Files
puzzles/twiddle.c
Simon Tatham a7431c0b7c New infrastructure feature. Games are now permitted to be
_conditionally_ able to format the current puzzle as text to be sent
to the clipboard. For instance, if a game were to support playing on
a square grid and on other kinds of grid such as hexagonal, then it
might reasonably feel that only the former could be sensibly
rendered in ASCII art; so it can now arrange for the "Copy" menu
item to be greyed out depending on the game_params.

To do this I've introduced a new backend function
(can_format_as_text_now()), and renamed the existing static backend
field "can_format_as_text" to "can_format_as_text_ever". The latter
will cause compile errors for anyone maintaining a third-party front
end; if any such person is reading this, I apologise to them for the
inconvenience, but I did do it deliberately so that they'd know to
update their front end.

As yet, no checked-in game actually uses this feature; all current
games can still either copy always or copy never.

[originally from svn r8161]
2008-09-06 09:27:56 +00:00

1224 lines
32 KiB
C

/*
* twiddle.c: Puzzle involving rearranging a grid of squares by
* rotating subsquares. Adapted and generalised from a
* door-unlocking puzzle in Metroid Prime 2 (the one in the Main
* Gyro Chamber).
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <ctype.h>
#include <math.h>
#include "puzzles.h"
#define PREFERRED_TILE_SIZE 48
#define TILE_SIZE (ds->tilesize)
#define BORDER (TILE_SIZE / 2)
#define HIGHLIGHT_WIDTH (TILE_SIZE / 20)
#define COORD(x) ( (x) * TILE_SIZE + BORDER )
#define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 )
#define ANIM_PER_RADIUS_UNIT 0.13F
#define FLASH_FRAME 0.13F
enum {
COL_BACKGROUND,
COL_TEXT,
COL_HIGHLIGHT,
COL_HIGHLIGHT_GENTLE,
COL_LOWLIGHT,
COL_LOWLIGHT_GENTLE,
NCOLOURS
};
struct game_params {
int w, h, n;
int rowsonly;
int orientable;
int movetarget;
};
struct game_state {
int w, h, n;
int orientable;
int *grid;
int completed;
int used_solve; /* used to suppress completion flash */
int movecount, movetarget;
int lastx, lasty, lastr; /* coordinates of last rotation */
};
static game_params *default_params(void)
{
game_params *ret = snew(game_params);
ret->w = ret->h = 3;
ret->n = 2;
ret->rowsonly = ret->orientable = FALSE;
ret->movetarget = 0;
return ret;
}
static void free_params(game_params *params)
{
sfree(params);
}
static game_params *dup_params(game_params *params)
{
game_params *ret = snew(game_params);
*ret = *params; /* structure copy */
return ret;
}
static int game_fetch_preset(int i, char **name, game_params **params)
{
static struct {
char *title;
game_params params;
} presets[] = {
{ "3x3 rows only", { 3, 3, 2, TRUE, FALSE } },
{ "3x3 normal", { 3, 3, 2, FALSE, FALSE } },
{ "3x3 orientable", { 3, 3, 2, FALSE, TRUE } },
{ "4x4 normal", { 4, 4, 2, FALSE } },
{ "4x4 orientable", { 4, 4, 2, FALSE, TRUE } },
{ "4x4 radius 3", { 4, 4, 3, FALSE } },
{ "5x5 radius 3", { 5, 5, 3, FALSE } },
{ "6x6 radius 4", { 6, 6, 4, FALSE } },
};
if (i < 0 || i >= lenof(presets))
return FALSE;
*name = dupstr(presets[i].title);
*params = dup_params(&presets[i].params);
return TRUE;
}
static void decode_params(game_params *ret, char const *string)
{
ret->w = ret->h = atoi(string);
ret->n = 2;
ret->rowsonly = ret->orientable = FALSE;
ret->movetarget = 0;
while (*string && isdigit((unsigned char)*string)) string++;
if (*string == 'x') {
string++;
ret->h = atoi(string);
while (*string && isdigit((unsigned char)*string)) string++;
}
if (*string == 'n') {
string++;
ret->n = atoi(string);
while (*string && isdigit((unsigned char)*string)) string++;
}
while (*string) {
if (*string == 'r') {
ret->rowsonly = TRUE;
} else if (*string == 'o') {
ret->orientable = TRUE;
} else if (*string == 'm') {
string++;
ret->movetarget = atoi(string);
while (string[1] && isdigit((unsigned char)string[1])) string++;
}
string++;
}
}
static char *encode_params(game_params *params, int full)
{
char buf[256];
sprintf(buf, "%dx%dn%d%s%s", params->w, params->h, params->n,
params->rowsonly ? "r" : "",
params->orientable ? "o" : "");
/* Shuffle limit is part of the limited parameters, because we have to
* supply the target move count. */
if (params->movetarget)
sprintf(buf + strlen(buf), "m%d", params->movetarget);
return dupstr(buf);
}
static config_item *game_configure(game_params *params)
{
config_item *ret;
char buf[80];
ret = snewn(7, config_item);
ret[0].name = "Width";
ret[0].type = C_STRING;
sprintf(buf, "%d", params->w);
ret[0].sval = dupstr(buf);
ret[0].ival = 0;
ret[1].name = "Height";
ret[1].type = C_STRING;
sprintf(buf, "%d", params->h);
ret[1].sval = dupstr(buf);
ret[1].ival = 0;
ret[2].name = "Rotation radius";
ret[2].type = C_STRING;
sprintf(buf, "%d", params->n);
ret[2].sval = dupstr(buf);
ret[2].ival = 0;
ret[3].name = "One number per row";
ret[3].type = C_BOOLEAN;
ret[3].sval = NULL;
ret[3].ival = params->rowsonly;
ret[4].name = "Orientation matters";
ret[4].type = C_BOOLEAN;
ret[4].sval = NULL;
ret[4].ival = params->orientable;
ret[5].name = "Number of shuffling moves";
ret[5].type = C_STRING;
sprintf(buf, "%d", params->movetarget);
ret[5].sval = dupstr(buf);
ret[5].ival = 0;
ret[6].name = NULL;
ret[6].type = C_END;
ret[6].sval = NULL;
ret[6].ival = 0;
return ret;
}
static game_params *custom_params(config_item *cfg)
{
game_params *ret = snew(game_params);
ret->w = atoi(cfg[0].sval);
ret->h = atoi(cfg[1].sval);
ret->n = atoi(cfg[2].sval);
ret->rowsonly = cfg[3].ival;
ret->orientable = cfg[4].ival;
ret->movetarget = atoi(cfg[5].sval);
return ret;
}
static char *validate_params(game_params *params, int full)
{
if (params->n < 2)
return "Rotation radius must be at least two";
if (params->w < params->n)
return "Width must be at least the rotation radius";
if (params->h < params->n)
return "Height must be at least the rotation radius";
return NULL;
}
/*
* This function actually performs a rotation on a grid. The `x'
* and `y' coordinates passed in are the coordinates of the _top
* left corner_ of the rotated region. (Using the centre would have
* involved half-integers and been annoyingly fiddly. Clicking in
* the centre is good for a user interface, but too inconvenient to
* use internally.)
*/
static void do_rotate(int *grid, int w, int h, int n, int orientable,
int x, int y, int dir)
{
int i, j;
assert(x >= 0 && x+n <= w);
assert(y >= 0 && y+n <= h);
dir &= 3;
if (dir == 0)
return; /* nothing to do */
grid += y*w+x; /* translate region to top corner */
/*
* If we were leaving the result of the rotation in a separate
* grid, the simple thing to do would be to loop over each
* square within the rotated region and assign it from its
* source square. However, to do it in place without taking
* O(n^2) memory, we need to be marginally more clever. What
* I'm going to do is loop over about one _quarter_ of the
* rotated region and permute each element within that quarter
* with its rotational coset.
*
* The size of the region I need to loop over is (n+1)/2 by
* n/2, which is an obvious exact quarter for even n and is a
* rectangle for odd n. (For odd n, this technique leaves out
* one element of the square, which is of course the central
* one that never moves anyway.)
*/
for (i = 0; i < (n+1)/2; i++) {
for (j = 0; j < n/2; j++) {
int k;
int g[4];
int p[4];
p[0] = j*w+i;
p[1] = i*w+(n-j-1);
p[2] = (n-j-1)*w+(n-i-1);
p[3] = (n-i-1)*w+j;
for (k = 0; k < 4; k++)
g[k] = grid[p[k]];
for (k = 0; k < 4; k++) {
int v = g[(k+dir) & 3];
if (orientable)
v ^= ((v+dir) ^ v) & 3; /* alter orientation */
grid[p[k]] = v;
}
}
}
/*
* Don't forget the orientation on the centre square, if n is
* odd.
*/
if (orientable && (n & 1)) {
int v = grid[n/2*(w+1)];
v ^= ((v+dir) ^ v) & 3; /* alter orientation */
grid[n/2*(w+1)] = v;
}
}
static int grid_complete(int *grid, int wh, int orientable)
{
int ok = TRUE;
int i;
for (i = 1; i < wh; i++)
if (grid[i] < grid[i-1])
ok = FALSE;
if (orientable) {
for (i = 0; i < wh; i++)
if (grid[i] & 3)
ok = FALSE;
}
return ok;
}
static char *new_game_desc(game_params *params, random_state *rs,
char **aux, int interactive)
{
int *grid;
int w = params->w, h = params->h, n = params->n, wh = w*h;
int i;
char *ret;
int retlen;
int total_moves;
/*
* Set up a solved grid.
*/
grid = snewn(wh, int);
for (i = 0; i < wh; i++)
grid[i] = ((params->rowsonly ? i/w : i) + 1) * 4;
/*
* Shuffle it. This game is complex enough that I don't feel up
* to analysing its full symmetry properties (particularly at
* n=4 and above!), so I'm going to do it the pedestrian way
* and simply shuffle the grid by making a long sequence of
* randomly chosen moves.
*/
total_moves = params->movetarget;
if (!total_moves)
/* Add a random move to avoid parity issues. */
total_moves = w*h*n*n*2 + random_upto(rs, 2);
do {
int *prevmoves;
int rw, rh; /* w/h of rotation centre space */
rw = w - n + 1;
rh = h - n + 1;
prevmoves = snewn(rw * rh, int);
for (i = 0; i < rw * rh; i++)
prevmoves[i] = 0;
for (i = 0; i < total_moves; i++) {
int x, y, r, oldtotal, newtotal, dx, dy;
do {
x = random_upto(rs, w - n + 1);
y = random_upto(rs, h - n + 1);
r = 2 * random_upto(rs, 2) - 1;
/*
* See if any previous rotations has happened at
* this point which nothing has overlapped since.
* If so, ensure we haven't either undone a
* previous move or repeated one so many times that
* it turns into fewer moves in the inverse
* direction (i.e. three identical rotations).
*/
oldtotal = prevmoves[y*rw+x];
newtotal = oldtotal + r;
/*
* Special case here for w==h==n, in which case
* there is actually no way to _avoid_ all moves
* repeating or undoing previous ones.
*/
} while ((w != n || h != n) &&
(abs(newtotal) < abs(oldtotal) || abs(newtotal) > 2));
do_rotate(grid, w, h, n, params->orientable, x, y, r);
/*
* Log the rotation we've just performed at this point,
* for inversion detection in the next move.
*
* Also zero a section of the prevmoves array, because
* any rotation area which _overlaps_ this one is now
* entirely safe to perform further moves in.
*
* Two rotation areas overlap if their top left
* coordinates differ by strictly less than n in both
* directions
*/
prevmoves[y*rw+x] += r;
for (dy = -n+1; dy <= n-1; dy++) {
if (y + dy < 0 || y + dy >= rh)
continue;
for (dx = -n+1; dx <= n-1; dx++) {
if (x + dx < 0 || x + dx >= rw)
continue;
if (dx == 0 && dy == 0)
continue;
prevmoves[(y+dy)*rw+(x+dx)] = 0;
}
}
}
sfree(prevmoves);
} while (grid_complete(grid, wh, params->orientable));
/*
* Now construct the game description, by describing the grid
* as a simple sequence of integers. They're comma-separated,
* unless the puzzle is orientable in which case they're
* separated by orientation letters `u', `d', `l' and `r'.
*/
ret = NULL;
retlen = 0;
for (i = 0; i < wh; i++) {
char buf[80];
int k;
k = sprintf(buf, "%d%c", grid[i] / 4,
(char)(params->orientable ? "uldr"[grid[i] & 3] : ','));
ret = sresize(ret, retlen + k + 1, char);
strcpy(ret + retlen, buf);
retlen += k;
}
if (!params->orientable)
ret[retlen-1] = '\0'; /* delete last comma */
sfree(grid);
return ret;
}
static char *validate_desc(game_params *params, char *desc)
{
char *p, *err;
int w = params->w, h = params->h, wh = w*h;
int i;
p = desc;
err = NULL;
for (i = 0; i < wh; i++) {
if (*p < '0' || *p > '9')
return "Not enough numbers in string";
while (*p >= '0' && *p <= '9')
p++;
if (!params->orientable && i < wh-1) {
if (*p != ',')
return "Expected comma after number";
} else if (params->orientable && i < wh) {
if (*p != 'l' && *p != 'r' && *p != 'u' && *p != 'd')
return "Expected orientation letter after number";
} else if (i == wh-1 && *p) {
return "Excess junk at end of string";
}
if (*p) p++; /* eat comma */
}
return NULL;
}
static game_state *new_game(midend *me, game_params *params, char *desc)
{
game_state *state = snew(game_state);
int w = params->w, h = params->h, n = params->n, wh = w*h;
int i;
char *p;
state->w = w;
state->h = h;
state->n = n;
state->orientable = params->orientable;
state->completed = 0;
state->used_solve = FALSE;
state->movecount = 0;
state->movetarget = params->movetarget;
state->lastx = state->lasty = state->lastr = -1;
state->grid = snewn(wh, int);
p = desc;
for (i = 0; i < wh; i++) {
state->grid[i] = 4 * atoi(p);
while (*p >= '0' && *p <= '9')
p++;
if (*p) {
if (params->orientable) {
switch (*p) {
case 'l': state->grid[i] |= 1; break;
case 'd': state->grid[i] |= 2; break;
case 'r': state->grid[i] |= 3; break;
}
}
p++;
}
}
return state;
}
static game_state *dup_game(game_state *state)
{
game_state *ret = snew(game_state);
ret->w = state->w;
ret->h = state->h;
ret->n = state->n;
ret->orientable = state->orientable;
ret->completed = state->completed;
ret->movecount = state->movecount;
ret->movetarget = state->movetarget;
ret->lastx = state->lastx;
ret->lasty = state->lasty;
ret->lastr = state->lastr;
ret->used_solve = state->used_solve;
ret->grid = snewn(ret->w * ret->h, int);
memcpy(ret->grid, state->grid, ret->w * ret->h * sizeof(int));
return ret;
}
static void free_game(game_state *state)
{
sfree(state->grid);
sfree(state);
}
static int compare_int(const void *av, const void *bv)
{
const int *a = (const int *)av;
const int *b = (const int *)bv;
if (*a < *b)
return -1;
else if (*a > *b)
return +1;
else
return 0;
}
static char *solve_game(game_state *state, game_state *currstate,
char *aux, char **error)
{
return dupstr("S");
}
static int game_can_format_as_text_now(game_params *params)
{
return TRUE;
}
static char *game_text_format(game_state *state)
{
char *ret, *p, buf[80];
int i, x, y, col, o, maxlen;
/*
* First work out how many characters we need to display each
* number. We're pretty flexible on grid contents here, so we
* have to scan the entire grid.
*/
col = 0;
for (i = 0; i < state->w * state->h; i++) {
x = sprintf(buf, "%d", state->grid[i] / 4);
if (col < x) col = x;
}
o = (state->orientable ? 1 : 0);
/*
* Now we know the exact total size of the grid we're going to
* produce: it's got h rows, each containing w lots of col+o,
* w-1 spaces and a trailing newline.
*/
maxlen = state->h * state->w * (col+o+1);
ret = snewn(maxlen+1, char);
p = ret;
for (y = 0; y < state->h; y++) {
for (x = 0; x < state->w; x++) {
int v = state->grid[state->w*y+x];
sprintf(buf, "%*d", col, v/4);
memcpy(p, buf, col);
p += col;
if (o)
*p++ = "^<v>"[v & 3];
if (x+1 == state->w)
*p++ = '\n';
else
*p++ = ' ';
}
}
assert(p - ret == maxlen);
*p = '\0';
return ret;
}
static game_ui *new_ui(game_state *state)
{
return NULL;
}
static void free_ui(game_ui *ui)
{
}
static char *encode_ui(game_ui *ui)
{
return NULL;
}
static void decode_ui(game_ui *ui, char *encoding)
{
}
static void game_changed_state(game_ui *ui, game_state *oldstate,
game_state *newstate)
{
}
struct game_drawstate {
int started;
int w, h, bgcolour;
int *grid;
int tilesize;
};
static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
int x, int y, int button)
{
int w = state->w, h = state->h, n = state->n /* , wh = w*h */;
char buf[80];
int dir;
button = button & (~MOD_MASK | MOD_NUM_KEYPAD);
if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
/*
* Determine the coordinates of the click. We offset by n-1
* half-blocks so that the user must click at the centre of
* a rotation region rather than at the corner.
*/
x -= (n-1) * TILE_SIZE / 2;
y -= (n-1) * TILE_SIZE / 2;
x = FROMCOORD(x);
y = FROMCOORD(y);
dir = (button == LEFT_BUTTON ? 1 : -1);
if (x < 0 || x > w-n || y < 0 || y > h-n)
return NULL;
} else if (button == 'a' || button == 'A' || button==MOD_NUM_KEYPAD+'7') {
x = y = 0;
dir = (button == 'A' ? -1 : +1);
} else if (button == 'b' || button == 'B' || button==MOD_NUM_KEYPAD+'9') {
x = w-n;
y = 0;
dir = (button == 'B' ? -1 : +1);
} else if (button == 'c' || button == 'C' || button==MOD_NUM_KEYPAD+'1') {
x = 0;
y = h-n;
dir = (button == 'C' ? -1 : +1);
} else if (button == 'd' || button == 'D' || button==MOD_NUM_KEYPAD+'3') {
x = w-n;
y = h-n;
dir = (button == 'D' ? -1 : +1);
} else if (button==MOD_NUM_KEYPAD+'8' && (w-n) % 2 == 0) {
x = (w-n) / 2;
y = 0;
dir = +1;
} else if (button==MOD_NUM_KEYPAD+'2' && (w-n) % 2 == 0) {
x = (w-n) / 2;
y = h-n;
dir = +1;
} else if (button==MOD_NUM_KEYPAD+'4' && (h-n) % 2 == 0) {
x = 0;
y = (h-n) / 2;
dir = +1;
} else if (button==MOD_NUM_KEYPAD+'6' && (h-n) % 2 == 0) {
x = w-n;
y = (h-n) / 2;
dir = +1;
} else if (button==MOD_NUM_KEYPAD+'5' && (w-n) % 2 == 0 && (h-n) % 2 == 0){
x = (w-n) / 2;
y = (h-n) / 2;
dir = +1;
} else {
return NULL; /* no move to be made */
}
/*
* If we reach here, we have a valid move.
*/
sprintf(buf, "M%d,%d,%d", x, y, dir);
return dupstr(buf);
}
static game_state *execute_move(game_state *from, char *move)
{
game_state *ret;
int w = from->w, h = from->h, n = from->n, wh = w*h;
int x, y, dir;
if (!strcmp(move, "S")) {
int i;
ret = dup_game(from);
/*
* Simply replace the grid with a solved one. For this game,
* this isn't a useful operation for actually telling the user
* what they should have done, but it is useful for
* conveniently being able to get hold of a clean state from
* which to practise manoeuvres.
*/
qsort(ret->grid, ret->w*ret->h, sizeof(int), compare_int);
for (i = 0; i < ret->w*ret->h; i++)
ret->grid[i] &= ~3;
ret->used_solve = TRUE;
ret->completed = ret->movecount = 1;
return ret;
}
if (move[0] != 'M' ||
sscanf(move+1, "%d,%d,%d", &x, &y, &dir) != 3 ||
x < 0 || y < 0 || x > from->w - n || y > from->h - n)
return NULL; /* can't parse this move string */
ret = dup_game(from);
ret->movecount++;
do_rotate(ret->grid, w, h, n, ret->orientable, x, y, dir);
ret->lastx = x;
ret->lasty = y;
ret->lastr = dir;
/*
* See if the game has been completed. To do this we simply
* test that the grid contents are in increasing order.
*/
if (!ret->completed && grid_complete(ret->grid, wh, ret->orientable))
ret->completed = ret->movecount;
return ret;
}
/* ----------------------------------------------------------------------
* Drawing routines.
*/
static void game_compute_size(game_params *params, int tilesize,
int *x, int *y)
{
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
struct { int tilesize; } ads, *ds = &ads;
ads.tilesize = tilesize;
*x = TILE_SIZE * params->w + 2 * BORDER;
*y = TILE_SIZE * params->h + 2 * BORDER;
}
static void game_set_size(drawing *dr, game_drawstate *ds,
game_params *params, int tilesize)
{
ds->tilesize = tilesize;
}
static float *game_colours(frontend *fe, int *ncolours)
{
float *ret = snewn(3 * NCOLOURS, float);
int i;
game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT);
for (i = 0; i < 3; i++) {
ret[COL_HIGHLIGHT_GENTLE * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 1.1F;
ret[COL_LOWLIGHT_GENTLE * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 0.9F;
ret[COL_TEXT * 3 + i] = 0.0;
}
*ncolours = NCOLOURS;
return ret;
}
static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
{
struct game_drawstate *ds = snew(struct game_drawstate);
int i;
ds->started = FALSE;
ds->w = state->w;
ds->h = state->h;
ds->bgcolour = COL_BACKGROUND;
ds->grid = snewn(ds->w*ds->h, int);
ds->tilesize = 0; /* haven't decided yet */
for (i = 0; i < ds->w*ds->h; i++)
ds->grid[i] = -1;
return ds;
}
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
{
sfree(ds->grid);
sfree(ds);
}
struct rotation {
int cx, cy, cw, ch; /* clip region */
int ox, oy; /* rotation origin */
float c, s; /* cos and sin of rotation angle */
int lc, rc, tc, bc; /* colours of tile edges */
};
static void rotate(int *xy, struct rotation *rot)
{
if (rot) {
float xf = xy[0] - rot->ox, yf = xy[1] - rot->oy;
float xf2, yf2;
xf2 = rot->c * xf + rot->s * yf;
yf2 = - rot->s * xf + rot->c * yf;
xy[0] = xf2 + rot->ox + 0.5; /* round to nearest */
xy[1] = yf2 + rot->oy + 0.5; /* round to nearest */
}
}
static void draw_tile(drawing *dr, game_drawstate *ds, game_state *state,
int x, int y, int tile, int flash_colour,
struct rotation *rot)
{
int coords[8];
char str[40];
/*
* If we've been passed a rotation region but we're drawing a
* tile which is outside it, we must draw it normally. This can
* occur if we're cleaning up after a completion flash while a
* new move is also being made.
*/
if (rot && (x < rot->cx || y < rot->cy ||
x >= rot->cx+rot->cw || y >= rot->cy+rot->ch))
rot = NULL;
if (rot)
clip(dr, rot->cx, rot->cy, rot->cw, rot->ch);
/*
* We must draw each side of the tile's highlight separately,
* because in some cases (during rotation) they will all need
* to be different colours.
*/
/* The centre point is common to all sides. */
coords[4] = x + TILE_SIZE / 2;
coords[5] = y + TILE_SIZE / 2;
rotate(coords+4, rot);
/* Right side. */
coords[0] = x + TILE_SIZE - 1;
coords[1] = y + TILE_SIZE - 1;
rotate(coords+0, rot);
coords[2] = x + TILE_SIZE - 1;
coords[3] = y;
rotate(coords+2, rot);
draw_polygon(dr, coords, 3, rot ? rot->rc : COL_LOWLIGHT,
rot ? rot->rc : COL_LOWLIGHT);
/* Bottom side. */
coords[2] = x;
coords[3] = y + TILE_SIZE - 1;
rotate(coords+2, rot);
draw_polygon(dr, coords, 3, rot ? rot->bc : COL_LOWLIGHT,
rot ? rot->bc : COL_LOWLIGHT);
/* Left side. */
coords[0] = x;
coords[1] = y;
rotate(coords+0, rot);
draw_polygon(dr, coords, 3, rot ? rot->lc : COL_HIGHLIGHT,
rot ? rot->lc : COL_HIGHLIGHT);
/* Top side. */
coords[2] = x + TILE_SIZE - 1;
coords[3] = y;
rotate(coords+2, rot);
draw_polygon(dr, coords, 3, rot ? rot->tc : COL_HIGHLIGHT,
rot ? rot->tc : COL_HIGHLIGHT);
/*
* Now the main blank area in the centre of the tile.
*/
if (rot) {
coords[0] = x + HIGHLIGHT_WIDTH;
coords[1] = y + HIGHLIGHT_WIDTH;
rotate(coords+0, rot);
coords[2] = x + HIGHLIGHT_WIDTH;
coords[3] = y + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
rotate(coords+2, rot);
coords[4] = x + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
coords[5] = y + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
rotate(coords+4, rot);
coords[6] = x + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
coords[7] = y + HIGHLIGHT_WIDTH;
rotate(coords+6, rot);
draw_polygon(dr, coords, 4, flash_colour, flash_colour);
} else {
draw_rect(dr, x + HIGHLIGHT_WIDTH, y + HIGHLIGHT_WIDTH,
TILE_SIZE - 2*HIGHLIGHT_WIDTH, TILE_SIZE - 2*HIGHLIGHT_WIDTH,
flash_colour);
}
/*
* Next, the triangles for orientation.
*/
if (state->orientable) {
int xdx, xdy, ydx, ydy;
int cx, cy, displ, displ2;
switch (tile & 3) {
case 0:
xdx = 1, xdy = 0;
ydx = 0, ydy = 1;
break;
case 1:
xdx = 0, xdy = -1;
ydx = 1, ydy = 0;
break;
case 2:
xdx = -1, xdy = 0;
ydx = 0, ydy = -1;
break;
default /* case 3 */:
xdx = 0, xdy = 1;
ydx = -1, ydy = 0;
break;
}
cx = x + TILE_SIZE / 2;
cy = y + TILE_SIZE / 2;
displ = TILE_SIZE / 2 - HIGHLIGHT_WIDTH - 2;
displ2 = TILE_SIZE / 3 - HIGHLIGHT_WIDTH;
coords[0] = cx - displ * xdx + displ2 * ydx;
coords[1] = cy - displ * xdy + displ2 * ydy;
rotate(coords+0, rot);
coords[2] = cx + displ * xdx + displ2 * ydx;
coords[3] = cy + displ * xdy + displ2 * ydy;
rotate(coords+2, rot);
coords[4] = cx - displ * ydx;
coords[5] = cy - displ * ydy;
rotate(coords+4, rot);
draw_polygon(dr, coords, 3, COL_LOWLIGHT_GENTLE, COL_LOWLIGHT_GENTLE);
}
coords[0] = x + TILE_SIZE/2;
coords[1] = y + TILE_SIZE/2;
rotate(coords+0, rot);
sprintf(str, "%d", tile / 4);
draw_text(dr, coords[0], coords[1],
FONT_VARIABLE, TILE_SIZE/3, ALIGN_VCENTRE | ALIGN_HCENTRE,
COL_TEXT, str);
if (rot)
unclip(dr);
draw_update(dr, x, y, TILE_SIZE, TILE_SIZE);
}
static int highlight_colour(float angle)
{
int colours[32] = {
COL_LOWLIGHT,
COL_LOWLIGHT_GENTLE,
COL_LOWLIGHT_GENTLE,
COL_LOWLIGHT_GENTLE,
COL_HIGHLIGHT_GENTLE,
COL_HIGHLIGHT_GENTLE,
COL_HIGHLIGHT_GENTLE,
COL_HIGHLIGHT,
COL_HIGHLIGHT,
COL_HIGHLIGHT,
COL_HIGHLIGHT,
COL_HIGHLIGHT,
COL_HIGHLIGHT,
COL_HIGHLIGHT,
COL_HIGHLIGHT,
COL_HIGHLIGHT,
COL_HIGHLIGHT,
COL_HIGHLIGHT_GENTLE,
COL_HIGHLIGHT_GENTLE,
COL_HIGHLIGHT_GENTLE,
COL_LOWLIGHT_GENTLE,
COL_LOWLIGHT_GENTLE,
COL_LOWLIGHT_GENTLE,
COL_LOWLIGHT,
COL_LOWLIGHT,
COL_LOWLIGHT,
COL_LOWLIGHT,
COL_LOWLIGHT,
COL_LOWLIGHT,
COL_LOWLIGHT,
COL_LOWLIGHT,
COL_LOWLIGHT,
};
return colours[(int)((angle + 2*PI) / (PI/16)) & 31];
}
static float game_anim_length(game_state *oldstate, game_state *newstate,
int dir, game_ui *ui)
{
return ANIM_PER_RADIUS_UNIT * sqrt(newstate->n-1);
}
static float game_flash_length(game_state *oldstate, game_state *newstate,
int dir, game_ui *ui)
{
if (!oldstate->completed && newstate->completed &&
!oldstate->used_solve && !newstate->used_solve)
return 2 * FLASH_FRAME;
else
return 0.0F;
}
static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
game_state *state, int dir, game_ui *ui,
float animtime, float flashtime)
{
int i, bgcolour;
struct rotation srot, *rot;
int lastx = -1, lasty = -1, lastr = -1;
if (flashtime > 0) {
int frame = (int)(flashtime / FLASH_FRAME);
bgcolour = (frame % 2 ? COL_LOWLIGHT : COL_HIGHLIGHT);
} else
bgcolour = COL_BACKGROUND;
if (!ds->started) {
int coords[10];
draw_rect(dr, 0, 0,
TILE_SIZE * state->w + 2 * BORDER,
TILE_SIZE * state->h + 2 * BORDER, COL_BACKGROUND);
draw_update(dr, 0, 0,
TILE_SIZE * state->w + 2 * BORDER,
TILE_SIZE * state->h + 2 * BORDER);
/*
* Recessed area containing the whole puzzle.
*/
coords[0] = COORD(state->w) + HIGHLIGHT_WIDTH - 1;
coords[1] = COORD(state->h) + HIGHLIGHT_WIDTH - 1;
coords[2] = COORD(state->w) + HIGHLIGHT_WIDTH - 1;
coords[3] = COORD(0) - HIGHLIGHT_WIDTH;
coords[4] = coords[2] - TILE_SIZE;
coords[5] = coords[3] + TILE_SIZE;
coords[8] = COORD(0) - HIGHLIGHT_WIDTH;
coords[9] = COORD(state->h) + HIGHLIGHT_WIDTH - 1;
coords[6] = coords[8] + TILE_SIZE;
coords[7] = coords[9] - TILE_SIZE;
draw_polygon(dr, coords, 5, COL_HIGHLIGHT, COL_HIGHLIGHT);
coords[1] = COORD(0) - HIGHLIGHT_WIDTH;
coords[0] = COORD(0) - HIGHLIGHT_WIDTH;
draw_polygon(dr, coords, 5, COL_LOWLIGHT, COL_LOWLIGHT);
ds->started = TRUE;
}
/*
* If we're drawing any rotated tiles, sort out the rotation
* parameters, and also zap the rotation region to the
* background colour before doing anything else.
*/
if (oldstate) {
float angle;
float anim_max = game_anim_length(oldstate, state, dir, ui);
if (dir > 0) {
lastx = state->lastx;
lasty = state->lasty;
lastr = state->lastr;
} else {
lastx = oldstate->lastx;
lasty = oldstate->lasty;
lastr = -oldstate->lastr;
}
rot = &srot;
rot->cx = COORD(lastx);
rot->cy = COORD(lasty);
rot->cw = rot->ch = TILE_SIZE * state->n;
rot->ox = rot->cx + rot->cw/2;
rot->oy = rot->cy + rot->ch/2;
angle = (-PI/2 * lastr) * (1.0 - animtime / anim_max);
rot->c = cos(angle);
rot->s = sin(angle);
/*
* Sort out the colours of the various sides of the tile.
*/
rot->lc = highlight_colour(PI + angle);
rot->rc = highlight_colour(angle);
rot->tc = highlight_colour(PI/2 + angle);
rot->bc = highlight_colour(-PI/2 + angle);
draw_rect(dr, rot->cx, rot->cy, rot->cw, rot->ch, bgcolour);
} else
rot = NULL;
/*
* Now draw each tile.
*/
for (i = 0; i < state->w * state->h; i++) {
int t;
int tx = i % state->w, ty = i / state->w;
/*
* Figure out what should be displayed at this location.
* Usually it will be state->grid[i], unless we're in the
* middle of animating an actual rotation and this cell is
* within the rotation region, in which case we set -1
* (always display).
*/
if (oldstate && lastx >= 0 && lasty >= 0 &&
tx >= lastx && tx < lastx + state->n &&
ty >= lasty && ty < lasty + state->n)
t = -1;
else
t = state->grid[i];
if (ds->bgcolour != bgcolour || /* always redraw when flashing */
ds->grid[i] != t || ds->grid[i] == -1 || t == -1) {
int x = COORD(tx), y = COORD(ty);
draw_tile(dr, ds, state, x, y, state->grid[i], bgcolour, rot);
ds->grid[i] = t;
}
}
ds->bgcolour = bgcolour;
/*
* Update the status bar.
*/
{
char statusbuf[256];
/*
* Don't show the new status until we're also showing the
* new _state_ - after the game animation is complete.
*/
if (oldstate)
state = oldstate;
if (state->used_solve)
sprintf(statusbuf, "Moves since auto-solve: %d",
state->movecount - state->completed);
else {
sprintf(statusbuf, "%sMoves: %d",
(state->completed ? "COMPLETED! " : ""),
(state->completed ? state->completed : state->movecount));
if (state->movetarget)
sprintf(statusbuf+strlen(statusbuf), " (target %d)",
state->movetarget);
}
status_bar(dr, statusbuf);
}
}
static int game_timing_state(game_state *state, game_ui *ui)
{
return TRUE;
}
static void game_print_size(game_params *params, float *x, float *y)
{
}
static void game_print(drawing *dr, game_state *state, int tilesize)
{
}
#ifdef COMBINED
#define thegame twiddle
#endif
const struct game thegame = {
"Twiddle", "games.twiddle", "twiddle",
default_params,
game_fetch_preset,
decode_params,
encode_params,
free_params,
dup_params,
TRUE, game_configure, custom_params,
validate_params,
new_game_desc,
validate_desc,
new_game,
dup_game,
free_game,
TRUE, solve_game,
TRUE, game_can_format_as_text_now, game_text_format,
new_ui,
free_ui,
encode_ui,
decode_ui,
game_changed_state,
interpret_move,
execute_move,
PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
game_colours,
game_new_drawstate,
game_free_drawstate,
game_redraw,
game_anim_length,
game_flash_length,
FALSE, FALSE, game_print_size, game_print,
TRUE, /* wants_statusbar */
FALSE, game_timing_state,
0, /* flags */
};