOT_COUNT(state), int);
|
|
ret->looplen = snewn(DOT_COUNT(state), int);
|
|
memcpy(ret->dotdsf, sstate->dotdsf, DOT_COUNT(state) * sizeof(int));
|
|
memcpy(ret->looplen, sstate->looplen, DOT_COUNT(state) * sizeof(int));
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Merge two dots due to the existence of an edge between them.
|
|
* Updates the dsf tracking equivalence classes, and keeps track of
|
|
* the length of path each dot is currently a part of.
|
|
*/
|
|
static void merge_dots(solver_state *sstate, int x1, int y1, int x2, int y2)
|
|
{
|
|
int i, j, len;
|
|
|
|
i = y1 * (sstate->state->w + 1) + x1;
|
|
j = y2 * (sstate->state->w + 1) + x2;
|
|
|
|
i = dsf_canonify(sstate->dotdsf, i);
|
|
j = dsf_canonify(sstate->dotdsf, j);
|
|
|
|
if (i != j) {
|
|
len = sstate->looplen[i] + sstate->looplen[j];
|
|
dsf_merge(sstate->dotdsf, i, j);
|
|
i = dsf_canonify(sstate->dotdsf, i);
|
|
sstate->looplen[i] = len;
|
|
}
|
|
}
|
|
|
|
/* Count the number of lines of a particular type currently going into the
|
|
* given dot. Lines going off the edge of the board are assumed fixed no. */
|
|
static int dot_order(const game_state* state, int i, int j, char line_type)
|
|
{
|
|
int n = 0;
|
|
|
|
if (i > 0) {
|
|
if (LEFTOF_DOT(state, i, j) == line_type)
|
|
++n;
|
|
} else {
|
|
if (line_type == LINE_NO)
|
|
++n;
|
|
}
|
|
if (i < state->w) {
|
|
if (RIGHTOF_DOT(state, i, j) == line_type)
|
|
++n;
|
|
} else {
|
|
if (line_type == LINE_NO)
|
|
++n;
|
|
}
|
|
if (j > 0) {
|
|
if (ABOVE_DOT(state, i, j) == line_type)
|
|
++n;
|
|
} else {
|
|
if (line_type == LINE_NO)
|
|
++n;
|
|
}
|
|
if (j < state->h) {
|
|
if (BELOW_DOT(state, i, j) == line_type)
|
|
++n;
|
|
} else {
|
|
if (line_type == LINE_NO)
|
|
++n;
|
|
}
|
|
|
|
return n;
|
|
}
|
|
/* Count the number of lines of a particular type currently surrounding the
|
|
* given square */
|
|
static int square_order(const game_state* state, int i, int j, char line_type)
|
|
{
|
|
int n = 0;
|
|
|
|
if (ABOVE_SQUARE(state, i, j) == line_type)
|
|
++n;
|
|
if (BELOW_SQUARE(state, i, j) == line_type)
|
|
++n;
|
|
if (LEFTOF_SQUARE(state, i, j) == line_type)
|
|
++n;
|
|
if (RIGHTOF_SQUARE(state, i, j) == line_type)
|
|
++n;
|
|
|
|
return n;
|
|
}
|
|
|
|
/* Set all lines bordering a dot of type old_type to type new_type */
|
|
static void dot_setall(game_state *state, int i, int j,
|
|
char old_type, char new_type)
|
|
{
|
|
/* printf("dot_setall([%d,%d], %d, %d)\n", i, j, old_type, new_type); */
|
|
if (i > 0 && LEFTOF_DOT(state, i, j) == old_type)
|
|
LV_LEFTOF_DOT(state, i, j) = new_type;
|
|
if (i < state->w && RIGHTOF_DOT(state, i, j) == old_type)
|
|
LV_RIGHTOF_DOT(state, i, j) = new_type;
|
|
if (j > 0 && ABOVE_DOT(state, i, j) == old_type)
|
|
LV_ABOVE_DOT(state, i, j) = new_type;
|
|
if (j < state->h && BELOW_DOT(state, i, j) == old_type)
|
|
LV_BELOW_DOT(state, i, j) = new_type;
|
|
}
|
|
/* Set all lines bordering a square of type old_type to type new_type */
|
|
static void square_setall(game_state *state, int i, int j,
|
|
char old_type, char new_type)
|
|
{
|
|
if (ABOVE_SQUARE(state, i, j) == old_type)
|
|
ABOVE_SQUARE(state, i, j) = new_type;
|
|
if (BELOW_SQUARE(state, i, j) == old_type)
|
|
BELOW_SQUARE(state, i, j) = new_type;
|
|
if (LEFTOF_SQUARE(state, i, j) == old_type)
|
|
LEFTOF_SQUARE(state, i, j) = new_type;
|
|
if (RIGHTOF_SQUARE(state, i, j) == old_type)
|
|
RIGHTOF_SQUARE(state, i, j) = new_type;
|
|
}
|
|
|
|
static game_params *default_params(void)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->h = 10;
|
|
ret->w = 10;
|
|
ret->rec = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static game_params *dup_params(game_params *params)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
*ret = *params; /* structure copy */
|
|
return ret;
|
|
}
|
|
|
|
static const struct {
|
|
char *desc;
|
|
game_params params;
|
|
} loopy_presets[] = {
|
|
{ "4x4 Easy", { 4, 4, 0 } },
|
|
{ "4x4 Hard", { 4, 4, 2 } },
|
|
{ "7x7 Easy", { 7, 7, 0 } },
|
|
{ "7x7 Hard", { 7, 7, 2 } },
|
|
{ "10x10 Easy", { 10, 10, 0 } },
|
|
{ "10x10 Hard", { 10, 10, 2 } },
|
|
{ "15x15 Easy", { 15, 15, 0 } },
|
|
{ "30x20 Easy", { 30, 20, 0 } }
|
|
};
|
|
|
|
static int game_fetch_preset(int i, char **name, game_params **params)
|
|
{
|
|
game_params tmppar;
|
|
|
|
if (i < 0 || i >= lenof(loopy_presets))
|
|
return FALSE;
|
|
|
|
tmppar = loopy_presets[i].params;
|
|
*params = dup_params(&tmppar);
|
|
*name = dupstr(loopy_presets[i].desc);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static void free_params(game_params *params)
|
|
{
|
|
sfree(params);
|
|
}
|
|
|
|
static void decode_params(game_params *params, char const *string)
|
|
{
|
|
params->h = params->w = atoi(string);
|
|
params->rec = 0;
|
|
while (*string && isdigit((unsigned char)*string)) string++;
|
|
if (*string == 'x') {
|
|
string++;
|
|
params->h = atoi(string);
|
|
while (*string && isdigit((unsigned char)*string)) string++;
|
|
}
|
|
if (*string == 'r') {
|
|
string++;
|
|
params->rec = atoi(string);
|
|
while (*string && isdigit((unsigned char)*string)) string++;
|
|
}
|
|
}
|
|
|
|
static char *encode_params(game_params *params, int full)
|
|
{
|
|
char str[80];
|
|
sprintf(str, "%dx%d", params->w, params->h);
|
|
if (full)
|
|
sprintf(str + strlen(str), "r%d", params->rec);
|
|
return dupstr(str);
|
|
}
|
|
|
|
static config_item *game_configure(game_params *params)
|
|
{
|
|
config_item *ret;
|
|
char buf[80];
|
|
|
|
ret = snewn(4, config_item);
|
|
|
|
ret[0].name = "Width";
|
|
ret[0].type = C_STRING;
|
|
sprintf(buf, "%d", params->w);
|
|
ret[0].sval = dupstr(buf);
|
|
ret[0].ival = 0;
|
|
|
|
ret[1].name = "Height";
|
|
ret[1].type = C_STRING;
|
|
sprintf(buf, "%d", params->h);
|
|
ret[1].sval = dupstr(buf);
|
|
ret[1].ival = 0;
|
|
|
|
ret[2].name = "Recursion depth";
|
|
ret[2].type = C_STRING;
|
|
sprintf(buf, "%d", params->rec);
|
|
ret[2].sval = dupstr(buf);
|
|
ret[2].ival = 0;
|
|
|
|
ret[3].name = NULL;
|
|
ret[3].type = C_END;
|
|
ret[3].sval = NULL;
|
|
ret[3].ival = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static game_params *custom_params(config_item *cfg)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->w = atoi(cfg[0].sval);
|
|
ret->h = atoi(cfg[1].sval);
|
|
ret->rec = atoi(cfg[2].sval);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static char *validate_params(game_params *params, int full)
|
|
{
|
|
if (params->w < 4 || params->h < 4)
|
|
return "Width and height must both be at least 4";
|
|
if (params->rec < 0)
|
|
return "Recursion depth can't be negative";
|
|
return NULL;
|
|
}
|
|
|
|
/* We're going to store a list of current candidate squares for lighting.
|
|
* Each square gets a 'score', which tells us how adding that square right
|
|
* now would affect the length of the solution loop. We're trying to
|
|
* maximise that quantity so will bias our random selection of squares to
|
|
* light towards those with high scores */
|
|
struct square {
|
|
int score;
|
|
int random;
|
|
int x, y;
|
|
};
|
|
|
|
static int get_square_cmpfn(void *v1, void *v2)
|
|
{
|
|
struct square *s1 = (struct square *)v1;
|
|
struct square *s2 = (struct square *)v2;
|
|
int r;
|
|
|
|
r = s1->x - s2->x;
|
|
if (r)
|
|
return r;
|
|
|
|
r = s1->y - s2->y;
|
|
if (r)
|
|
return r;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int square_sort_cmpfn(void *v1, void *v2)
|
|
{
|
|
struct square *s1 = (struct square *)v1;
|
|
struct square *s2 = (struct square *)v2;
|
|
int r;
|
|
|
|
r = s2->score - s1->score;
|
|
if (r) {
|
|
return r;
|
|
}
|
|
|
|
r = s1->random - s2->random;
|
|
if (r) {
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* It's _just_ possible that two squares might have been given
|
|
* the same random value. In that situation, fall back to
|
|
* comparing based on the coordinates. This introduces a tiny
|
|
* directional bias, but not a significant one.
|
|
*/
|
|
return get_square_cmpfn(v1, v2);
|
|
}
|
|
|
|
static void print_tree(tree234 *tree)
|
|
{
|
|
#if 0
|
|
int i = 0;
|
|
struct square *s;
|
|
printf("Print tree:\n");
|
|
while (i < count234(tree)) {
|
|
s = (struct square *)index234(tree, i);
|
|
assert(s);
|
|
printf(" [%d,%d], %d, %d\n", s->x, s->y, s->score, s->random);
|
|
++i;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
enum { SQUARE_LIT, SQUARE_UNLIT };
|
|
|
|
#define SQUARE_STATE(i, j) \
|
|
(((i) < 0 || (i) >= params->w || \
|
|
(j) < 0 || (j) >= params->h) ? \
|
|
SQUARE_UNLIT : LV_SQUARE_STATE(i,j))
|
|
|
|
#define LV_SQUARE_STATE(i, j) board[(i) + params->w * (j)]
|
|
|
|
static void print_board(const game_params *params, const char *board)
|
|
{
|
|
#if 0
|
|
int i,j;
|
|
|
|
printf(" ");
|
|
for (i = 0; i < params->w; i++) {
|
|
printf("%d", i%10);
|
|
}
|
|
printf("\n");
|
|
for (j = 0; j < params->h; j++) {
|
|
printf("%d", j%10);
|
|
for (i = 0; i < params->w; i++) {
|
|
printf("%c", SQUARE_STATE(i, j) ? ' ' : 'O');
|
|
}
|
|
printf("\n");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static char *new_fullyclued_board(game_params *params, random_state *rs)
|
|
{
|
|
char *clues;
|
|
char *board;
|
|
int i, j, a, b, c;
|
|
game_state s;
|
|
game_state *state = &s;
|
|
int board_area = SQUARE_COUNT(params);
|
|
int t;
|
|
|
|
struct square *square, *tmpsquare, *sq;
|
|
struct square square_pos;
|
|
|
|
/* These will contain exactly the same information, sorted into different
|
|
* orders */
|
|
tree234 *lightable_squares_sorted, *lightable_squares_gettable;
|
|
|
|
#define SQUARE_REACHABLE(i,j) \
|
|
(t = (SQUARE_STATE(i-1, j) == SQUARE_LIT || \
|
|
SQUARE_STATE(i+1, j) == SQUARE_LIT || \
|
|
SQUARE_STATE(i, j-1) == SQUARE_LIT || \
|
|
SQUARE_STATE(i, j+1) == SQUARE_LIT), \
|
|
/* printf("SQUARE_REACHABLE(%d,%d) = %d\n", i, j, t), */ \
|
|
t)
|
|
|
|
|
|
/* One situation in which we may not light a square is if that'll leave one
|
|
* square above/below and one left/right of us unlit, separated by a lit
|
|
* square diagnonal from us */
|
|
#define SQUARE_DIAGONAL_VIOLATION(i, j, h, v) \
|
|
(t = (SQUARE_STATE((i)+(h), (j)) == SQUARE_UNLIT && \
|
|
SQUARE_STATE((i), (j)+(v)) == SQUARE_UNLIT && \
|
|
SQUARE_STATE((i)+(h), (j)+(v)) == SQUARE_LIT), \
|
|
/* t ? printf("SQUARE_DIAGONAL_VIOLATION(%d, %d, %d, %d)\n",
|
|
i, j, h, v) : 0,*/ \
|
|
t)
|
|
|
|
/* We also may not light a square if it will form a loop of lit squares
|
|
* around some unlit squares, as then the game soln won't have a single
|
|
* loop */
|
|
#define SQUARE_LOOP_VIOLATION(i, j, lit1, lit2) \
|
|
(SQUARE_STATE((i)+1, (j)) == lit1 && \
|
|
SQUARE_STATE((i)-1, (j)) == lit1 && \
|
|
SQUARE_STATE((i), (j)+1) == lit2 && \
|
|
SQUARE_STATE((i), (j)-1) == lit2)
|
|
|
|
#define CAN_LIGHT_SQUARE(i, j) \
|
|
(SQUARE_REACHABLE(i, j) && \
|
|
!SQUARE_DIAGONAL_VIOLATION(i, j, -1, -1) && \
|
|
!SQUARE_DIAGONAL_VIOLATION(i, j, +1, -1) && \
|
|
!SQUARE_DIAGONAL_VIOLATION(i, j, -1, +1) && \
|
|
!SQUARE_DIAGONAL_VIOLATION(i, j, +1, +1) && \
|
|
!SQUARE_LOOP_VIOLATION(i, j, SQUARE_LIT, SQUARE_UNLIT) && \
|
|
!SQUARE_LOOP_VIOLATION(i, j, SQUARE_UNLIT, SQUARE_LIT))
|
|
|
|
#define IS_LIGHTING_CANDIDATE(i, j) \
|
|
(SQUARE_STATE(i, j) == SQUARE_UNLIT && \
|
|
CAN_LIGHT_SQUARE(i,j))
|
|
|
|
/* The 'score' of a square reflects its current desirability for selection
|
|
* as the next square to light. We want to encourage moving into uncharted
|
|
* areas so we give scores according to how many of the square's neighbours
|
|
* are currently unlit. */
|
|
|
|
/* UNLIT SCORE
|
|
* 3 2
|
|
* 2 0
|
|
* 1 -2
|
|
*/
|
|
#define SQUARE_SCORE(i,j) \
|
|
(2*((SQUARE_STATE(i-1, j) == SQUARE_UNLIT) + \
|
|
(SQUARE_STATE(i+1, j) == SQUARE_UNLIT) + \
|
|
(SQUARE_STATE(i, j-1) == SQUARE_UNLIT) + \
|
|
(SQUARE_STATE(i, j+1) == SQUARE_UNLIT)) - 4)
|
|
|
|
/* When a square gets lit, this defines how far away from that square we
|
|
* need to go recomputing scores */
|
|
#define SCORE_DISTANCE 1
|
|
|
|
board = snewn(board_area, char);
|
|
clues = snewn(board_area, char);
|
|
|
|
state->h = params->h;
|
|
state->w = params->w;
|
|
state->clues = clues;
|
|
|
|
/* Make a board */
|
|
memset(board, SQUARE_UNLIT, board_area);
|
|
|
|
/* Seed the board with a single lit square near the middle */
|
|
i = params->w / 2;
|
|
j = params->h / 2;
|
|
if (params->w & 1 && random_bits(rs, 1))
|
|
++i;
|
|
if (params->h & 1 && random_bits(rs, 1))
|
|
++j;
|
|
|
|
LV_SQUARE_STATE(i, j) = SQUARE_LIT;
|
|
|
|
/* We need a way of favouring squares that will increase our loopiness.
|
|
* We do this by maintaining a list of all candidate squares sorted by
|
|
* their score and choose randomly from that with appropriate skew.
|
|
* In order to avoid consistently biasing towards particular squares, we
|
|
* need the sort order _within_ each group of scores to be completely
|
|
* random. But it would be abusing the hospitality of the tree234 data
|
|
* structure if our comparison function were nondeterministic :-). So with
|
|
* each square we associate a random number that does not change during a
|
|
* particular run of the generator, and use that as a secondary sort key.
|
|
* Yes, this means we will be biased towards particular random squares in
|
|
* any one run but that doesn't actually matter. */
|
|
|
|
lightable_squares_sorted = newtree234(square_sort_cmpfn);
|
|
lightable_squares_gettable = newtree234(get_square_cmpfn);
|
|
#define ADD_SQUARE(s) \
|
|
do { \
|
|
/* printf("ADD SQUARE: [%d,%d], %d, %d\n",
|
|
s->x, s->y, s->score, s->random);*/ \
|
|
sq = add234(lightable_squares_sorted, s); \
|
|
assert(sq == s); \
|
|
sq = add234(lightable_squares_gettable, s); \
|
|
assert(sq == s); \
|
|
} while (0)
|
|
|
|
#define REMOVE_SQUARE(s) \
|
|
do { \
|
|
/* printf("DELETE SQUARE: [%d,%d], %d, %d\n",
|
|
s->x, s->y, s->score, s->random);*/ \
|
|
sq = del234(lightable_squares_sorted, s); \
|
|
assert(sq); \
|
|
sq = del234(lightable_squares_gettable, s); \
|
|
assert(sq); \
|
|
} while (0)
|
|
|
|
#define HANDLE_DIR(a, b) \
|
|
square = snew(struct square); \
|
|
square->x = (i)+(a); \
|
|
square->y = (j)+(b); \
|
|
square->score = 2; \
|
|
square->random = random_bits(rs, 31); \
|
|
ADD_SQUARE(square);
|
|
HANDLE_DIR(-1, 0);
|
|
HANDLE_DIR( 1, 0);
|
|
HANDLE_DIR( 0,-1);
|
|
HANDLE_DIR( 0, 1);
|
|
#undef HANDLE_DIR
|
|
|
|
/* Light squares one at a time until the board is interesting enough */
|
|
while (TRUE)
|
|
{
|
|
/* We have count234(lightable_squares) possibilities, and in
|
|
* lightable_squares_sorted they are sorted with the most desirable
|
|
* first. */
|
|
c = count234(lightable_squares_sorted);
|
|
if (c == 0)
|
|
break;
|
|
assert(c == count234(lightable_squares_gettable));
|
|
|
|
/* Check that the best square available is any good */
|
|
square = (struct square *)index234(lightable_squares_sorted, 0);
|
|
assert(square);
|
|
|
|
if (square->score <= 0)
|
|
break;
|
|
|
|
print_tree(lightable_squares_sorted);
|
|
assert(square->score == SQUARE_SCORE(square->x, square->y));
|
|
assert(SQUARE_STATE(square->x, square->y) == SQUARE_UNLIT);
|
|
assert(square->x >= 0 && square->x < params->w);
|
|
assert(square->y >= 0 && square->y < params->h);
|
|
/* printf("LIGHT SQUARE: [%d,%d], score = %d\n", square->x, square->y, square->score); */
|
|
|
|
/* Update data structures */
|
|
LV_SQUARE_STATE(square->x, square->y) = SQUARE_LIT;
|
|
REMOVE_SQUARE(square);
|
|
|
|
print_board(params, board);
|
|
|
|
/* We might have changed the score of any squares up to 2 units away in
|
|
* any direction */
|
|
for (b = -SCORE_DISTANCE; b <= SCORE_DISTANCE; b++) {
|
|
for (a = -SCORE_DISTANCE; a <= SCORE_DISTANCE; a++) {
|
|
if (!a && !b)
|
|
continue;
|
|
square_pos.x = square->x + a;
|
|
square_pos.y = square->y + b;
|
|
/* printf("Refreshing score for [%d,%d]:\n", square_pos.x, square_pos.y); */
|
|
if (square_pos.x < 0 || square_pos.x >= params->w ||
|
|
square_pos.y < 0 || square_pos.y >= params->h) {
|
|
/* printf(" Out of bounds\n"); */
|
|
continue;
|
|
}
|
|
tmpsquare = find234(lightable_squares_gettable, &square_pos,
|
|
NULL);
|
|
if (tmpsquare) {
|
|
/* printf(" Removing\n"); */
|
|
assert(tmpsquare->x == square_pos.x);
|
|
assert(tmpsquare->y == square_pos.y);
|
|
assert(SQUARE_STATE(tmpsquare->x, tmpsquare->y) ==
|
|
SQUARE_UNLIT);
|
|
REMOVE_SQUARE(tmpsquare);
|
|
} else {
|
|
/* printf(" Creating\n"); */
|
|
tmpsquare = snew(struct square);
|
|
tmpsquare->x = square_pos.x;
|
|
tmpsquare->y = square_pos.y;
|
|
tmpsquare->random = random_bits(rs, 31);
|
|
}
|
|
tmpsquare->score = SQUARE_SCORE(tmpsquare->x, tmpsquare->y);
|
|
|
|
if (IS_LIGHTING_CANDIDATE(tmpsquare->x, tmpsquare->y)) {
|
|
/* printf(" Adding\n"); */
|
|
ADD_SQUARE(tmpsquare);
|
|
} else {
|
|
/* printf(" Destroying\n"); */
|
|
sfree(tmpsquare);
|
|
}
|
|
}
|
|
}
|
|
sfree(square);
|
|
/* printf("\n\n"); */
|
|
}
|
|
|
|
while ((square = delpos234(lightable_squares_gettable, 0)) != NULL)
|
|
sfree(square);
|
|
freetree234(lightable_squares_gettable);
|
|
freetree234(lightable_squares_sorted);
|
|
|
|
/* Copy out all the clues */
|
|
for (j = 0; j < params->h; ++j) {
|
|
for (i = 0; i < params->w; ++i) {
|
|
c = SQUARE_STATE(i, j);
|
|
LV_CLUE_AT(state, i, j) = '0';
|
|
if (SQUARE_STATE(i-1, j) != c) ++LV_CLUE_AT(state, i, j);
|
|
if (SQUARE_STATE(i+1, j) != c) ++LV_CLUE_AT(state, i, j);
|
|
if (SQUARE_STATE(i, j-1) != c) ++LV_CLUE_AT(state, i, j);
|
|
if (SQUARE_STATE(i, j+1) != c) ++LV_CLUE_AT(state, i, j);
|
|
}
|
|
}
|
|
|
|
sfree(board);
|
|
return clues;
|
|
}
|
|
|
|
static solver_state *solve_game_rec(const solver_state *sstate);
|
|
|
|
static int game_has_unique_soln(const game_state *state)
|
|
{
|
|
int ret;
|
|
solver_state *sstate_new;
|
|
solver_state *sstate = new_solver_state((game_state *)state);
|
|
|
|
sstate_new = solve_game_rec(sstate);
|
|
|
|
ret = (sstate_new->solver_status == SOLVER_SOLVED);
|
|
|
|
free_solver_state(sstate_new);
|
|
free_solver_state(sstate);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Remove clues one at a time at random. */
|
|
static game_state *remove_clues(game_state *state, random_state *rs)
|
|
{
|
|
int *square_list, squares;
|
|
game_state *ret = dup_game(state), *saved_ret;
|
|
int n;
|
|
|
|
/* We need to remove some clues. We'll do this by forming a list of all
|
|
* available equivalence classes, shuffling it, then going along one at a
|
|
* time clearing every member of each equivalence class, where removing a
|
|
* class doesn't render the board unsolvable. */
|
|
squares = state->w * state->h;
|
|
square_list = snewn(squares, int);
|
|
for (n = 0; n < squares; ++n) {
|
|
square_list[n] = n;
|
|
}
|
|
|
|
shuffle(square_list, squares, sizeof(int), rs);
|
|
|
|
for (n = 0; n < squares; ++n) {
|
|
saved_ret = dup_game(ret);
|
|
LV_CLUE_AT(ret, square_list[n] % state->w,
|
|
square_list[n] / state->w) = ' ';
|
|
if (game_has_unique_soln(ret)) {
|
|
free_game(saved_ret);
|
|
} else {
|
|
free_game(ret);
|
|
ret = saved_ret;
|
|
}
|
|
}
|
|
sfree(square_list);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static char *validate_desc(game_params *params, char *desc);
|
|
|
|
static char *new_game_desc(game_params *params, random_state *rs,
|
|
char **aux, int interactive)
|
|
{
|
|
/* solution and description both use run-length encoding in obvious ways */
|
|
char *retval;
|
|
char *description = snewn(SQUARE_COUNT(params) + 1, char);
|
|
char *dp = description;
|
|
int i, j;
|
|
int empty_count;
|
|
game_state *state = snew(game_state), *state_new;
|
|
|
|
state->h = params->h;
|
|
state->w = params->w;
|
|
|
|
state->hl = snewn(HL_COUNT(params), char);
|
|
state->vl = snewn(VL_COUNT(params), char);
|
|
memset(state->hl, LINE_UNKNOWN, HL_COUNT(params));
|
|
memset(state->vl, LINE_UNKNOWN, VL_COUNT(params));
|
|
|
|
state->solved = state->cheated = FALSE;
|
|
state->recursion_depth = params->rec;
|
|
|
|
/* Get a new random solvable board with all its clues filled in. Yes, this
|
|
* can loop for ever if the params are suitably unfavourable, but
|
|
* preventing games smaller than 4x4 seems to stop this happening */
|
|
do {
|
|
state->clues = new_fullyclued_board(params, rs);
|
|
} while (!game_has_unique_soln(state));
|
|
|
|
state_new = remove_clues(state, rs);
|
|
free_game(state);
|
|
state = state_new;
|
|
|
|
empty_count = 0;
|
|
for (j = 0; j < params->h; ++j) {
|
|
for (i = 0; i < params->w; ++i) {
|
|
if (CLUE_AT(state, i, j) == ' ') {
|
|
if (empty_count > 25) {
|
|
dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
|
|
empty_count = 0;
|
|
}
|
|
empty_count++;
|
|
} else {
|
|
if (empty_count) {
|
|
dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
|
|
empty_count = 0;
|
|
}
|
|
dp += sprintf(dp, "%c", (int)(CLUE_AT(state, i, j)));
|
|
}
|
|
}
|
|
}
|
|
if (empty_count)
|
|
dp += sprintf(dp, "%c", (int)(empty_count + 'a' - 1));
|
|
|
|
free_game(state);
|
|
retval = dupstr(description);
|
|
sfree(description);
|
|
|
|
assert(!validate_desc(params, retval));
|
|
|
|
return retval;
|
|
}
|
|
|
|
/* We require that the params pass the test in validate_params and that the
|
|
* description fills the entire game area */
|
|
static char *validate_desc(game_params *params, char *desc)
|
|
{
|
|
int count = 0;
|
|
|
|
for (; *desc; ++desc) {
|
|
if (*desc >= '0' && *desc <= '9') {
|
|
count++;
|
|
continue;
|
|
}
|
|
if (*desc >= 'a') {
|
|
count += *desc - 'a' + 1;
|
|
continue;
|
|
}
|
|
return "Unknown character in description";
|
|
}
|
|
|
|
if (count < SQUARE_COUNT(params))
|
|
return "Description too short for board size";
|
|
if (count > SQUARE_COUNT(params))
|
|
return "Description too long for board size";
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static game_state *new_game(midend *me, game_params *params, char *desc)
|
|
{
|
|
int i,j;
|
|
game_state *state = snew(game_state);
|
|
int empties_to_make = 0;
|
|
int n;
|
|
const char *dp = desc;
|
|
|
|
state->recursion_depth = params->rec;
|
|
|
|
state->h = params->h;
|
|
state->w = params->w;
|
|
|
|
state->clues = snewn(SQUARE_COUNT(params), char);
|
|
state->hl = snewn(HL_COUNT(params), char);
|
|
state->vl = snewn(VL_COUNT(params), char);
|
|
|
|
state->solved = state->cheated = FALSE;
|
|
|
|
for (j = 0 ; j < params->h; ++j) {
|
|
for (i = 0 ; i < params->w; ++i) {
|
|
if (empties_to_make) {
|
|
empties_to_make--;
|
|
LV_CLUE_AT(state, i, j) = ' ';
|
|
continue;
|
|
}
|
|
|
|
assert(*dp);
|
|
n = *dp - '0';
|
|
if (n >=0 && n < 10) {
|
|
LV_CLUE_AT(state, i, j) = *dp;
|
|
} else {
|
|
n = *dp - 'a' + 1;
|
|
assert(n > 0);
|
|
LV_CLUE_AT(state, i, j) = ' ';
|
|
empties_to_make = n - 1;
|
|
}
|
|
++dp;
|
|
}
|
|
}
|
|
|
|
memset(state->hl, LINE_UNKNOWN, HL_COUNT(params));
|
|
memset(state->vl, LINE_UNKNOWN, VL_COUNT(params));
|
|
|
|
return state;
|
|
}
|
|
|
|
enum { LOOP_NONE=0, LOOP_SOLN, LOOP_NOT_SOLN };
|
|
|
|
/* Starting at dot [i,j] moves around 'state' removing lines until it's clear
|
|
* whether or not the starting dot was on a loop. Returns boolean specifying
|
|
* whether a loop was found. loop_status calls this and assumes that if state
|
|
* has any lines set, this function will always remove at least one. */
|
|
static int destructively_find_loop(game_state *state)
|
|
{
|
|
int a, b, i, j, new_i, new_j, n;
|
|
char *lp;
|
|
|
|
lp = (char *)memchr(state->hl, LINE_YES, HL_COUNT(state));
|
|
if (!lp) {
|
|
/* We know we're going to return false but we have to fulfil our
|
|
* contract */
|
|
lp = (char *)memchr(state->vl, LINE_YES, VL_COUNT(state));
|
|
if (lp)
|
|
*lp = LINE_NO;
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
n = lp - state->hl;
|
|
|
|
i = n % state->w;
|
|
j = n / state->w;
|
|
|
|
assert(i + j * state->w == n); /* because I'm feeling stupid */
|
|
/* Save start position */
|
|
a = i;
|
|
b = j;
|
|
|
|
/* Delete one line from the potential loop */
|
|
if (LEFTOF_DOT(state, i, j) == LINE_YES) {
|
|
LV_LEFTOF_DOT(state, i, j) = LINE_NO;
|
|
i--;
|
|
} else if (ABOVE_DOT(state, i, j) == LINE_YES) {
|
|
LV_ABOVE_DOT(state, i, j) = LINE_NO;
|
|
j--;
|
|
} else if (RIGHTOF_DOT(state, i, j) == LINE_YES) {
|
|
LV_RIGHTOF_DOT(state, i, j) = LINE_NO;
|
|
i++;
|
|
} else if (BELOW_DOT(state, i, j) == LINE_YES) {
|
|
LV_BELOW_DOT(state, i, j) = LINE_NO;
|
|
j++;
|
|
} else {
|
|
return FALSE;
|
|
}
|
|
|
|
do {
|
|
/* From the current position of [i,j] there needs to be exactly one
|
|
* line */
|
|
new_i = new_j = -1;
|
|
|
|
#define HANDLE_DIR(dir_dot, x, y) \
|
|
if (dir_dot(state, i, j) == LINE_YES) { \
|
|
if (new_i != -1 || new_j != -1) \
|
|
return FALSE; \
|
|
new_i = (i)+(x); \
|
|
new_j = (j)+(y); \
|
|
LV_##dir_dot(state, i, j) = LINE_NO; \
|
|
}
|
|
HANDLE_DIR(ABOVE_DOT, 0, -1);
|
|
HANDLE_DIR(BELOW_DOT, 0, +1);
|
|
HANDLE_DIR(LEFTOF_DOT, -1, 0);
|
|
HANDLE_DIR(RIGHTOF_DOT, +1, 0);
|
|
#undef HANDLE_DIR
|
|
if (new_i == -1 || new_j == -1) {
|
|
return FALSE;
|
|
}
|
|
|
|
i = new_i;
|
|
j = new_j;
|
|
} while (i != a || j != b);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static int loop_status(game_state *state)
|
|
{
|
|
int i, j, n;
|
|
game_state *tmpstate;
|
|
int loop_found = FALSE, non_loop_found = FALSE, any_lines_found = FALSE;
|
|
|
|
#define BAD_LOOP_FOUND \
|
|
do { free_game(tmpstate); return LOOP_NOT_SOLN; } while(0)
|
|
|
|
/* Repeatedly look for loops until we either run out of lines to consider
|
|
* or discover for sure that the board fails on the grounds of having no
|
|
* loop */
|
|
tmpstate = dup_game(state);
|
|
|
|
while (TRUE) {
|
|
if (!memchr(tmpstate->hl, LINE_YES, HL_COUNT(tmpstate)) &&
|
|
!memchr(tmpstate->vl, LINE_YES, VL_COUNT(tmpstate))) {
|
|
break;
|
|
}
|
|
any_lines_found = TRUE;
|
|
|
|
if (loop_found)
|
|
BAD_LOOP_FOUND;
|
|
if (destructively_find_loop(tmpstate)) {
|
|
loop_found = TRUE;
|
|
if (non_loop_found)
|
|
BAD_LOOP_FOUND;
|
|
} else {
|
|
non_loop_found = TRUE;
|
|
}
|
|
}
|
|
|
|
free_game(tmpstate);
|
|
|
|
if (!any_lines_found)
|
|
return LOOP_NONE;
|
|
|
|
if (non_loop_found) {
|
|
assert(!loop_found); /* should have dealt with this already */
|
|
return LOOP_NONE;
|
|
}
|
|
|
|
/* Check that every clue is satisfied */
|
|
for (j = 0; j < state->h; ++j) {
|
|
for (i = 0; i < state->w; ++i) {
|
|
n = CLUE_AT(state, i, j);
|
|
if (n != ' ') {
|
|
if (square_order(state, i, j, LINE_YES) != n - '0') {
|
|
return LOOP_NOT_SOLN;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return LOOP_SOLN;
|
|
}
|
|
|
|
/* Sums the lengths of the numbers in range [0,n) */
|
|
/* See equivalent function in solo.c for justification of this. */
|
|
static int len_0_to_n(int n)
|
|
{
|
|
int len = 1; /* Counting 0 as a bit of a special case */
|
|
int i;
|
|
|
|
for (i = 1; i < n; i *= 10) {
|
|
len += max(n - i, 0);
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
static char *encode_solve_move(const game_state *state)
|
|
{
|
|
int len, i, j;
|
|
char *ret, *p;
|
|
/* This is going to return a string representing the moves needed to set
|
|
* every line in a grid to be the same as the ones in 'state'. The exact
|
|
* length of this string is predictable. */
|
|
|
|
len = 1; /* Count the 'S' prefix */
|
|
/* Numbers in horizontal lines */
|
|
/* Horizontal lines, x position */
|
|
len += len_0_to_n(state->w) * (state->h + 1);
|
|
/* Horizontal lines, y position */
|
|
len += len_0_to_n(state->h + 1) * (state->w);
|
|
/* Vertical lines, y position */
|
|
len += len_0_to_n(state->h) * (state->w + 1);
|
|
/* Vertical lines, x position */
|
|
len += len_0_to_n(state->w + 1) * (state->h);
|
|
/* For each line we also have two letters and a comma */
|
|
len += 3 * (HL_COUNT(state) + VL_COUNT(state));
|
|
|
|
ret = snewn(len + 1, char);
|
|
p = ret;
|
|
|
|
p += sprintf(p, "S");
|
|
|
|
for (j = 0; j < state->h + 1; ++j) {
|
|
for (i = 0; i < state->w; ++i) {
|
|
switch (RIGHTOF_DOT(state, i, j)) {
|
|
case LINE_YES:
|
|
p += sprintf(p, "%d,%dhy", i, j);
|
|
break;
|
|
case LINE_NO:
|
|
p += sprintf(p, "%d,%dhn", i, j);
|
|
break;
|
|
/* default: */
|
|
/* I'm going to forgive this because I think the results
|
|
* are cute. */
|
|
/* assert(!"Solver produced incomplete solution!"); */
|
|
}
|
|
}
|
|
}
|
|
|
|
for (j = 0; j < state->h; ++j) {
|
|
for (i = 0; i < state->w + 1; ++i) {
|
|
switch (BELOW_DOT(state, i, j)) {
|
|
case LINE_YES:
|
|
p += sprintf(p, "%d,%dvy", i, j);
|
|
break;
|
|
case LINE_NO:
|
|
p += sprintf(p, "%d,%dvn", i, j);
|
|
break;
|
|
/* default: */
|
|
/* I'm going to forgive this because I think the results
|
|
* are cute. */
|
|
/* assert(!"Solver produced incomplete solution!"); */
|
|
}
|
|
}
|
|
}
|
|
|
|
/* No point in doing sums like that if they're going to be wrong */
|
|
assert(strlen(ret) <= (size_t)len);
|
|
return ret;
|
|
}
|
|
|
|
/* BEGIN SOLVER IMPLEMENTATION */
|
|
|
|
/* For each pair of lines through each dot we store a bit for whether
|
|
* exactly one of those lines is ON, and in separate arrays we store whether
|
|
* at least one is on and whether at most 1 is on. (If we know both or
|
|
* neither is on that's already stored more directly.) That's six bits per
|
|
* dot. Bit number n represents the lines shown in dot_type_dirs[n]. */
|
|
|
|
enum dline {
|
|
DLINE_VERT = 0,
|
|
DLINE_HORIZ = 1,
|
|
DLINE_UL = 2,
|
|
DLINE_DR = 3,
|
|
DLINE_UR = 4,
|
|
DLINE_DL = 5
|
|
};
|
|
|
|
#define OPP_DLINE(dline) (dline ^ 1)
|
|
|
|
|
|
#define SQUARE_DLINES \
|
|
HANDLE_DLINE(DLINE_UL, RIGHTOF_SQUARE, BELOW_SQUARE, 1, 1); \
|
|
HANDLE_DLINE(DLINE_UR, LEFTOF_SQUARE, BELOW_SQUARE, 0, 1); \
|
|
HANDLE_DLINE(DLINE_DL, RIGHTOF_SQUARE, ABOVE_SQUARE, 1, 0); \
|
|
HANDLE_DLINE(DLINE_DR, LEFTOF_SQUARE, ABOVE_SQUARE, 0, 0);
|
|
|
|
#define DOT_DLINES \
|
|
HANDLE_DLINE(DLINE_VERT, ABOVE_DOT, BELOW_DOT); \
|
|
HANDLE_DLINE(DLINE_HORIZ, LEFTOF_DOT, RIGHTOF_DOT); \
|
|
HANDLE_DLINE(DLINE_UL, ABOVE_DOT, LEFTOF_DOT); \
|
|
HANDLE_DLINE(DLINE_UR, ABOVE_DOT, RIGHTOF_DOT); \
|
|
HANDLE_DLINE(DLINE_DL, BELOW_DOT, LEFTOF_DOT); \
|
|
HANDLE_DLINE(DLINE_DR, BELOW_DOT, RIGHTOF_DOT);
|
|
|
|
static void array_setall(char *array, char from, char to, int len)
|
|
{
|
|
char *p = array, *p_old = p;
|
|
int len_remaining = len;
|
|
|
|
while ((p = memchr(p, from, len_remaining))) {
|
|
*p = to;
|
|
len_remaining -= p - p_old;
|
|
p_old = p;
|
|
}
|
|
}
|
|
|
|
|
|
static int game_states_equal(const game_state *state1,
|
|
const game_state *state2)
|
|
{
|
|
/* This deliberately doesn't check _all_ fields, just the ones that make a
|
|
* game state 'interesting' from the POV of the solver */
|
|
/* XXX review this */
|
|
if (state1 == state2)
|
|
return 1;
|
|
|
|
if (!state1 || !state2)
|
|
return 0;
|
|
|
|
if (state1->w != state2->w || state1->h != state2->h)
|
|
return 0;
|
|
|
|
if (memcmp(state1->hl, state2->hl, HL_COUNT(state1)))
|
|
return 0;
|
|
|
|
if (memcmp(state1->vl, state2->vl, VL_COUNT(state1)))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int solver_states_equal(const solver_state *sstate1,
|
|
const solver_state *sstate2)
|
|
{
|
|
if (!sstate1) {
|
|
if (!sstate2)
|
|
return TRUE;
|
|
else
|
|
return FALSE;
|
|
}
|
|
|
|
if (!game_states_equal(sstate1->state, sstate2->state)) {
|
|
return 0;
|
|
}
|
|
|
|
/* XXX fields missing, needs review */
|
|
/* XXX we're deliberately not looking at solver_state as it's only a cache */
|
|
|
|
if (memcmp(sstate1->dot_atleastone, sstate2->dot_atleastone,
|
|
DOT_COUNT(sstate1->state))) {
|
|
return 0;
|
|
}
|
|
|
|
if (memcmp(sstate1->dot_atmostone, sstate2->dot_atmostone,
|
|
DOT_COUNT(sstate1->state))) {
|
|
return 0;
|
|
}
|
|
|
|
/* handle dline_identical here */
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void dot_setall_dlines(solver_state *sstate, enum dline dl, int i, int j,
|
|
enum line_state line_old, enum line_state line_new)
|
|
{
|
|
game_state *state = sstate->state;
|
|
|
|
/* First line in dline */
|
|
switch (dl) {
|
|
case DLINE_UL:
|
|
case DLINE_UR:
|
|
case DLINE_VERT:
|
|
if (j > 0 && ABOVE_DOT(state, i, j) == line_old)
|
|
LV_ABOVE_DOT(state, i, j) = line_new;
|
|
break;
|
|
case DLINE_DL:
|
|
case DLINE_DR:
|
|
if (j <= (state)->h && BELOW_DOT(state, i, j) == line_old)
|
|
LV_BELOW_DOT(state, i, j) = line_new;
|
|
break;
|
|
case DLINE_HORIZ:
|
|
if (i > 0 && LEFTOF_DOT(state, i, j) == line_old)
|
|
LV_LEFTOF_DOT(state, i, j) = line_new;
|
|
break;
|
|
}
|
|
|
|
/* Second line in dline */
|
|
switch (dl) {
|
|
case DLINE_UL:
|
|
case DLINE_DL:
|
|
if (i > 0 && LEFTOF_DOT(state, i, j) == line_old)
|
|
LV_LEFTOF_DOT(state, i, j) = line_new;
|
|
break;
|
|
case DLINE_UR:
|
|
case DLINE_DR:
|
|
case DLINE_HORIZ:
|
|
if (i <= (state)->w && RIGHTOF_DOT(state, i, j) == line_old)
|
|
LV_RIGHTOF_DOT(state, i, j) = line_new;
|
|
break;
|
|
case DLINE_VERT:
|
|
if (j <= (state)->h && BELOW_DOT(state, i, j) == line_old)
|
|
LV_BELOW_DOT(state, i, j) = line_new;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void update_solver_status(solver_state *sstate)
|
|
{
|
|
if (sstate->solver_status == SOLVER_INCOMPLETE) {
|
|
switch (loop_status(sstate->state)) {
|
|
case LOOP_NONE:
|
|
sstate->solver_status = SOLVER_INCOMPLETE;
|
|
break;
|
|
case LOOP_SOLN:
|
|
if (sstate->solver_status != SOLVER_AMBIGUOUS)
|
|
sstate->solver_status = SOLVER_SOLVED;
|
|
break;
|
|
case LOOP_NOT_SOLN:
|
|
sstate->solver_status = SOLVER_MISTAKE;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* This will return a dynamically allocated solver_state containing the (more)
|
|
* solved grid */
|
|
static solver_state *solve_game_rec(const solver_state *sstate_start)
|
|
{
|
|
int i, j;
|
|
int current_yes, current_no, desired;
|
|
solver_state *sstate, *sstate_saved, *sstate_tmp;
|
|
int t;
|
|
/* char *text; */
|
|
solver_state *sstate_rec_solved;
|
|
int recursive_soln_count;
|
|
|
|
#if 0
|
|
printf("solve_game_rec: recursion_remaining = %d\n",
|
|
sstate_start->recursion_remaining);
|
|
#endif
|
|
|
|
sstate = dup_solver_state((solver_state *)sstate_start);
|
|
|
|
#if 0
|
|
text = game_text_format(sstate->state);
|
|
printf("%s\n", text);
|
|
sfree(text);
|
|
#endif
|
|
|
|
#define RETURN_IF_SOLVED \
|
|
do { \
|
|
update_solver_status(sstate); \
|
|
if (sstate->solver_status != SOLVER_INCOMPLETE) { \
|
|
free_solver_state(sstate_saved); \
|
|
return sstate; \
|
|
} \
|
|
} while (0)
|
|
|
|
sstate_saved = NULL;
|
|
RETURN_IF_SOLVED;
|
|
|
|
nonrecursive_solver:
|
|
|
|
while (1) {
|
|
sstate_saved = dup_solver_state(sstate);
|
|
|
|
/* First we do the 'easy' work, that might cause concrete results */
|
|
|
|
/* Per-square deductions */
|
|
for (j = 0; j < sstate->state->h; ++j) {
|
|
for (i = 0; i < sstate->state->w; ++i) {
|
|
/* Begin rules that look at the clue (if there is one) */
|
|
desired = CLUE_AT(sstate->state, i, j);
|
|
if (desired == ' ')
|
|
continue;
|
|
desired = desired - '0';
|
|
current_yes = square_order(sstate->state, i, j, LINE_YES);
|
|
current_no = square_order(sstate->state, i, j, LINE_NO);
|
|
|
|
if (desired <= current_yes) {
|
|
square_setall(sstate->state, i, j, LINE_UNKNOWN, LINE_NO);
|
|
continue;
|
|
}
|
|
|
|
if (4 - desired <= current_no) {
|
|
square_setall(sstate->state, i, j, LINE_UNKNOWN, LINE_YES);
|
|
}
|
|
}
|
|
}
|
|
|
|
RETURN_IF_SOLVED;
|
|
|
|
/* Per-dot deductions */
|
|
for (j = 0; j < sstate->state->h + 1; ++j) {
|
|
for (i = 0; i < sstate->state->w + 1; ++i) {
|
|
switch (dot_order(sstate->state, i, j, LINE_YES)) {
|
|
case 0:
|
|
if (dot_order(sstate->state, i, j, LINE_NO) == 3) {
|
|
dot_setall(sstate->state, i, j, LINE_UNKNOWN, LINE_NO);
|
|
}
|
|
break;
|
|
case 1:
|
|
switch (dot_order(sstate->state, i, j, LINE_NO)) {
|
|
#define H1(dline, dir1_dot, dir2_dot, dot_howmany) \
|
|
if (dir1_dot(sstate->state, i, j) == LINE_UNKNOWN) { \
|
|
if (dir2_dot(sstate->state, i, j) == LINE_UNKNOWN){ \
|
|
sstate->dot_howmany \
|
|
[i + (sstate->state->w + 1) * j] |= 1<<dline; \
|
|
} \
|
|
}
|
|
case 1:
|
|
#define HANDLE_DLINE(dline, dir1_dot, dir2_dot) \
|
|
H1(dline, dir1_dot, dir2_dot, dot_atleastone)
|
|
/* 1 yes, 1 no, so exactly one of unknowns is yes */
|
|
DOT_DLINES;
|
|
#undef HANDLE_DLINE
|
|
/* fall through */
|
|
case 0:
|
|
#define HANDLE_DLINE(dline, dir1_dot, dir2_dot) \
|
|
H1(dline, dir1_dot, dir2_dot, dot_atmostone)
|
|
/* 1 yes, fewer than 2 no, so at most one of
|
|
* unknowns is yes */
|
|
DOT_DLINES;
|
|
#undef HANDLE_DLINE
|
|
#undef H1
|
|
break;
|
|
case 2: /* 1 yes, 2 no */
|
|
dot_setall(sstate->state, i, j,
|
|
LINE_UNKNOWN, LINE_YES);
|
|
break;
|
|
}
|
|
break;
|
|
case 2:
|
|
case 3:
|
|
dot_setall(sstate->state, i, j, LINE_UNKNOWN, LINE_NO);
|
|
}
|
|
#define HANDLE_DLINE(dline, dir1_dot, dir2_dot) \
|
|
if (sstate->dot_atleastone \
|
|
[i + (sstate->state->w + 1) * j] & 1<<dline) { \
|
|
sstate->dot_atmostone \
|
|
[i + (sstate->state->w + 1) * j] |= 1<<OPP_DLINE(dline); \
|
|
}
|
|
/* If at least one of a dline in a dot is YES, at most one of
|
|
* the opposite dline to that dot must be YES. */
|
|
DOT_DLINES;
|
|
#undef HANDLE_DLINE
|
|
}
|
|
}
|
|
|
|
/* More obscure per-square operations */
|
|
for (j = 0; j < sstate->state->h; ++j) {
|
|
for (i = 0; i < sstate->state->w; ++i) {
|
|
#define H1(dline, dir1_sq, dir2_sq, a, b, dot_howmany, line_query, line_set) \
|
|
if (sstate->dot_howmany[i+a + (sstate->state->w + 1) * (j+b)] &\
|
|
1<<dline) { \
|
|
t = dir1_sq(sstate->state, i, j); \
|
|
if (t == line_query) \
|
|
dir2_sq(sstate->state, i, j) = line_set; \
|
|
else { \
|
|
t = dir2_sq(sstate->state, i, j); \
|
|
if (t == line_query) \
|
|
dir1_sq(sstate->state, i, j) = line_set; \
|
|
} \
|
|
}
|
|
#define HANDLE_DLINE(dline, dir1_sq, dir2_sq, a, b) \
|
|
H1(dline, dir1_sq, dir2_sq, a, b, dot_atmostone, \
|
|
LINE_YES, LINE_NO)
|
|
/* If at most one of the DLINE is on, and one is definitely on,
|
|
* set the other to definitely off */
|
|
SQUARE_DLINES;
|
|
#undef HANDLE_DLINE
|
|
|
|
#define HANDLE_DLINE(dline, dir1_sq, dir2_sq, a, b) \
|
|
H1(dline, dir1_sq, dir2_sq, a, b, dot_atleastone, \
|
|
LINE_NO, LINE_YES)
|
|
/* If at least one of the DLINE is on, and one is definitely
|
|
* off, set the other to definitely on */
|
|
SQUARE_DLINES;
|
|
#undef HANDLE_DLINE
|
|
#undef H1
|
|
|
|
switch (CLUE_AT(sstate->state, i, j)) {
|
|
case '0':
|
|
case '1':
|
|
#define HANDLE_DLINE(dline, dir1_sq, dir2_sq, a, b) \
|
|
/* At most one of any DLINE can be set */ \
|
|
sstate->dot_atmostone \
|
|
[i+a + (sstate->state->w + 1) * (j+b)] |= 1<<dline; \
|
|
/* This DLINE provides enough YESes to solve the clue */\
|
|
if (sstate->dot_atleastone \
|
|
[i+a + (sstate->state->w + 1) * (j+b)] & \
|
|
1<<dline) { \
|
|
dot_setall_dlines(sstate, OPP_DLINE(dline), \
|
|
i+(1-a), j+(1-b), \
|
|
LINE_UNKNOWN, LINE_NO); \
|
|
}
|
|
SQUARE_DLINES;
|
|
#undef HANDLE_DLINE
|
|
break;
|
|
case '2':
|
|
#define H1(dline, dot_at1one, dot_at2one, a, b) \
|
|
if (sstate->dot_at1one \
|
|
[i+a + (sstate->state->w + 1) * (j+b)] & \
|
|
1<<dline) { \
|
|
sstate->dot_at2one \
|
|
[i+(1-a) + (sstate->state->w + 1) * (j+(1-b))] |= \
|
|
1<<OPP_DLINE(dline); \
|
|
}
|
|
#define HANDLE_DLINE(dline, dir1_sq, dir2_sq, a, b) \
|
|
H1(dline, dot_atleastone, dot_atmostone, a, b); \
|
|
H1(dline, dot_atmostone, dot_atleastone, a, b);
|
|
/* If at least one of one DLINE is set, at most one of
|
|
* the opposing one is and vice versa */
|
|
SQUARE_DLINES;
|
|
#undef HANDLE_DLINE
|
|
#undef H1
|
|
break;
|
|
case '3':
|
|
case '4':
|
|
#define HANDLE_DLINE(dline, dir1_sq, dir2_sq, a, b) \
|
|
/* At least one of any DLINE can be set */ \
|
|
sstate->dot_atleastone \
|
|
[i+a + (sstate->state->w + 1) * (j+b)] |= 1<<dline; \
|
|
/* This DLINE provides enough NOs to solve the clue */ \
|
|
if (sstate->dot_atmostone \
|
|
[i+a + (sstate->state->w + 1) * (j+b)] & \
|
|
1<<dline) { \
|
|
dot_setall_dlines(sstate, OPP_DLINE(dline), \
|
|
i+(1-a), j+(1-b), \
|
|
LINE_UNKNOWN, LINE_YES); \
|
|
}
|
|
SQUARE_DLINES;
|
|
#undef HANDLE_DLINE
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (solver_states_equal(sstate, sstate_saved)) {
|
|
int edgecount = 0, clues = 0, satclues = 0, sm1clues = 0;
|
|
int d;
|
|
|
|
/*
|
|
* Go through the grid and update for all the new edges.
|
|
* Since merge_dots() is idempotent, the simplest way to
|
|
* do this is just to update for _all_ the edges.
|
|
*
|
|
* Also, while we're here, we count the edges, count the
|
|
* clues, count the satisfied clues, and count the
|
|
* satisfied-minus-one clues.
|
|
*/
|
|
for (j = 0; j <= sstate->state->h; ++j) {
|
|
for (i = 0; i <= sstate->state->w; ++i) {
|
|
if (RIGHTOF_DOT(sstate->state, i, j) == LINE_YES) {
|
|
merge_dots(sstate, i, j, i+1, j);
|
|
edgecount++;
|
|
}
|
|
if (BELOW_DOT(sstate->state, i, j) == LINE_YES) {
|
|
merge_dots(sstate, i, j, i, j+1);
|
|
edgecount++;
|
|
}
|
|
|
|
if (CLUE_AT(sstate->state, i, j) != ' ') {
|
|
int c = CLUE_AT(sstate->state, i, j) - '0';
|
|
int o = square_order(sstate->state, i, j, LINE_YES);
|
|
if (o == c)
|
|
satclues++;
|
|
else if (o == c-1)
|
|
sm1clues++;
|
|
clues++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now go through looking for LINE_UNKNOWN edges which
|
|
* connect two dots that are already in the same
|
|
* equivalence class. If we find one, test to see if the
|
|
* loop it would create is a solution.
|
|
*/
|
|
for (j = 0; j <= sstate->state->h; ++j) {
|
|
for (i = 0; i <= sstate->state->w; ++i) {
|
|
for (d = 0; d < 2; d++) {
|
|
int i2, j2, eqclass, val;
|
|
|
|
if (d == 0) {
|
|
if (RIGHTOF_DOT(sstate->state, i, j) !=
|
|
LINE_UNKNOWN)
|
|
continue;
|
|
i2 = i+1;
|
|
j2 = j;
|
|
} else {
|
|
if (BELOW_DOT(sstate->state, i, j) !=
|
|
LINE_UNKNOWN)
|
|
continue;
|
|
i2 = i;
|
|
j2 = j+1;
|
|
}
|
|
|
|
eqclass = dsf_canonify(sstate->dotdsf,
|
|
j * (sstate->state->w+1) + i);
|
|
if (eqclass != dsf_canonify(sstate->dotdsf,
|
|
j2 * (sstate->state->w+1) +
|
|
i2))
|
|
continue;
|
|
|
|
val = LINE_NO; /* loop is bad until proven otherwise */
|
|
|
|
/*
|
|
* This edge would form a loop. Next
|
|
* question: how long would the loop be?
|
|
* Would it equal the total number of edges
|
|
* (plus the one we'd be adding if we added
|
|
* it)?
|
|
*/
|
|
if (sstate->looplen[eqclass] == edgecount + 1) {
|
|
int sm1_nearby;
|
|
int cx, cy;
|
|
|
|
/*
|
|
* This edge would form a loop which
|
|
* took in all the edges in the entire
|
|
* grid. So now we need to work out
|
|
* whether it would be a valid solution
|
|
* to the puzzle, which means we have to
|
|
* check if it satisfies all the clues.
|
|
* This means that every clue must be
|
|
* either satisfied or satisfied-minus-
|
|
* 1, and also that the number of
|
|
* satisfied-minus-1 clues must be at
|
|
* most two and they must lie on either
|
|
* side of this edge.
|
|
*/
|
|
sm1_nearby = 0;
|
|
cx = i - (j2-j);
|
|
cy = j - (i2-i);
|
|
if (CLUE_AT(sstate->state, cx,cy) != ' ' &&
|
|
square_order(sstate->state, cx,cy, LINE_YES) ==
|
|
CLUE_AT(sstate->state, cx,cy) - '0' - 1)
|
|
sm1_nearby++;
|
|
if (CLUE_AT(sstate->state, i, j) != ' ' &&
|
|
square_order(sstate->state, i, j, LINE_YES) ==
|
|
CLUE_AT(sstate->state, i, j) - '0' - 1)
|
|
sm1_nearby++;
|
|
if (sm1clues == sm1_nearby &&
|
|
sm1clues + satclues == clues)
|
|
val = LINE_YES; /* loop is good! */
|
|
}
|
|
|
|
/*
|
|
* Right. Now we know that adding this edge
|
|
* would form a loop, and we know whether
|
|
* that loop would be a viable solution or
|
|
* not.
|
|
*
|
|
* If adding this edge produces a solution,
|
|
* then we know we've found _a_ solution but
|
|
* we don't know that it's _the_ solution -
|
|
* if it were provably the solution then
|
|
* we'd have deduced this edge some time ago
|
|
* without the need to do loop detection. So
|
|
* in this state we return SOLVER_AMBIGUOUS,
|
|
* which has the effect that hitting Solve
|
|
* on a user-provided puzzle will fill in a
|
|
* solution but using the solver to
|
|
* construct new puzzles won't consider this
|
|
* a reasonable deduction for the user to
|
|
* make.
|
|
*/
|
|
if (d == 0)
|
|
LV_RIGHTOF_DOT(sstate->state, i, j) = val;
|
|
else
|
|
LV_BELOW_DOT(sstate->state, i, j) = val;
|
|
if (val == LINE_YES) {
|
|
sstate->solver_status = SOLVER_AMBIGUOUS;
|
|
goto finished_loop_checking;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
finished_loop_checking:
|
|
|
|
RETURN_IF_SOLVED;
|
|
}
|
|
|
|
if (solver_states_equal(sstate, sstate_saved)) {
|
|
/* Solver has stopped making progress so we terminate */
|
|
free_solver_state(sstate_saved);
|
|
break;
|
|
}
|
|
|
|
free_solver_state(sstate_saved);
|
|
}
|
|
|
|
if (sstate->solver_status == SOLVER_SOLVED ||
|
|
sstate->solver_status == SOLVER_AMBIGUOUS) {
|
|
/* s/LINE_UNKNOWN/LINE_NO/g */
|
|
array_setall(sstate->state->hl, LINE_UNKNOWN, LINE_NO,
|
|
HL_COUNT(sstate->state));
|
|
array_setall(sstate->state->vl, LINE_UNKNOWN, LINE_NO,
|
|
VL_COUNT(sstate->state));
|
|
return sstate;
|
|
}
|
|
|
|
/* Perform recursive calls */
|
|
if (sstate->recursion_remaining) {
|
|
sstate->recursion_remaining--;
|
|
|
|
sstate_saved = dup_solver_state(sstate);
|
|
|
|
recursive_soln_count = 0;
|
|
sstate_rec_solved = NULL;
|
|
|
|
/* Memory management:
|
|
* sstate_saved won't be modified but needs to be freed when we have
|
|
* finished with it.
|
|
* sstate is expected to contain our 'best' solution by the time we
|
|
* finish this section of code. It's the thing we'll try adding lines
|
|
* to, seeing if they make it more solvable.
|
|
* If sstate_rec_solved is non-NULL, it will supersede sstate
|
|
* eventually. sstate_tmp should not hold a value persistently.
|
|
*/
|
|
|
|
/* NB SOLVER_AMBIGUOUS is like SOLVER_SOLVED except the solver is aware
|
|
* of the possibility of additional solutions. So as soon as we have a
|
|
* SOLVER_AMBIGUOUS we can safely propagate it back to our caller, but
|
|
* if we get a SOLVER_SOLVED we want to keep trying in case we find
|
|
* further solutions and have to mark it ambiguous.
|
|
*/
|
|
|
|
#define DO_RECURSIVE_CALL(dir_dot) \
|
|
if (dir_dot(sstate->state, i, j) == LINE_UNKNOWN) { \
|
|
debug(("Trying " #dir_dot " at [%d,%d]\n", i, j)); \
|
|
LV_##dir_dot(sstate->state, i, j) = LINE_YES; \
|
|
sstate_tmp = solve_game_rec(sstate); \
|
|
switch (sstate_tmp->solver_status) { \
|
|
case SOLVER_AMBIGUOUS: \
|
|
debug(("Solver ambiguous, returning\n")); \
|
|
sstate_rec_solved = sstate_tmp; \
|
|
goto finished_recursion; \
|
|
case SOLVER_SOLVED: \
|
|
switch (++recursive_soln_count) { \
|
|
case 1: \
|
|
debug(("One solution found\n")); \
|
|
sstate_rec_solved = sstate_tmp; \
|
|
break; \
|
|
case 2: \
|
|
debug(("Ambiguous solutions found\n")); \
|
|
free_solver_state(sstate_tmp); \
|
|
sstate_rec_solved->solver_status = SOLVER_AMBIGUOUS;\
|
|
goto finished_recursion; \
|
|
default: \
|
|
assert(!"recursive_soln_count out of range"); \
|
|
break; \
|
|
} \
|
|
break; \
|
|
case SOLVER_MISTAKE: \
|
|
debug(("Non-solution found\n")); \
|
|
free_solver_state(sstate_tmp); \
|
|
free_solver_state(sstate_saved); \
|
|
LV_##dir_dot(sstate->state, i, j) = LINE_NO; \
|
|
goto nonrecursive_solver; \
|
|
case SOLVER_INCOMPLETE: \
|
|
debug(("Recursive step inconclusive\n")); \
|
|
free_solver_state(sstate_tmp); \
|
|
break; \
|
|
} \
|
|
free_solver_state(sstate); \
|
|
sstate = dup_solver_state(sstate_saved); \
|
|
}
|
|
|
|
for (j = 0; j < sstate->state->h + 1; ++j) {
|
|
for (i = 0; i < sstate->state->w + 1; ++i) {
|
|
/* Only perform recursive calls on 'loose ends' */
|
|
if (dot_order(sstate->state, i, j, LINE_YES) == 1) {
|
|
if (LEFTOF_DOT(sstate->state, i, j) == LINE_UNKNOWN)
|
|
DO_RECURSIVE_CALL(LEFTOF_DOT);
|
|
if (RIGHTOF_DOT(sstate->state, i, j) == LINE_UNKNOWN)
|
|
DO_RECURSIVE_CALL(RIGHTOF_DOT);
|
|
if (ABOVE_DOT(sstate->state, i, j) == LINE_UNKNOWN)
|
|
DO_RECURSIVE_CALL(ABOVE_DOT);
|
|
if (BELOW_DOT(sstate->state, i, j) == LINE_UNKNOWN)
|
|
DO_RECURSIVE_CALL(BELOW_DOT);
|
|
}
|
|
}
|
|
}
|
|
|
|
finished_recursion:
|
|
|
|
if (sstate_rec_solved) {
|
|
free_solver_state(sstate);
|
|
sstate = sstate_rec_solved;
|
|
}
|
|
}
|
|
|
|
return sstate;
|
|
}
|
|
|
|
/* XXX bits of solver that may come in handy one day */
|
|
#if 0
|
|
#define HANDLE_DLINE(dline, dir1_dot, dir2_dot) \
|
|
/* dline from this dot that's entirely unknown must have
|
|
* both lines identical */ \
|
|
if (dir1_dot(sstate->state, i, j) == LINE_UNKNOWN && \
|
|
dir2_dot(sstate->state, i, j) == LINE_UNKNOWN) { \
|
|
sstate->dline_identical[i + (sstate->state->w + 1) * j] |= \
|
|
1<<dline; \
|
|
} else if (sstate->dline_identical[i +
|
|
(sstate->state->w + 1) * j] &\
|
|
1<<dline) { \
|
|
/* If they're identical and one is known do the obvious
|
|
* thing */ \
|
|
t = dir1_dot(sstate->state, i, j); \
|
|
if (t != LINE_UNKNOWN) \
|
|
dir2_dot(sstate->state, i, j) = t; \
|
|
else { \
|
|
t = dir2_dot(sstate->state, i, j); \
|
|
if (t != LINE_UNKNOWN) \
|
|
dir1_dot(sstate->state, i, j) = t; \
|
|
} \
|
|
} \
|
|
DOT_DLINES;
|
|
#undef HANDLE_DLINE
|
|
#endif
|
|
|
|
#if 0
|
|
#define HANDLE_DLINE(dline, dir1_sq, dir2_sq, a, b) \
|
|
if (sstate->dline_identical[i+a + \
|
|
(sstate->state->w + 1) * (j+b)] &\
|
|
1<<dline) { \
|
|
dir1_sq(sstate->state, i, j) = LINE_YES; \
|
|
dir2_sq(sstate->state, i, j) = LINE_YES; \
|
|
}
|
|
/* If two lines are the same they must be on */
|
|
SQUARE_DLINES;
|
|
#undef HANDLE_DLINE
|
|
#endif
|
|
|
|
|
|
#if 0
|
|
#define HANDLE_DLINE(dline, dir1_sq, dir2_sq, a, b) \
|
|
if (sstate->dot_atmostone[i+a + (sstate->state->w + 1) * (j+b)] & \
|
|
1<<dline) { \
|
|
if (square_order(sstate->state, i, j, LINE_UNKNOWN) - 1 == \
|
|
CLUE_AT(sstate->state, i, j) - '0') { \
|
|
square_setall(sstate->state, i, j, LINE_UNKNOWN, LINE_YES); \
|
|
/* XXX the following may overwrite known data! */ \
|
|
dir1_sq(sstate->state, i, j) = LINE_UNKNOWN; \
|
|
dir2_sq(sstate->state, i, j) = LINE_UNKNOWN; \
|
|
} \
|
|
}
|
|
SQUARE_DLINES;
|
|
#undef HANDLE_DLINE
|
|
#endif
|
|
|
|
#if 0
|
|
#define HANDLE_DLINE(dline, dir1_sq, dir2_sq, a, b) \
|
|
if (sstate->dline_identical[i+a +
|
|
(sstate->state->w + 1) * (j+b)] &\
|
|
1<<dline) { \
|
|
dir1_sq(sstate->state, i, j) = LINE_NO; \
|
|
dir2_sq(sstate->state, i, j) = LINE_NO; \
|
|
}
|
|
/* If two lines are the same they must be off */
|
|
SQUARE_DLINES;
|
|
#undef HANDLE_DLINE
|
|
#endif
|
|
|
|
static char *solve_game(game_state *state, game_state *currstate,
|
|
char *aux, char **error)
|
|
{
|
|
char *soln = NULL;
|
|
solver_state *sstate, *new_sstate;
|
|
|
|
sstate = new_solver_state(state);
|
|
new_sstate = solve_game_rec(sstate);
|
|
|
|
if (new_sstate->solver_status == SOLVER_SOLVED) {
|
|
soln = encode_solve_move(new_sstate->state);
|
|
} else if (new_sstate->solver_status == SOLVER_AMBIGUOUS) {
|
|
soln = encode_solve_move(new_sstate->state);
|
|
/**error = "Solver found ambiguous solutions"; */
|
|
} else {
|
|
soln = encode_solve_move(new_sstate->state);
|
|
/**error = "Solver failed"; */
|
|
}
|
|
|
|
free_solver_state(new_sstate);
|
|
free_solver_state(sstate);
|
|
|
|
return soln;
|
|
}
|
|
|
|
static char *game_text_format(game_state *state)
|
|
{
|
|
int i, j;
|
|
int len;
|
|
char *ret, *rp;
|
|
|
|
len = (2 * state->w + 2) * (2 * state->h + 1);
|
|
rp = ret = snewn(len + 1, char);
|
|
|
|
#define DRAW_HL \
|
|
switch (ABOVE_SQUARE(state, i, j)) { \
|
|
case LINE_YES: \
|
|
rp += sprintf(rp, " -"); \
|
|
break; \
|
|
case LINE_NO: \
|
|
rp += sprintf(rp, " x"); \
|
|
break; \
|
|
case LINE_UNKNOWN: \
|
|
rp += sprintf(rp, " "); \
|
|
break; \
|
|
default: \
|
|
assert(!"Illegal line state for HL");\
|
|
}
|
|
|
|
#define DRAW_VL \
|
|
switch (LEFTOF_SQUARE(state, i, j)) {\
|
|
case LINE_YES: \
|
|
rp += sprintf(rp, "|"); \
|
|
break; \
|
|
case LINE_NO: \
|
|
rp += sprintf(rp, "x"); \
|
|
break; \
|
|
case LINE_UNKNOWN: \
|
|
rp += sprintf(rp, " "); \
|
|
break; \
|
|
default: \
|
|
assert(!"Illegal line state for VL");\
|
|
}
|
|
|
|
for (j = 0; j < state->h; ++j) {
|
|
for (i = 0; i < state->w; ++i) {
|
|
DRAW_HL;
|
|
}
|
|
rp += sprintf(rp, " \n");
|
|
for (i = 0; i < state->w; ++i) {
|
|
DRAW_VL;
|
|
rp += sprintf(rp, "%c", (int)(CLUE_AT(state, i, j)));
|
|
}
|
|
DRAW_VL;
|
|
rp += sprintf(rp, "\n");
|
|
}
|
|
for (i = 0; i < state->w; ++i) {
|
|
DRAW_HL;
|
|
}
|
|
rp += sprintf(rp, " \n");
|
|
|
|
assert(strlen(ret) == len);
|
|
return ret;
|
|
}
|
|
|
|
static game_ui *new_ui(game_state *state)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static void free_ui(game_ui *ui)
|
|
{
|
|
}
|
|
|
|
static char *encode_ui(game_ui *ui)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static void decode_ui(game_ui *ui, char *encoding)
|
|
{
|
|
}
|
|
|
|
static void game_changed_state(game_ui *ui, game_state *oldstate,
|
|
game_state *newstate)
|
|
{
|
|
}
|
|
|
|
struct game_drawstate {
|
|
int started;
|
|
int tilesize;
|
|
int flashing;
|
|
char *hl, *vl;
|
|
};
|
|
|
|
static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
|
|
int x, int y, int button)
|
|
{
|
|
int hl_selected;
|
|
int i, j, p, q;
|
|
char *ret, buf[80];
|
|
char button_char = ' ';
|
|
enum line_state old_state;
|
|
|
|
button &= ~MOD_MASK;
|
|
|
|
/* Around each line is a diamond-shaped region where points within that
|
|
* region are closer to this line than any other. We assume any click
|
|
* within a line's diamond was meant for that line. It would all be a lot
|
|
* simpler if the / and % operators respected modulo arithmetic properly
|
|
* for negative numbers. */
|
|
|
|
x -= BORDER;
|
|
y -= BORDER;
|
|
|
|
/* Get the coordinates of the square the click was in */
|
|
i = (x + TILE_SIZE) / TILE_SIZE - 1;
|
|
j = (y + TILE_SIZE) / TILE_SIZE - 1;
|
|
|
|
/* Get the precise position inside square [i,j] */
|
|
p = (x + TILE_SIZE) % TILE_SIZE;
|
|
q = (y + TILE_SIZE) % TILE_SIZE;
|
|
|
|
/* After this bit of magic [i,j] will correspond to the point either above
|
|
* or to the left of the line selected */
|
|
if (p > q) {
|
|
if (TILE_SIZE - p > q) {
|
|
hl_selected = TRUE;
|
|
} else {
|
|
hl_selected = FALSE;
|
|
++i;
|
|
}
|
|
} else {
|
|
if (TILE_SIZE - q > p) {
|
|
hl_selected = FALSE;
|
|
} else {
|
|
hl_selected = TRUE;
|
|
++j;
|
|
}
|
|
}
|
|
|
|
if (i < 0 || j < 0)
|
|
return NULL;
|
|
|
|
if (hl_selected) {
|
|
if (i >= state->w || j >= state->h + 1)
|
|
return NULL;
|
|
} else {
|
|
if (i >= state->w + 1 || j >= state->h)
|
|
return NULL;
|
|
}
|
|
|
|
/* I think it's only possible to play this game with mouse clicks, sorry */
|
|
/* Maybe will add mouse drag support some time */
|
|
if (hl_selected)
|
|
old_state = RIGHTOF_DOT(state, i, j);
|
|
else
|
|
old_state = BELOW_DOT(state, i, j);
|
|
|
|
switch (button) {
|
|
case LEFT_BUTTON:
|
|
switch (old_state) {
|
|
case LINE_UNKNOWN:
|
|
button_char = 'y';
|
|
break;
|
|
case LINE_YES:
|
|
case LINE_NO:
|
|
button_char = 'u';
|
|
break;
|
|
}
|
|
break;
|
|
case MIDDLE_BUTTON:
|
|
button_char = 'u';
|
|
break;
|
|
case RIGHT_BUTTON:
|
|
switch (old_state) {
|
|
case LINE_UNKNOWN:
|
|
button_char = 'n';
|
|
break;
|
|
case LINE_NO:
|
|
case LINE_YES:
|
|
button_char = 'u';
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
return NULL;
|
|
}
|
|
|
|
|
|
sprintf(buf, "%d,%d%c%c", i, j, (int)(hl_selected ? 'h' : 'v'), (int)button_char);
|
|
ret = dupstr(buf);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static game_state *execute_move(game_state *state, char *move)
|
|
{
|
|
int i, j;
|
|
game_state *newstate = dup_game(state);
|
|
|
|
if (move[0] == 'S') {
|
|
move++;
|
|
newstate->cheated = TRUE;
|
|
}
|
|
|
|
while (*move) {
|
|
i = atoi(move);
|
|
move = strchr(move, ',');
|
|
if (!move)
|
|
goto fail;
|
|
j = atoi(++move);
|
|
move += strspn(move, "1234567890");
|
|
switch (*(move++)) {
|
|
case 'h':
|
|
if (i >= newstate->w || j > newstate->h)
|
|
goto fail;
|
|
switch (*(move++)) {
|
|
case 'y':
|
|
LV_RIGHTOF_DOT(newstate, i, j) = LINE_YES;
|
|
break;
|
|
case 'n':
|
|
LV_RIGHTOF_DOT(newstate, i, j) = LINE_NO;
|
|
break;
|
|
case 'u':
|
|
LV_RIGHTOF_DOT(newstate, i, j) = LINE_UNKNOWN;
|
|
break;
|
|
default:
|
|
goto fail;
|
|
}
|
|
break;
|
|
case 'v':
|
|
if (i > newstate->w || j >= newstate->h)
|
|
goto fail;
|
|
switch (*(move++)) {
|
|
case 'y':
|
|
LV_BELOW_DOT(newstate, i, j) = LINE_YES;
|
|
break;
|
|
case 'n':
|
|
LV_BELOW_DOT(newstate, i, j) = LINE_NO;
|
|
break;
|
|
case 'u':
|
|
LV_BELOW_DOT(newstate, i, j) = LINE_UNKNOWN;
|
|
break;
|
|
default:
|
|
goto fail;
|
|
}
|
|
break;
|
|
default:
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check for completion.
|
|
*/
|
|
i = 0; /* placate optimiser */
|
|
for (j = 0; j <= newstate->h; j++) {
|
|
for (i = 0; i < newstate->w; i++)
|
|
if (LV_RIGHTOF_DOT(newstate, i, j) == LINE_YES)
|
|
break;
|
|
if (i < newstate->w)
|
|
break;
|
|
}
|
|
if (j <= newstate->h) {
|
|
int prevdir = 'R';
|
|
int x = i, y = j;
|
|
int looplen, count;
|
|
|
|
/*
|
|
* We've found a horizontal edge at (i,j). Follow it round
|
|
* to see if it's part of a loop.
|
|
*/
|
|
looplen = 0;
|
|
while (1) {
|
|
int order = dot_order(newstate, x, y, LINE_YES);
|
|
if (order != 2)
|
|
goto completion_check_done;
|
|
|
|
if (LEFTOF_DOT(newstate, x, y) == LINE_YES && prevdir != 'L') {
|
|
x--;
|
|
prevdir = 'R';
|
|
} else if (RIGHTOF_DOT(newstate, x, y) == LINE_YES &&
|
|
prevdir != 'R') {
|
|
x++;
|
|
prevdir = 'L';
|
|
} else if (ABOVE_DOT(newstate, x, y) == LINE_YES &&
|
|
prevdir != 'U') {
|
|
y--;
|
|
prevdir = 'D';
|
|
} else if (BELOW_DOT(newstate, x, y) == LINE_YES &&
|
|
prevdir != 'D') {
|
|
y++;
|
|
prevdir = 'U';
|
|
} else {
|
|
assert(!"Can't happen"); /* dot_order guarantees success */
|
|
}
|
|
|
|
looplen++;
|
|
|
|
if (x == i && y == j)
|
|
break;
|
|
}
|
|
|
|
if (x != i || y != j || looplen == 0)
|
|
goto completion_check_done;
|
|
|
|
/*
|
|
* We've traced our way round a loop, and we know how many
|
|
* line segments were involved. Count _all_ the line
|
|
* segments in the grid, to see if the loop includes them
|
|
* all.
|
|
*/
|
|
count = 0;
|
|
for (j = 0; j <= newstate->h; j++)
|
|
for (i = 0; i <= newstate->w; i++)
|
|
count += ((RIGHTOF_DOT(newstate, i, j) == LINE_YES) +
|
|
(BELOW_DOT(newstate, i, j) == LINE_YES));
|
|
assert(count >= looplen);
|
|
if (count != looplen)
|
|
goto completion_check_done;
|
|
|
|
/*
|
|
* The grid contains one closed loop and nothing else.
|
|
* Check that all the clues are satisfied.
|
|
*/
|
|
for (j = 0; j < newstate->h; ++j) {
|
|
for (i = 0; i < newstate->w; ++i) {
|
|
int n = CLUE_AT(newstate, i, j);
|
|
if (n != ' ') {
|
|
if (square_order(newstate, i, j, LINE_YES) != n - '0') {
|
|
goto completion_check_done;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Completed!
|
|
*/
|
|
newstate->solved = TRUE;
|
|
}
|
|
|
|
completion_check_done:
|
|
return newstate;
|
|
|
|
fail:
|
|
free_game(newstate);
|
|
return NULL;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Drawing routines.
|
|
*/
|
|
|
|
#define SIZE(d) ((d) * TILE_SIZE + 2 * BORDER + 1)
|
|
|
|
static void game_compute_size(game_params *params, int tilesize,
|
|
int *x, int *y)
|
|
{
|
|
struct { int tilesize; } ads, *ds = &ads;
|
|
ads.tilesize = tilesize;
|
|
|
|
*x = SIZE(params->w);
|
|
*y = SIZE(params->h);
|
|
}
|
|
|
|
static void game_set_size(drawing *dr, game_drawstate *ds,
|
|
game_params *params, int tilesize)
|
|
{
|
|
ds->tilesize = tilesize;
|
|
}
|
|
|
|
static float *game_colours(frontend *fe, game_state *state, int *ncolours)
|
|
{
|
|
float *ret = snewn(4 * NCOLOURS, float);
|
|
|
|
frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
|
|
|
|
ret[COL_FOREGROUND * 3 + 0] = 0.0F;
|
|
ret[COL_FOREGROUND * 3 + 1] = 0.0F;
|
|
ret[COL_FOREGROUND * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_HIGHLIGHT * 3 + 0] = 1.0F;
|
|
ret[COL_HIGHLIGHT * 3 + 1] = 1.0F;
|
|
ret[COL_HIGHLIGHT * 3 + 2] = 1.0F;
|
|
|
|
*ncolours = NCOLOURS;
|
|
return ret;
|
|
}
|
|
|
|
static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
|
|
{
|
|
struct game_drawstate *ds = snew(struct game_drawstate);
|
|
|
|
ds->tilesize = 0;
|
|
ds->started = 0;
|
|
ds->hl = snewn(HL_COUNT(state), char);
|
|
ds->vl = snewn(VL_COUNT(state), char);
|
|
ds->flashing = 0;
|
|
|
|
memset(ds->hl, LINE_UNKNOWN, HL_COUNT(state));
|
|
memset(ds->vl, LINE_UNKNOWN, VL_COUNT(state));
|
|
|
|
return ds;
|
|
}
|
|
|
|
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
|
|
{
|
|
sfree(ds->hl);
|
|
sfree(ds->vl);
|
|
sfree(ds);
|
|
}
|
|
|
|
static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
|
|
game_state *state, int dir, game_ui *ui,
|
|
float animtime, float flashtime)
|
|
{
|
|
int i, j;
|
|
int w = state->w, h = state->h;
|
|
char c[2];
|
|
int line_colour, flash_changed;
|
|
|
|
if (!ds->started) {
|
|
/*
|
|
* The initial contents of the window are not guaranteed and
|
|
* can vary with front ends. To be on the safe side, all games
|
|
* should start by drawing a big background-colour rectangle
|
|
* covering the whole window.
|
|
*/
|
|
draw_rect(dr, 0, 0, SIZE(state->w), SIZE(state->h), COL_BACKGROUND);
|
|
|
|
/* Draw dots */
|
|
for (j = 0; j < h + 1; ++j) {
|
|
for (i = 0; i < w + 1; ++i) {
|
|
draw_rect(dr,
|
|
BORDER + i * TILE_SIZE - LINEWIDTH/2,
|
|
BORDER + j * TILE_SIZE - LINEWIDTH/2,
|
|
LINEWIDTH, LINEWIDTH, COL_FOREGROUND);
|
|
}
|
|
}
|
|
|
|
/* Draw clues */
|
|
for (j = 0; j < h; ++j) {
|
|
for (i = 0; i < w; ++i) {
|
|
c[0] = CLUE_AT(state, i, j);
|
|
c[1] = '\0';
|
|
draw_text(dr,
|
|
BORDER + i * TILE_SIZE + TILE_SIZE/2,
|
|
BORDER + j * TILE_SIZE + TILE_SIZE/2,
|
|
FONT_VARIABLE, TILE_SIZE/2,
|
|
ALIGN_VCENTRE | ALIGN_HCENTRE, COL_FOREGROUND, c);
|
|
}
|
|
}
|
|
draw_update(dr, 0, 0,
|
|
state->w * TILE_SIZE + 2*BORDER + 1,
|
|
state->h * TILE_SIZE + 2*BORDER + 1);
|
|
ds->started = TRUE;
|
|
}
|
|
|
|
if (flashtime > 0 &&
|
|
(flashtime <= FLASH_TIME/3 ||
|
|
flashtime >= FLASH_TIME*2/3)) {
|
|
flash_changed = !ds->flashing;
|
|
ds->flashing = TRUE;
|
|
line_colour = COL_HIGHLIGHT;
|
|
} else {
|
|
flash_changed = ds->flashing;
|
|
ds->flashing = FALSE;
|
|
line_colour = COL_FOREGROUND;
|
|
}
|
|
|
|
#define CROSS_SIZE (3 * LINEWIDTH / 2)
|
|
|
|
#define CLEAR_VL(i, j) do { \
|
|
draw_rect(dr, \
|
|
BORDER + i * TILE_SIZE - CROSS_SIZE, \
|
|
BORDER + j * TILE_SIZE + LINEWIDTH/2, \
|
|
CROSS_SIZE * 2, \
|
|
TILE_SIZE - LINEWIDTH, \
|
|
COL_BACKGROUND); \
|
|
draw_update(dr, \
|
|
BORDER + i * TILE_SIZE - CROSS_SIZE, \
|
|
BORDER + j * TILE_SIZE - CROSS_SIZE, \
|
|
CROSS_SIZE*2, \
|
|
TILE_SIZE + CROSS_SIZE*2); \
|
|
} while (0)
|
|
|
|
#define CLEAR_HL(i, j) do { \
|
|
draw_rect(dr, \
|
|
BORDER + i * TILE_SIZE + LINEWIDTH/2, \
|
|
BORDER + j * TILE_SIZE - CROSS_SIZE, \
|
|
TILE_SIZE - LINEWIDTH, \
|
|
CROSS_SIZE * 2, \
|
|
COL_BACKGROUND); \
|
|
draw_update(dr, \
|
|
BORDER + i * TILE_SIZE - CROSS_SIZE, \
|
|
BORDER + j * TILE_SIZE - CROSS_SIZE, \
|
|
TILE_SIZE + CROSS_SIZE*2, \
|
|
CROSS_SIZE*2); \
|
|
} while (0)
|
|
|
|
/* Vertical lines */
|
|
for (j = 0; j < h; ++j) {
|
|
for (i = 0; i < w + 1; ++i) {
|
|
switch (BELOW_DOT(state, i, j)) {
|
|
case LINE_UNKNOWN:
|
|
if (ds->vl[i + (w + 1) * j] != BELOW_DOT(state, i, j)) {
|
|
CLEAR_VL(i, j);
|
|
}
|
|
break;
|
|
case LINE_YES:
|
|
if (ds->vl[i + (w + 1) * j] != BELOW_DOT(state, i, j) ||
|
|
flash_changed) {
|
|
CLEAR_VL(i, j);
|
|
draw_rect(dr,
|
|
BORDER + i * TILE_SIZE - LINEWIDTH/2,
|
|
BORDER + j * TILE_SIZE + LINEWIDTH/2,
|
|
LINEWIDTH, TILE_SIZE - LINEWIDTH,
|
|
line_colour);
|
|
}
|
|
break;
|
|
case LINE_NO:
|
|
if (ds->vl[i + (w + 1) * j] != BELOW_DOT(state, i, j)) {
|
|
CLEAR_VL(i, j);
|
|
draw_line(dr,
|
|
BORDER + i * TILE_SIZE - CROSS_SIZE,
|
|
BORDER + j * TILE_SIZE + TILE_SIZE/2 - CROSS_SIZE,
|
|
BORDER + i * TILE_SIZE + CROSS_SIZE - 1,
|
|
BORDER + j * TILE_SIZE + TILE_SIZE/2 + CROSS_SIZE - 1,
|
|
COL_FOREGROUND);
|
|
draw_line(dr,
|
|
BORDER + i * TILE_SIZE + CROSS_SIZE - 1,
|
|
BORDER + j * TILE_SIZE + TILE_SIZE/2 - CROSS_SIZE,
|
|
BORDER + i * TILE_SIZE - CROSS_SIZE,
|
|
BORDER + j * TILE_SIZE + TILE_SIZE/2 + CROSS_SIZE - 1,
|
|
COL_FOREGROUND);
|
|
}
|
|
break;
|
|
}
|
|
ds->vl[i + (w + 1) * j] = BELOW_DOT(state, i, j);
|
|
}
|
|
}
|
|
|
|
/* Horizontal lines */
|
|
for (j = 0; j < h + 1; ++j) {
|
|
for (i = 0; i < w; ++i) {
|
|
switch (RIGHTOF_DOT(state, i, j)) {
|
|
case LINE_UNKNOWN:
|
|
if (ds->hl[i + w * j] != RIGHTOF_DOT(state, i, j)) {
|
|
CLEAR_HL(i, j);
|
|
}
|
|
break;
|
|
case LINE_YES:
|
|
if (ds->hl[i + w * j] != RIGHTOF_DOT(state, i, j) ||
|
|
flash_changed) {
|
|
CLEAR_HL(i, j);
|
|
draw_rect(dr,
|
|
BORDER + i * TILE_SIZE + LINEWIDTH/2,
|
|
BORDER + j * TILE_SIZE - LINEWIDTH/2,
|
|
TILE_SIZE - LINEWIDTH, LINEWIDTH,
|
|
line_colour);
|
|
break;
|
|
}
|
|
case LINE_NO:
|
|
if (ds->hl[i + w * j] != RIGHTOF_DOT(state, i, j)) {
|
|
CLEAR_HL(i, j);
|
|
draw_line(dr,
|
|
BORDER + i * TILE_SIZE + TILE_SIZE/2 - CROSS_SIZE,
|
|
BORDER + j * TILE_SIZE + CROSS_SIZE - 1,
|
|
BORDER + i * TILE_SIZE + TILE_SIZE/2 + CROSS_SIZE - 1,
|
|
BORDER + j * TILE_SIZE - CROSS_SIZE,
|
|
COL_FOREGROUND);
|
|
draw_line(dr,
|
|
BORDER + i * TILE_SIZE + TILE_SIZE/2 - CROSS_SIZE,
|
|
BORDER + j * TILE_SIZE - CROSS_SIZE,
|
|
BORDER + i * TILE_SIZE + TILE_SIZE/2 + CROSS_SIZE - 1,
|
|
BORDER + j * TILE_SIZE + CROSS_SIZE - 1,
|
|
COL_FOREGROUND);
|
|
break;
|
|
}
|
|
}
|
|
ds->hl[i + w * j] = RIGHTOF_DOT(state, i, j);
|
|
}
|
|
}
|
|
}
|
|
|
|
static float game_anim_length(game_state *oldstate, game_state *newstate,
|
|
int dir, game_ui *ui)
|
|
{
|
|
return 0.0F;
|
|
}
|
|
|
|
static float game_flash_length(game_state *oldstate, game_state *newstate,
|
|
int dir, game_ui *ui)
|
|
{
|
|
if (!oldstate->solved && newstate->solved &&
|
|
!oldstate->cheated && !newstate->cheated) {
|
|
return FLASH_TIME;
|
|
}
|
|
|
|
return 0.0F;
|
|
}
|
|
|
|
static int game_wants_statusbar(void)
|
|
{
|
|
return FALSE;
|
|
}
|
|
|
|
static int game_timing_state(game_state *state, game_ui *ui)
|
|
{
|
|
return TRUE;
|
|
}
|
|
|
|
static void game_print_size(game_params *params, float *x, float *y)
|
|
{
|
|
int pw, ph;
|
|
|
|
/*
|
|
* I'll use 7mm squares by default.
|
|
*/
|
|
game_compute_size(params, 700, &pw, &ph);
|
|
*x = pw / 100.0F;
|
|
*y = ph / 100.0F;
|
|
}
|
|
|
|
static void game_print(drawing *dr, game_state *state, int tilesize)
|
|
{
|
|
int w = state->w, h = state->h;
|
|
int ink = print_mono_colour(dr, 0);
|
|
int x, y;
|
|
game_drawstate ads, *ds = &ads;
|
|
ds->tilesize = tilesize;
|
|
|
|
/*
|
|
* Dots. I'll deliberately make the dots a bit wider than the
|
|
* lines, so you can still see them. (And also because it's
|
|
* annoyingly tricky to make them _exactly_ the same size...)
|
|
*/
|
|
for (y = 0; y <= h; y++)
|
|
for (x = 0; x <= w; x++)
|
|
draw_circle(dr, BORDER + x * TILE_SIZE, BORDER + y * TILE_SIZE,
|
|
LINEWIDTH, ink, ink);
|
|
|
|
/*
|
|
* Clues.
|
|
*/
|
|
for (y = 0; y < h; y++)
|
|
for (x = 0; x < w; x++)
|
|
if (CLUE_AT(state, x, y) != ' ') {
|
|
char c[2];
|
|
|
|
c[0] = CLUE_AT(state, x, y);
|
|
c[1] = '\0';
|
|
draw_text(dr,
|
|
BORDER + x * TILE_SIZE + TILE_SIZE/2,
|
|
BORDER + y * TILE_SIZE + TILE_SIZE/2,
|
|
FONT_VARIABLE, TILE_SIZE/2,
|
|
ALIGN_VCENTRE | ALIGN_HCENTRE, ink, c);
|
|
}
|
|
|
|
/*
|
|
* Lines. (At the moment, I'm not bothering with crosses.)
|
|
*/
|
|
for (y = 0; y <= h; y++)
|
|
for (x = 0; x < w; x++)
|
|
if (RIGHTOF_DOT(state, x, y) == LINE_YES)
|
|
draw_rect(dr, BORDER + x * TILE_SIZE,
|
|
BORDER + y * TILE_SIZE - LINEWIDTH/2,
|
|
TILE_SIZE, (LINEWIDTH/2) * 2 + 1, ink);
|
|
for (y = 0; y < h; y++)
|
|
for (x = 0; x <= w; x++)
|
|
if (BELOW_DOT(state, x, y) == LINE_YES)
|
|
draw_rect(dr, BORDER + x * TILE_SIZE - LINEWIDTH/2,
|
|
BORDER + y * TILE_SIZE,
|
|
(LINEWIDTH/2) * 2 + 1, TILE_SIZE, ink);
|
|
}
|
|
|
|
#ifdef COMBINED
|
|
#define thegame loopy
|
|
#endif
|
|
|
|
const struct game thegame = {
|
|
"Loopy", "games.loopy",
|
|
default_params,
|
|
game_fetch_preset,
|
|
decode_params,
|
|
encode_params,
|
|
free_params,
|
|
dup_params,
|
|
TRUE, game_configure, custom_params,
|
|
validate_params,
|
|
new_game_desc,
|
|
validate_desc,
|
|
new_game,
|
|
dup_game,
|
|
free_game,
|
|
1, solve_game,
|
|
TRUE, game_text_format,
|
|
new_ui,
|
|
free_ui,
|
|
encode_ui,
|
|
decode_ui,
|
|
game_changed_state,
|
|
interpret_move,
|
|
execute_move,
|
|
PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
|
|
game_colours,
|
|
game_new_drawstate,
|
|
game_free_drawstate,
|
|
game_redraw,
|
|
game_anim_length,
|
|
game_flash_length,
|
|
TRUE, FALSE, game_print_size, game_print,
|
|
game_wants_statusbar,
|
|
FALSE, game_timing_state,
|
|
0, /* mouse_priorities */
|
|
};
|