mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-21 08:01:30 -07:00
Files

new_desc. Oddities in the 'make test' output brought to my attention that a few puzzles have been modifying their input game_params for various reasons; they shouldn't do that, because that's the game_params held permanently by the midend and it will affect subsequent game generations if they modify it. So now those arguments are const, and all the games which previously modified their game_params now take a copy and modify that instead. [originally from svn r9830]
1822 lines
50 KiB
C
1822 lines
50 KiB
C
/*
|
|
* pattern.c: the pattern-reconstruction game known as `nonograms'.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <ctype.h>
|
|
#include <math.h>
|
|
|
|
#include "puzzles.h"
|
|
|
|
enum {
|
|
COL_BACKGROUND,
|
|
COL_EMPTY,
|
|
COL_FULL,
|
|
COL_TEXT,
|
|
COL_UNKNOWN,
|
|
COL_GRID,
|
|
COL_CURSOR,
|
|
COL_ERROR,
|
|
NCOLOURS
|
|
};
|
|
|
|
#define PREFERRED_TILE_SIZE 24
|
|
#define TILE_SIZE (ds->tilesize)
|
|
#define BORDER (3 * TILE_SIZE / 4)
|
|
#define TLBORDER(d) ( (d) / 5 + 2 )
|
|
#define GUTTER (TILE_SIZE / 2)
|
|
|
|
#define FROMCOORD(d, x) \
|
|
( ((x) - (BORDER + GUTTER + TILE_SIZE * TLBORDER(d))) / TILE_SIZE )
|
|
|
|
#define SIZE(d) (2*BORDER + GUTTER + TILE_SIZE * (TLBORDER(d) + (d)))
|
|
#define GETTILESIZE(d, w) ((double)w / (2.0 + (double)TLBORDER(d) + (double)(d)))
|
|
|
|
#define TOCOORD(d, x) (BORDER + GUTTER + TILE_SIZE * (TLBORDER(d) + (x)))
|
|
|
|
struct game_params {
|
|
int w, h;
|
|
};
|
|
|
|
#define GRID_UNKNOWN 2
|
|
#define GRID_FULL 1
|
|
#define GRID_EMPTY 0
|
|
|
|
struct game_state {
|
|
int w, h;
|
|
unsigned char *grid;
|
|
int rowsize;
|
|
int *rowdata, *rowlen;
|
|
int completed, cheated;
|
|
};
|
|
|
|
#define FLASH_TIME 0.13F
|
|
|
|
static game_params *default_params(void)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->w = ret->h = 15;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct game_params pattern_presets[] = {
|
|
{10, 10},
|
|
{15, 15},
|
|
{20, 20},
|
|
#ifndef SLOW_SYSTEM
|
|
{25, 25},
|
|
{30, 30},
|
|
#endif
|
|
};
|
|
|
|
static int game_fetch_preset(int i, char **name, game_params **params)
|
|
{
|
|
game_params *ret;
|
|
char str[80];
|
|
|
|
if (i < 0 || i >= lenof(pattern_presets))
|
|
return FALSE;
|
|
|
|
ret = snew(game_params);
|
|
*ret = pattern_presets[i];
|
|
|
|
sprintf(str, "%dx%d", ret->w, ret->h);
|
|
|
|
*name = dupstr(str);
|
|
*params = ret;
|
|
return TRUE;
|
|
}
|
|
|
|
static void free_params(game_params *params)
|
|
{
|
|
sfree(params);
|
|
}
|
|
|
|
static game_params *dup_params(game_params *params)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
*ret = *params; /* structure copy */
|
|
return ret;
|
|
}
|
|
|
|
static void decode_params(game_params *ret, char const *string)
|
|
{
|
|
char const *p = string;
|
|
|
|
ret->w = atoi(p);
|
|
while (*p && isdigit((unsigned char)*p)) p++;
|
|
if (*p == 'x') {
|
|
p++;
|
|
ret->h = atoi(p);
|
|
while (*p && isdigit((unsigned char)*p)) p++;
|
|
} else {
|
|
ret->h = ret->w;
|
|
}
|
|
}
|
|
|
|
static char *encode_params(game_params *params, int full)
|
|
{
|
|
char ret[400];
|
|
int len;
|
|
|
|
len = sprintf(ret, "%dx%d", params->w, params->h);
|
|
assert(len < lenof(ret));
|
|
ret[len] = '\0';
|
|
|
|
return dupstr(ret);
|
|
}
|
|
|
|
static config_item *game_configure(game_params *params)
|
|
{
|
|
config_item *ret;
|
|
char buf[80];
|
|
|
|
ret = snewn(3, config_item);
|
|
|
|
ret[0].name = "Width";
|
|
ret[0].type = C_STRING;
|
|
sprintf(buf, "%d", params->w);
|
|
ret[0].sval = dupstr(buf);
|
|
ret[0].ival = 0;
|
|
|
|
ret[1].name = "Height";
|
|
ret[1].type = C_STRING;
|
|
sprintf(buf, "%d", params->h);
|
|
ret[1].sval = dupstr(buf);
|
|
ret[1].ival = 0;
|
|
|
|
ret[2].name = NULL;
|
|
ret[2].type = C_END;
|
|
ret[2].sval = NULL;
|
|
ret[2].ival = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static game_params *custom_params(config_item *cfg)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->w = atoi(cfg[0].sval);
|
|
ret->h = atoi(cfg[1].sval);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static char *validate_params(game_params *params, int full)
|
|
{
|
|
if (params->w <= 0 || params->h <= 0)
|
|
return "Width and height must both be greater than zero";
|
|
return NULL;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Puzzle generation code.
|
|
*
|
|
* For this particular puzzle, it seemed important to me to ensure
|
|
* a unique solution. I do this the brute-force way, by having a
|
|
* solver algorithm alongside the generator, and repeatedly
|
|
* generating a random grid until I find one whose solution is
|
|
* unique. It turns out that this isn't too onerous on a modern PC
|
|
* provided you keep grid size below around 30. Any offers of
|
|
* better algorithms, however, will be very gratefully received.
|
|
*
|
|
* Another annoyance of this approach is that it limits the
|
|
* available puzzles to those solvable by the algorithm I've used.
|
|
* My algorithm only ever considers a single row or column at any
|
|
* one time, which means it's incapable of solving the following
|
|
* difficult example (found by Bella Image around 1995/6, when she
|
|
* and I were both doing maths degrees):
|
|
*
|
|
* 2 1 2 1
|
|
*
|
|
* +--+--+--+--+
|
|
* 1 1 | | | | |
|
|
* +--+--+--+--+
|
|
* 2 | | | | |
|
|
* +--+--+--+--+
|
|
* 1 | | | | |
|
|
* +--+--+--+--+
|
|
* 1 | | | | |
|
|
* +--+--+--+--+
|
|
*
|
|
* Obviously this cannot be solved by a one-row-or-column-at-a-time
|
|
* algorithm (it would require at least one row or column reading
|
|
* `2 1', `1 2', `3' or `4' to get started). However, it can be
|
|
* proved to have a unique solution: if the top left square were
|
|
* empty, then the only option for the top row would be to fill the
|
|
* two squares in the 1 columns, which would imply the squares
|
|
* below those were empty, leaving no place for the 2 in the second
|
|
* row. Contradiction. Hence the top left square is full, and the
|
|
* unique solution follows easily from that starting point.
|
|
*
|
|
* (The game ID for this puzzle is 4x4:2/1/2/1/1.1/2/1/1 , in case
|
|
* it's useful to anyone.)
|
|
*/
|
|
|
|
static int float_compare(const void *av, const void *bv)
|
|
{
|
|
const float *a = (const float *)av;
|
|
const float *b = (const float *)bv;
|
|
if (*a < *b)
|
|
return -1;
|
|
else if (*a > *b)
|
|
return +1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static void generate(random_state *rs, int w, int h, unsigned char *retgrid)
|
|
{
|
|
float *fgrid;
|
|
float *fgrid2;
|
|
int step, i, j;
|
|
float threshold;
|
|
|
|
fgrid = snewn(w*h, float);
|
|
|
|
for (i = 0; i < h; i++) {
|
|
for (j = 0; j < w; j++) {
|
|
fgrid[i*w+j] = random_upto(rs, 100000000UL) / 100000000.F;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The above gives a completely random splattering of black and
|
|
* white cells. We want to gently bias this in favour of _some_
|
|
* reasonably thick areas of white and black, while retaining
|
|
* some randomness and fine detail.
|
|
*
|
|
* So we evolve the starting grid using a cellular automaton.
|
|
* Currently, I'm doing something very simple indeed, which is
|
|
* to set each square to the average of the surrounding nine
|
|
* cells (or the average of fewer, if we're on a corner).
|
|
*/
|
|
for (step = 0; step < 1; step++) {
|
|
fgrid2 = snewn(w*h, float);
|
|
|
|
for (i = 0; i < h; i++) {
|
|
for (j = 0; j < w; j++) {
|
|
float sx, xbar;
|
|
int n, p, q;
|
|
|
|
/*
|
|
* Compute the average of the surrounding cells.
|
|
*/
|
|
n = 0;
|
|
sx = 0.F;
|
|
for (p = -1; p <= +1; p++) {
|
|
for (q = -1; q <= +1; q++) {
|
|
if (i+p < 0 || i+p >= h || j+q < 0 || j+q >= w)
|
|
continue;
|
|
/*
|
|
* An additional special case not mentioned
|
|
* above: if a grid dimension is 2xn then
|
|
* we do not average across that dimension
|
|
* at all. Otherwise a 2x2 grid would
|
|
* contain four identical squares.
|
|
*/
|
|
if ((h==2 && p!=0) || (w==2 && q!=0))
|
|
continue;
|
|
n++;
|
|
sx += fgrid[(i+p)*w+(j+q)];
|
|
}
|
|
}
|
|
xbar = sx / n;
|
|
|
|
fgrid2[i*w+j] = xbar;
|
|
}
|
|
}
|
|
|
|
sfree(fgrid);
|
|
fgrid = fgrid2;
|
|
}
|
|
|
|
fgrid2 = snewn(w*h, float);
|
|
memcpy(fgrid2, fgrid, w*h*sizeof(float));
|
|
qsort(fgrid2, w*h, sizeof(float), float_compare);
|
|
threshold = fgrid2[w*h/2];
|
|
sfree(fgrid2);
|
|
|
|
for (i = 0; i < h; i++) {
|
|
for (j = 0; j < w; j++) {
|
|
retgrid[i*w+j] = (fgrid[i*w+j] >= threshold ? GRID_FULL :
|
|
GRID_EMPTY);
|
|
}
|
|
}
|
|
|
|
sfree(fgrid);
|
|
}
|
|
|
|
static int compute_rowdata(int *ret, unsigned char *start, int len, int step)
|
|
{
|
|
int i, n;
|
|
|
|
n = 0;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
if (start[i*step] == GRID_FULL) {
|
|
int runlen = 1;
|
|
while (i+runlen < len && start[(i+runlen)*step] == GRID_FULL)
|
|
runlen++;
|
|
ret[n++] = runlen;
|
|
i += runlen;
|
|
}
|
|
|
|
if (i < len && start[i*step] == GRID_UNKNOWN)
|
|
return -1;
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
#define UNKNOWN 0
|
|
#define BLOCK 1
|
|
#define DOT 2
|
|
#define STILL_UNKNOWN 3
|
|
|
|
#ifdef STANDALONE_SOLVER
|
|
int verbose = FALSE;
|
|
#endif
|
|
|
|
static int do_recurse(unsigned char *known, unsigned char *deduced,
|
|
unsigned char *row,
|
|
unsigned char *minpos_done, unsigned char *maxpos_done,
|
|
unsigned char *minpos_ok, unsigned char *maxpos_ok,
|
|
int *data, int len,
|
|
int freespace, int ndone, int lowest)
|
|
{
|
|
int i, j, k;
|
|
|
|
|
|
/* This algorithm basically tries all possible ways the given rows of
|
|
* black blocks can be laid out in the row/column being examined.
|
|
* Special care is taken to avoid checking the tail of a row/column
|
|
* if the same conditions have already been checked during this recursion
|
|
* The algorithm also takes care to cut its losses as soon as an
|
|
* invalid (partial) solution is detected.
|
|
*/
|
|
if (data[ndone]) {
|
|
if (lowest >= minpos_done[ndone] && lowest <= maxpos_done[ndone]) {
|
|
if (lowest >= minpos_ok[ndone] && lowest <= maxpos_ok[ndone]) {
|
|
for (i=0; i<lowest; i++)
|
|
deduced[i] |= row[i];
|
|
}
|
|
return lowest >= minpos_ok[ndone] && lowest <= maxpos_ok[ndone];
|
|
} else {
|
|
if (lowest < minpos_done[ndone]) minpos_done[ndone] = lowest;
|
|
if (lowest > maxpos_done[ndone]) maxpos_done[ndone] = lowest;
|
|
}
|
|
for (i=0; i<=freespace; i++) {
|
|
j = lowest;
|
|
for (k=0; k<i; k++) {
|
|
if (known[j] == BLOCK) goto next_iter;
|
|
row[j++] = DOT;
|
|
}
|
|
for (k=0; k<data[ndone]; k++) {
|
|
if (known[j] == DOT) goto next_iter;
|
|
row[j++] = BLOCK;
|
|
}
|
|
if (j < len) {
|
|
if (known[j] == BLOCK) goto next_iter;
|
|
row[j++] = DOT;
|
|
}
|
|
if (do_recurse(known, deduced, row, minpos_done, maxpos_done,
|
|
minpos_ok, maxpos_ok, data, len, freespace-i, ndone+1, j)) {
|
|
if (lowest < minpos_ok[ndone]) minpos_ok[ndone] = lowest;
|
|
if (lowest + i > maxpos_ok[ndone]) maxpos_ok[ndone] = lowest + i;
|
|
if (lowest + i > maxpos_done[ndone]) maxpos_done[ndone] = lowest + i;
|
|
}
|
|
next_iter:
|
|
j++;
|
|
}
|
|
return lowest >= minpos_ok[ndone] && lowest <= maxpos_ok[ndone];
|
|
} else {
|
|
for (i=lowest; i<len; i++) {
|
|
if (known[i] == BLOCK) return FALSE;
|
|
row[i] = DOT;
|
|
}
|
|
for (i=0; i<len; i++)
|
|
deduced[i] |= row[i];
|
|
return TRUE;
|
|
}
|
|
}
|
|
|
|
|
|
static int do_row(unsigned char *known, unsigned char *deduced,
|
|
unsigned char *row,
|
|
unsigned char *minpos_done, unsigned char *maxpos_done,
|
|
unsigned char *minpos_ok, unsigned char *maxpos_ok,
|
|
unsigned char *start, int len, int step, int *data,
|
|
unsigned int *changed
|
|
#ifdef STANDALONE_SOLVER
|
|
, const char *rowcol, int index, int cluewid
|
|
#endif
|
|
)
|
|
{
|
|
int rowlen, i, freespace, done_any;
|
|
|
|
freespace = len+1;
|
|
for (rowlen = 0; data[rowlen]; rowlen++) {
|
|
minpos_done[rowlen] = minpos_ok[rowlen] = len - 1;
|
|
maxpos_done[rowlen] = maxpos_ok[rowlen] = 0;
|
|
freespace -= data[rowlen]+1;
|
|
}
|
|
|
|
for (i = 0; i < len; i++) {
|
|
known[i] = start[i*step];
|
|
deduced[i] = 0;
|
|
}
|
|
for (i = len - 1; i >= 0 && known[i] == DOT; i--)
|
|
freespace--;
|
|
|
|
do_recurse(known, deduced, row, minpos_done, maxpos_done, minpos_ok, maxpos_ok, data, len, freespace, 0, 0);
|
|
|
|
done_any = FALSE;
|
|
for (i=0; i<len; i++)
|
|
if (deduced[i] && deduced[i] != STILL_UNKNOWN && !known[i]) {
|
|
start[i*step] = deduced[i];
|
|
if (changed) changed[i]++;
|
|
done_any = TRUE;
|
|
}
|
|
#ifdef STANDALONE_SOLVER
|
|
if (verbose && done_any) {
|
|
char buf[80];
|
|
int thiscluewid;
|
|
printf("%s %2d: [", rowcol, index);
|
|
for (thiscluewid = -1, i = 0; data[i]; i++)
|
|
thiscluewid += sprintf(buf, " %d", data[i]);
|
|
printf("%*s", cluewid - thiscluewid, "");
|
|
for (i = 0; data[i]; i++)
|
|
printf(" %d", data[i]);
|
|
printf(" ] ");
|
|
for (i = 0; i < len; i++)
|
|
putchar(known[i] == BLOCK ? '#' :
|
|
known[i] == DOT ? '.' : '?');
|
|
printf(" -> ");
|
|
for (i = 0; i < len; i++)
|
|
putchar(start[i*step] == BLOCK ? '#' :
|
|
start[i*step] == DOT ? '.' : '?');
|
|
putchar('\n');
|
|
}
|
|
#endif
|
|
return done_any;
|
|
}
|
|
|
|
static int solve_puzzle(game_state *state, unsigned char *grid, int w, int h,
|
|
unsigned char *matrix, unsigned char *workspace,
|
|
unsigned int *changed_h, unsigned int *changed_w,
|
|
int *rowdata
|
|
#ifdef STANDALONE_SOLVER
|
|
, int cluewid
|
|
#else
|
|
, int dummy
|
|
#endif
|
|
)
|
|
{
|
|
int i, j, ok, max;
|
|
int max_h, max_w;
|
|
|
|
assert((state!=NULL) ^ (grid!=NULL));
|
|
|
|
max = max(w, h);
|
|
|
|
memset(matrix, 0, w*h);
|
|
|
|
/* For each column, compute how many squares can be deduced
|
|
* from just the row-data.
|
|
* Later, changed_* will hold how many squares were changed
|
|
* in every row/column in the previous iteration
|
|
* Changed_* is used to choose the next rows / cols to re-examine
|
|
*/
|
|
for (i=0; i<h; i++) {
|
|
int freespace;
|
|
if (state) {
|
|
memcpy(rowdata, state->rowdata + state->rowsize*(w+i), max*sizeof(int));
|
|
rowdata[state->rowlen[w+i]] = 0;
|
|
} else {
|
|
rowdata[compute_rowdata(rowdata, grid+i*w, w, 1)] = 0;
|
|
}
|
|
for (j=0, freespace=w+1; rowdata[j]; j++) freespace -= rowdata[j] + 1;
|
|
for (j=0, changed_h[i]=0; rowdata[j]; j++)
|
|
if (rowdata[j] > freespace)
|
|
changed_h[i] += rowdata[j] - freespace;
|
|
}
|
|
for (i=0,max_h=0; i<h; i++)
|
|
if (changed_h[i] > max_h)
|
|
max_h = changed_h[i];
|
|
for (i=0; i<w; i++) {
|
|
int freespace;
|
|
if (state) {
|
|
memcpy(rowdata, state->rowdata + state->rowsize*i, max*sizeof(int));
|
|
rowdata[state->rowlen[i]] = 0;
|
|
} else {
|
|
rowdata[compute_rowdata(rowdata, grid+i, h, w)] = 0;
|
|
}
|
|
for (j=0, freespace=h+1; rowdata[j]; j++) freespace -= rowdata[j] + 1;
|
|
for (j=0, changed_w[i]=0; rowdata[j]; j++)
|
|
if (rowdata[j] > freespace)
|
|
changed_w[i] += rowdata[j] - freespace;
|
|
}
|
|
for (i=0,max_w=0; i<w; i++)
|
|
if (changed_w[i] > max_w)
|
|
max_w = changed_w[i];
|
|
|
|
/* Solve the puzzle.
|
|
* Process rows/columns individually. Deductions involving more than one
|
|
* row and/or column at a time are not supported.
|
|
* Take care to only process rows/columns which have been changed since they
|
|
* were previously processed.
|
|
* Also, prioritize rows/columns which have had the most changes since their
|
|
* previous processing, as they promise the greatest benefit.
|
|
* Extremely rectangular grids (e.g. 10x20, 15x40, etc.) are not treated specially.
|
|
*/
|
|
do {
|
|
for (; max_h && max_h >= max_w; max_h--) {
|
|
for (i=0; i<h; i++) {
|
|
if (changed_h[i] >= max_h) {
|
|
if (state) {
|
|
memcpy(rowdata, state->rowdata + state->rowsize*(w+i), max*sizeof(int));
|
|
rowdata[state->rowlen[w+i]] = 0;
|
|
} else {
|
|
rowdata[compute_rowdata(rowdata, grid+i*w, w, 1)] = 0;
|
|
}
|
|
do_row(workspace, workspace+max, workspace+2*max,
|
|
workspace+3*max, workspace+4*max,
|
|
workspace+5*max, workspace+6*max,
|
|
matrix+i*w, w, 1, rowdata, changed_w
|
|
#ifdef STANDALONE_SOLVER
|
|
, "row", i+1, cluewid
|
|
#endif
|
|
);
|
|
changed_h[i] = 0;
|
|
}
|
|
}
|
|
for (i=0,max_w=0; i<w; i++)
|
|
if (changed_w[i] > max_w)
|
|
max_w = changed_w[i];
|
|
}
|
|
for (; max_w && max_w >= max_h; max_w--) {
|
|
for (i=0; i<w; i++) {
|
|
if (changed_w[i] >= max_w) {
|
|
if (state) {
|
|
memcpy(rowdata, state->rowdata + state->rowsize*i, max*sizeof(int));
|
|
rowdata[state->rowlen[i]] = 0;
|
|
} else {
|
|
rowdata[compute_rowdata(rowdata, grid+i, h, w)] = 0;
|
|
}
|
|
do_row(workspace, workspace+max, workspace+2*max,
|
|
workspace+3*max, workspace+4*max,
|
|
workspace+5*max, workspace+6*max,
|
|
matrix+i, h, w, rowdata, changed_h
|
|
#ifdef STANDALONE_SOLVER
|
|
, "col", i+1, cluewid
|
|
#endif
|
|
);
|
|
changed_w[i] = 0;
|
|
}
|
|
}
|
|
for (i=0,max_h=0; i<h; i++)
|
|
if (changed_h[i] > max_h)
|
|
max_h = changed_h[i];
|
|
}
|
|
} while (max_h>0 || max_w>0);
|
|
|
|
ok = TRUE;
|
|
for (i=0; i<h; i++) {
|
|
for (j=0; j<w; j++) {
|
|
if (matrix[i*w+j] == UNKNOWN)
|
|
ok = FALSE;
|
|
}
|
|
}
|
|
|
|
return ok;
|
|
}
|
|
|
|
static unsigned char *generate_soluble(random_state *rs, int w, int h)
|
|
{
|
|
int i, j, ok, ntries, max;
|
|
unsigned char *grid, *matrix, *workspace;
|
|
unsigned int *changed_h, *changed_w;
|
|
int *rowdata;
|
|
|
|
max = max(w, h);
|
|
|
|
grid = snewn(w*h, unsigned char);
|
|
/* Allocate this here, to avoid having to reallocate it again for every geneerated grid */
|
|
matrix = snewn(w*h, unsigned char);
|
|
workspace = snewn(max*7, unsigned char);
|
|
changed_h = snewn(max+1, unsigned int);
|
|
changed_w = snewn(max+1, unsigned int);
|
|
rowdata = snewn(max+1, int);
|
|
|
|
ntries = 0;
|
|
|
|
do {
|
|
ntries++;
|
|
|
|
generate(rs, w, h, grid);
|
|
|
|
/*
|
|
* The game is a bit too easy if any row or column is
|
|
* completely black or completely white. An exception is
|
|
* made for rows/columns that are under 3 squares,
|
|
* otherwise nothing will ever be successfully generated.
|
|
*/
|
|
ok = TRUE;
|
|
if (w > 2) {
|
|
for (i = 0; i < h; i++) {
|
|
int colours = 0;
|
|
for (j = 0; j < w; j++)
|
|
colours |= (grid[i*w+j] == GRID_FULL ? 2 : 1);
|
|
if (colours != 3)
|
|
ok = FALSE;
|
|
}
|
|
}
|
|
if (h > 2) {
|
|
for (j = 0; j < w; j++) {
|
|
int colours = 0;
|
|
for (i = 0; i < h; i++)
|
|
colours |= (grid[i*w+j] == GRID_FULL ? 2 : 1);
|
|
if (colours != 3)
|
|
ok = FALSE;
|
|
}
|
|
}
|
|
if (!ok)
|
|
continue;
|
|
|
|
ok = solve_puzzle(NULL, grid, w, h, matrix, workspace,
|
|
changed_h, changed_w, rowdata, 0);
|
|
} while (!ok);
|
|
|
|
sfree(matrix);
|
|
sfree(workspace);
|
|
sfree(changed_h);
|
|
sfree(changed_w);
|
|
sfree(rowdata);
|
|
return grid;
|
|
}
|
|
|
|
static char *new_game_desc(const game_params *params, random_state *rs,
|
|
char **aux, int interactive)
|
|
{
|
|
unsigned char *grid;
|
|
int i, j, max, rowlen, *rowdata;
|
|
char intbuf[80], *desc;
|
|
int desclen, descpos;
|
|
|
|
grid = generate_soluble(rs, params->w, params->h);
|
|
max = max(params->w, params->h);
|
|
rowdata = snewn(max, int);
|
|
|
|
/*
|
|
* Save the solved game in aux.
|
|
*/
|
|
{
|
|
char *ai = snewn(params->w * params->h + 2, char);
|
|
|
|
/*
|
|
* String format is exactly the same as a solve move, so we
|
|
* can just dupstr this in solve_game().
|
|
*/
|
|
|
|
ai[0] = 'S';
|
|
|
|
for (i = 0; i < params->w * params->h; i++)
|
|
ai[i+1] = grid[i] ? '1' : '0';
|
|
|
|
ai[params->w * params->h + 1] = '\0';
|
|
|
|
*aux = ai;
|
|
}
|
|
|
|
/*
|
|
* Seed is a slash-separated list of row contents; each row
|
|
* contents section is a dot-separated list of integers. Row
|
|
* contents are listed in the order (columns left to right,
|
|
* then rows top to bottom).
|
|
*
|
|
* Simplest way to handle memory allocation is to make two
|
|
* passes, first computing the seed size and then writing it
|
|
* out.
|
|
*/
|
|
desclen = 0;
|
|
for (i = 0; i < params->w + params->h; i++) {
|
|
if (i < params->w)
|
|
rowlen = compute_rowdata(rowdata, grid+i, params->h, params->w);
|
|
else
|
|
rowlen = compute_rowdata(rowdata, grid+(i-params->w)*params->w,
|
|
params->w, 1);
|
|
if (rowlen > 0) {
|
|
for (j = 0; j < rowlen; j++) {
|
|
desclen += 1 + sprintf(intbuf, "%d", rowdata[j]);
|
|
}
|
|
} else {
|
|
desclen++;
|
|
}
|
|
}
|
|
desc = snewn(desclen, char);
|
|
descpos = 0;
|
|
for (i = 0; i < params->w + params->h; i++) {
|
|
if (i < params->w)
|
|
rowlen = compute_rowdata(rowdata, grid+i, params->h, params->w);
|
|
else
|
|
rowlen = compute_rowdata(rowdata, grid+(i-params->w)*params->w,
|
|
params->w, 1);
|
|
if (rowlen > 0) {
|
|
for (j = 0; j < rowlen; j++) {
|
|
int len = sprintf(desc+descpos, "%d", rowdata[j]);
|
|
if (j+1 < rowlen)
|
|
desc[descpos + len] = '.';
|
|
else
|
|
desc[descpos + len] = '/';
|
|
descpos += len+1;
|
|
}
|
|
} else {
|
|
desc[descpos++] = '/';
|
|
}
|
|
}
|
|
assert(descpos == desclen);
|
|
assert(desc[desclen-1] == '/');
|
|
desc[desclen-1] = '\0';
|
|
sfree(rowdata);
|
|
sfree(grid);
|
|
return desc;
|
|
}
|
|
|
|
static char *validate_desc(const game_params *params, char *desc)
|
|
{
|
|
int i, n, rowspace;
|
|
char *p;
|
|
|
|
for (i = 0; i < params->w + params->h; i++) {
|
|
if (i < params->w)
|
|
rowspace = params->h + 1;
|
|
else
|
|
rowspace = params->w + 1;
|
|
|
|
if (*desc && isdigit((unsigned char)*desc)) {
|
|
do {
|
|
p = desc;
|
|
while (*desc && isdigit((unsigned char)*desc)) desc++;
|
|
n = atoi(p);
|
|
rowspace -= n+1;
|
|
|
|
if (rowspace < 0) {
|
|
if (i < params->w)
|
|
return "at least one column contains more numbers than will fit";
|
|
else
|
|
return "at least one row contains more numbers than will fit";
|
|
}
|
|
} while (*desc++ == '.');
|
|
} else {
|
|
desc++; /* expect a slash immediately */
|
|
}
|
|
|
|
if (desc[-1] == '/') {
|
|
if (i+1 == params->w + params->h)
|
|
return "too many row/column specifications";
|
|
} else if (desc[-1] == '\0') {
|
|
if (i+1 < params->w + params->h)
|
|
return "too few row/column specifications";
|
|
} else
|
|
return "unrecognised character in game specification";
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static game_state *new_game(midend *me, game_params *params, char *desc)
|
|
{
|
|
int i;
|
|
char *p;
|
|
game_state *state = snew(game_state);
|
|
|
|
state->w = params->w;
|
|
state->h = params->h;
|
|
|
|
state->grid = snewn(state->w * state->h, unsigned char);
|
|
memset(state->grid, GRID_UNKNOWN, state->w * state->h);
|
|
|
|
state->rowsize = max(state->w, state->h);
|
|
state->rowdata = snewn(state->rowsize * (state->w + state->h), int);
|
|
state->rowlen = snewn(state->w + state->h, int);
|
|
|
|
state->completed = state->cheated = FALSE;
|
|
|
|
for (i = 0; i < params->w + params->h; i++) {
|
|
state->rowlen[i] = 0;
|
|
if (*desc && isdigit((unsigned char)*desc)) {
|
|
do {
|
|
p = desc;
|
|
while (*desc && isdigit((unsigned char)*desc)) desc++;
|
|
state->rowdata[state->rowsize * i + state->rowlen[i]++] =
|
|
atoi(p);
|
|
} while (*desc++ == '.');
|
|
} else {
|
|
desc++; /* expect a slash immediately */
|
|
}
|
|
}
|
|
|
|
return state;
|
|
}
|
|
|
|
static game_state *dup_game(game_state *state)
|
|
{
|
|
game_state *ret = snew(game_state);
|
|
|
|
ret->w = state->w;
|
|
ret->h = state->h;
|
|
|
|
ret->grid = snewn(ret->w * ret->h, unsigned char);
|
|
memcpy(ret->grid, state->grid, ret->w * ret->h);
|
|
|
|
ret->rowsize = state->rowsize;
|
|
ret->rowdata = snewn(ret->rowsize * (ret->w + ret->h), int);
|
|
ret->rowlen = snewn(ret->w + ret->h, int);
|
|
memcpy(ret->rowdata, state->rowdata,
|
|
ret->rowsize * (ret->w + ret->h) * sizeof(int));
|
|
memcpy(ret->rowlen, state->rowlen,
|
|
(ret->w + ret->h) * sizeof(int));
|
|
|
|
ret->completed = state->completed;
|
|
ret->cheated = state->cheated;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void free_game(game_state *state)
|
|
{
|
|
sfree(state->rowdata);
|
|
sfree(state->rowlen);
|
|
sfree(state->grid);
|
|
sfree(state);
|
|
}
|
|
|
|
static char *solve_game(game_state *state, game_state *currstate,
|
|
char *ai, char **error)
|
|
{
|
|
unsigned char *matrix;
|
|
int w = state->w, h = state->h;
|
|
int i;
|
|
char *ret;
|
|
int max, ok;
|
|
unsigned char *workspace;
|
|
unsigned int *changed_h, *changed_w;
|
|
int *rowdata;
|
|
|
|
/*
|
|
* If we already have the solved state in ai, copy it out.
|
|
*/
|
|
if (ai)
|
|
return dupstr(ai);
|
|
|
|
max = max(w, h);
|
|
matrix = snewn(w*h, unsigned char);
|
|
workspace = snewn(max*7, unsigned char);
|
|
changed_h = snewn(max+1, unsigned int);
|
|
changed_w = snewn(max+1, unsigned int);
|
|
rowdata = snewn(max+1, int);
|
|
|
|
ok = solve_puzzle(state, NULL, w, h, matrix, workspace,
|
|
changed_h, changed_w, rowdata, 0);
|
|
|
|
sfree(workspace);
|
|
sfree(changed_h);
|
|
sfree(changed_w);
|
|
sfree(rowdata);
|
|
|
|
if (!ok) {
|
|
sfree(matrix);
|
|
*error = "Solving algorithm cannot complete this puzzle";
|
|
return NULL;
|
|
}
|
|
|
|
ret = snewn(w*h+2, char);
|
|
ret[0] = 'S';
|
|
for (i = 0; i < w*h; i++) {
|
|
assert(matrix[i] == BLOCK || matrix[i] == DOT);
|
|
ret[i+1] = (matrix[i] == BLOCK ? '1' : '0');
|
|
}
|
|
ret[w*h+1] = '\0';
|
|
|
|
sfree(matrix);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int game_can_format_as_text_now(game_params *params)
|
|
{
|
|
return TRUE;
|
|
}
|
|
|
|
static char *game_text_format(game_state *state)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
struct game_ui {
|
|
int dragging;
|
|
int drag_start_x;
|
|
int drag_start_y;
|
|
int drag_end_x;
|
|
int drag_end_y;
|
|
int drag, release, state;
|
|
int cur_x, cur_y, cur_visible;
|
|
};
|
|
|
|
static game_ui *new_ui(game_state *state)
|
|
{
|
|
game_ui *ret;
|
|
|
|
ret = snew(game_ui);
|
|
ret->dragging = FALSE;
|
|
ret->cur_x = ret->cur_y = ret->cur_visible = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void free_ui(game_ui *ui)
|
|
{
|
|
sfree(ui);
|
|
}
|
|
|
|
static char *encode_ui(game_ui *ui)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static void decode_ui(game_ui *ui, char *encoding)
|
|
{
|
|
}
|
|
|
|
static void game_changed_state(game_ui *ui, game_state *oldstate,
|
|
game_state *newstate)
|
|
{
|
|
}
|
|
|
|
struct game_drawstate {
|
|
int started;
|
|
int w, h;
|
|
int tilesize;
|
|
unsigned char *visible, *numcolours;
|
|
int cur_x, cur_y;
|
|
};
|
|
|
|
static char *interpret_move(game_state *state, game_ui *ui, const game_drawstate *ds,
|
|
int x, int y, int button)
|
|
{
|
|
button &= ~MOD_MASK;
|
|
|
|
x = FROMCOORD(state->w, x);
|
|
y = FROMCOORD(state->h, y);
|
|
|
|
if (x >= 0 && x < state->w && y >= 0 && y < state->h &&
|
|
(button == LEFT_BUTTON || button == RIGHT_BUTTON ||
|
|
button == MIDDLE_BUTTON)) {
|
|
#ifdef STYLUS_BASED
|
|
int currstate = state->grid[y * state->w + x];
|
|
#endif
|
|
|
|
ui->dragging = TRUE;
|
|
|
|
if (button == LEFT_BUTTON) {
|
|
ui->drag = LEFT_DRAG;
|
|
ui->release = LEFT_RELEASE;
|
|
#ifdef STYLUS_BASED
|
|
ui->state = (currstate + 2) % 3; /* FULL -> EMPTY -> UNKNOWN */
|
|
#else
|
|
ui->state = GRID_FULL;
|
|
#endif
|
|
} else if (button == RIGHT_BUTTON) {
|
|
ui->drag = RIGHT_DRAG;
|
|
ui->release = RIGHT_RELEASE;
|
|
#ifdef STYLUS_BASED
|
|
ui->state = (currstate + 1) % 3; /* EMPTY -> FULL -> UNKNOWN */
|
|
#else
|
|
ui->state = GRID_EMPTY;
|
|
#endif
|
|
} else /* if (button == MIDDLE_BUTTON) */ {
|
|
ui->drag = MIDDLE_DRAG;
|
|
ui->release = MIDDLE_RELEASE;
|
|
ui->state = GRID_UNKNOWN;
|
|
}
|
|
|
|
ui->drag_start_x = ui->drag_end_x = x;
|
|
ui->drag_start_y = ui->drag_end_y = y;
|
|
ui->cur_visible = 0;
|
|
|
|
return ""; /* UI activity occurred */
|
|
}
|
|
|
|
if (ui->dragging && button == ui->drag) {
|
|
/*
|
|
* There doesn't seem much point in allowing a rectangle
|
|
* drag; people will generally only want to drag a single
|
|
* horizontal or vertical line, so we make that easy by
|
|
* snapping to it.
|
|
*
|
|
* Exception: if we're _middle_-button dragging to tag
|
|
* things as UNKNOWN, we may well want to trash an entire
|
|
* area and start over!
|
|
*/
|
|
if (ui->state != GRID_UNKNOWN) {
|
|
if (abs(x - ui->drag_start_x) > abs(y - ui->drag_start_y))
|
|
y = ui->drag_start_y;
|
|
else
|
|
x = ui->drag_start_x;
|
|
}
|
|
|
|
if (x < 0) x = 0;
|
|
if (y < 0) y = 0;
|
|
if (x >= state->w) x = state->w - 1;
|
|
if (y >= state->h) y = state->h - 1;
|
|
|
|
ui->drag_end_x = x;
|
|
ui->drag_end_y = y;
|
|
|
|
return ""; /* UI activity occurred */
|
|
}
|
|
|
|
if (ui->dragging && button == ui->release) {
|
|
int x1, x2, y1, y2, xx, yy;
|
|
int move_needed = FALSE;
|
|
|
|
x1 = min(ui->drag_start_x, ui->drag_end_x);
|
|
x2 = max(ui->drag_start_x, ui->drag_end_x);
|
|
y1 = min(ui->drag_start_y, ui->drag_end_y);
|
|
y2 = max(ui->drag_start_y, ui->drag_end_y);
|
|
|
|
for (yy = y1; yy <= y2; yy++)
|
|
for (xx = x1; xx <= x2; xx++)
|
|
if (state->grid[yy * state->w + xx] != ui->state)
|
|
move_needed = TRUE;
|
|
|
|
ui->dragging = FALSE;
|
|
|
|
if (move_needed) {
|
|
char buf[80];
|
|
sprintf(buf, "%c%d,%d,%d,%d",
|
|
(char)(ui->state == GRID_FULL ? 'F' :
|
|
ui->state == GRID_EMPTY ? 'E' : 'U'),
|
|
x1, y1, x2-x1+1, y2-y1+1);
|
|
return dupstr(buf);
|
|
} else
|
|
return ""; /* UI activity occurred */
|
|
}
|
|
|
|
if (IS_CURSOR_MOVE(button)) {
|
|
move_cursor(button, &ui->cur_x, &ui->cur_y, state->w, state->h, 0);
|
|
ui->cur_visible = 1;
|
|
return "";
|
|
}
|
|
if (IS_CURSOR_SELECT(button)) {
|
|
int currstate = state->grid[ui->cur_y * state->w + ui->cur_x];
|
|
int newstate;
|
|
char buf[80];
|
|
|
|
if (!ui->cur_visible) {
|
|
ui->cur_visible = 1;
|
|
return "";
|
|
}
|
|
|
|
if (button == CURSOR_SELECT2)
|
|
newstate = currstate == GRID_UNKNOWN ? GRID_EMPTY :
|
|
currstate == GRID_EMPTY ? GRID_FULL : GRID_UNKNOWN;
|
|
else
|
|
newstate = currstate == GRID_UNKNOWN ? GRID_FULL :
|
|
currstate == GRID_FULL ? GRID_EMPTY : GRID_UNKNOWN;
|
|
|
|
sprintf(buf, "%c%d,%d,%d,%d",
|
|
(char)(newstate == GRID_FULL ? 'F' :
|
|
newstate == GRID_EMPTY ? 'E' : 'U'),
|
|
ui->cur_x, ui->cur_y, 1, 1);
|
|
return dupstr(buf);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static game_state *execute_move(game_state *from, char *move)
|
|
{
|
|
game_state *ret;
|
|
int x1, x2, y1, y2, xx, yy;
|
|
int val;
|
|
|
|
if (move[0] == 'S' && strlen(move) == from->w * from->h + 1) {
|
|
int i;
|
|
|
|
ret = dup_game(from);
|
|
|
|
for (i = 0; i < ret->w * ret->h; i++)
|
|
ret->grid[i] = (move[i+1] == '1' ? GRID_FULL : GRID_EMPTY);
|
|
|
|
ret->completed = ret->cheated = TRUE;
|
|
|
|
return ret;
|
|
} else if ((move[0] == 'F' || move[0] == 'E' || move[0] == 'U') &&
|
|
sscanf(move+1, "%d,%d,%d,%d", &x1, &y1, &x2, &y2) == 4 &&
|
|
x1 >= 0 && x2 >= 0 && x1+x2 <= from->w &&
|
|
y1 >= 0 && y2 >= 0 && y1+y2 <= from->h) {
|
|
|
|
x2 += x1;
|
|
y2 += y1;
|
|
val = (move[0] == 'F' ? GRID_FULL :
|
|
move[0] == 'E' ? GRID_EMPTY : GRID_UNKNOWN);
|
|
|
|
ret = dup_game(from);
|
|
for (yy = y1; yy < y2; yy++)
|
|
for (xx = x1; xx < x2; xx++)
|
|
ret->grid[yy * ret->w + xx] = val;
|
|
|
|
/*
|
|
* An actual change, so check to see if we've completed the
|
|
* game.
|
|
*/
|
|
if (!ret->completed) {
|
|
int *rowdata = snewn(ret->rowsize, int);
|
|
int i, len;
|
|
|
|
ret->completed = TRUE;
|
|
|
|
for (i=0; i<ret->w; i++) {
|
|
len = compute_rowdata(rowdata,
|
|
ret->grid+i, ret->h, ret->w);
|
|
if (len != ret->rowlen[i] ||
|
|
memcmp(ret->rowdata+i*ret->rowsize, rowdata,
|
|
len * sizeof(int))) {
|
|
ret->completed = FALSE;
|
|
break;
|
|
}
|
|
}
|
|
for (i=0; i<ret->h; i++) {
|
|
len = compute_rowdata(rowdata,
|
|
ret->grid+i*ret->w, ret->w, 1);
|
|
if (len != ret->rowlen[i+ret->w] ||
|
|
memcmp(ret->rowdata+(i+ret->w)*ret->rowsize, rowdata,
|
|
len * sizeof(int))) {
|
|
ret->completed = FALSE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
sfree(rowdata);
|
|
}
|
|
|
|
return ret;
|
|
} else
|
|
return NULL;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Error-checking during gameplay.
|
|
*/
|
|
|
|
/*
|
|
* The difficulty in error-checking Pattern is to make the error check
|
|
* _weak_ enough. The most obvious way would be to check each row and
|
|
* column by calling (a modified form of) do_row() to recursively
|
|
* analyse the row contents against the clue set and see if the
|
|
* GRID_UNKNOWNs could be filled in in any way that would end up
|
|
* correct. However, this turns out to be such a strong error check as
|
|
* to constitute a spoiler in many situations: you make a typo while
|
|
* trying to fill in one row, and not only does the row light up to
|
|
* indicate an error, but several columns crossed by the move also
|
|
* light up and draw your attention to deductions you hadn't even
|
|
* noticed you could make.
|
|
*
|
|
* So instead I restrict error-checking to 'complete runs' within a
|
|
* row, by which I mean contiguous sequences of GRID_FULL bounded at
|
|
* both ends by either GRID_EMPTY or the ends of the row. We identify
|
|
* all the complete runs in a row, and verify that _those_ are
|
|
* consistent with the row's clue list. Sequences of complete runs
|
|
* separated by solid GRID_EMPTY are required to match contiguous
|
|
* sequences in the clue list, whereas if there's at least one
|
|
* GRID_UNKNOWN between any two complete runs then those two need not
|
|
* be contiguous in the clue list.
|
|
*
|
|
* To simplify the edge cases, I pretend that the clue list for the
|
|
* row is extended with a 0 at each end, and I also pretend that the
|
|
* grid data for the row is extended with a GRID_EMPTY and a
|
|
* zero-length run at each end. This permits the contiguity checker to
|
|
* handle the fiddly end effects (e.g. if the first contiguous
|
|
* sequence of complete runs in the grid matches _something_ in the
|
|
* clue list but not at the beginning, this is allowable iff there's a
|
|
* GRID_UNKNOWN before the first one) with minimal faff, since the end
|
|
* effects just drop out as special cases of the normal inter-run
|
|
* handling (in this code the above case is not 'at the end of the
|
|
* clue list' at all, but between the implicit initial zero run and
|
|
* the first nonzero one).
|
|
*
|
|
* We must also be a little careful about how we search for a
|
|
* contiguous sequence of runs. In the clue list (1 1 2 1 2 3),
|
|
* suppose we see a GRID_UNKNOWN and then a length-1 run. We search
|
|
* for 1 in the clue list and find it at the very beginning. But now
|
|
* suppose we find a length-2 run with no GRID_UNKNOWN before it. We
|
|
* can't naively look at the next clue from the 1 we found, because
|
|
* that'll be the second 1 and won't match. Instead, we must backtrack
|
|
* by observing that the 2 we've just found must be contiguous with
|
|
* the 1 we've already seen, so we search for the sequence (1 2) and
|
|
* find it starting at the second 1. Now if we see a 3, we must
|
|
* rethink again and search for (1 2 3).
|
|
*/
|
|
|
|
struct errcheck_state {
|
|
/*
|
|
* rowdata and rowlen point at the clue data for this row in the
|
|
* game state.
|
|
*/
|
|
int *rowdata;
|
|
int rowlen;
|
|
/*
|
|
* rowpos indicates the lowest position where it would be valid to
|
|
* see our next run length. It might be equal to rowlen,
|
|
* indicating that the next run would have to be the terminating 0.
|
|
*/
|
|
int rowpos;
|
|
/*
|
|
* ncontig indicates how many runs we've seen in a contiguous
|
|
* block. This is taken into account when searching for the next
|
|
* run we find, unless ncontig is zeroed out first by encountering
|
|
* a GRID_UNKNOWN.
|
|
*/
|
|
int ncontig;
|
|
};
|
|
|
|
static int errcheck_found_run(struct errcheck_state *es, int r)
|
|
{
|
|
/* Macro to handle the pretence that rowdata has a 0 at each end */
|
|
#define ROWDATA(k) ((k)<0 || (k)>=es->rowlen ? 0 : es->rowdata[(k)])
|
|
|
|
/*
|
|
* See if we can find this new run length at a position where it
|
|
* also matches the last 'ncontig' runs we've seen.
|
|
*/
|
|
int i, newpos;
|
|
for (newpos = es->rowpos; newpos <= es->rowlen; newpos++) {
|
|
|
|
if (ROWDATA(newpos) != r)
|
|
goto notfound;
|
|
|
|
for (i = 1; i <= es->ncontig; i++)
|
|
if (ROWDATA(newpos - i) != ROWDATA(es->rowpos - i))
|
|
goto notfound;
|
|
|
|
es->rowpos = newpos+1;
|
|
es->ncontig++;
|
|
return TRUE;
|
|
|
|
notfound:;
|
|
}
|
|
|
|
return FALSE;
|
|
|
|
#undef ROWDATA
|
|
}
|
|
|
|
static int check_errors(game_state *state, int i)
|
|
{
|
|
int start, step, end, j;
|
|
int val, runlen;
|
|
struct errcheck_state aes, *es = &aes;
|
|
|
|
es->rowlen = state->rowlen[i];
|
|
es->rowdata = state->rowdata + state->rowsize * i;
|
|
/* Pretend that we've already encountered the initial zero run */
|
|
es->ncontig = 1;
|
|
es->rowpos = 0;
|
|
|
|
if (i < state->w) {
|
|
start = i;
|
|
step = state->w;
|
|
end = start + step * state->h;
|
|
} else {
|
|
start = (i - state->w) * state->w;
|
|
step = 1;
|
|
end = start + step * state->w;
|
|
}
|
|
|
|
runlen = -1;
|
|
for (j = start - step; j <= end; j += step) {
|
|
if (j < start || j == end)
|
|
val = GRID_EMPTY;
|
|
else
|
|
val = state->grid[j];
|
|
|
|
if (val == GRID_UNKNOWN) {
|
|
runlen = -1;
|
|
es->ncontig = 0;
|
|
} else if (val == GRID_FULL) {
|
|
if (runlen >= 0)
|
|
runlen++;
|
|
} else if (val == GRID_EMPTY) {
|
|
if (runlen > 0) {
|
|
if (!errcheck_found_run(es, runlen))
|
|
return TRUE; /* error! */
|
|
}
|
|
runlen = 0;
|
|
}
|
|
}
|
|
|
|
/* Signal end-of-row by sending errcheck_found_run the terminating
|
|
* zero run, which will be marked as contiguous with the previous
|
|
* run if and only if there hasn't been a GRID_UNKNOWN before. */
|
|
if (!errcheck_found_run(es, 0))
|
|
return TRUE; /* error at the last minute! */
|
|
|
|
return FALSE; /* no error */
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Drawing routines.
|
|
*/
|
|
|
|
static void game_compute_size(game_params *params, int tilesize,
|
|
int *x, int *y)
|
|
{
|
|
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
|
|
struct { int tilesize; } ads, *ds = &ads;
|
|
ads.tilesize = tilesize;
|
|
|
|
*x = SIZE(params->w);
|
|
*y = SIZE(params->h);
|
|
}
|
|
|
|
static void game_set_size(drawing *dr, game_drawstate *ds,
|
|
game_params *params, int tilesize)
|
|
{
|
|
ds->tilesize = tilesize;
|
|
}
|
|
|
|
static float *game_colours(frontend *fe, int *ncolours)
|
|
{
|
|
float *ret = snewn(3 * NCOLOURS, float);
|
|
int i;
|
|
|
|
frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
ret[COL_GRID * 3 + i] = 0.3F;
|
|
ret[COL_UNKNOWN * 3 + i] = 0.5F;
|
|
ret[COL_TEXT * 3 + i] = 0.0F;
|
|
ret[COL_FULL * 3 + i] = 0.0F;
|
|
ret[COL_EMPTY * 3 + i] = 1.0F;
|
|
}
|
|
ret[COL_CURSOR * 3 + 0] = 1.0F;
|
|
ret[COL_CURSOR * 3 + 1] = 0.25F;
|
|
ret[COL_CURSOR * 3 + 2] = 0.25F;
|
|
ret[COL_ERROR * 3 + 0] = 1.0F;
|
|
ret[COL_ERROR * 3 + 1] = 0.0F;
|
|
ret[COL_ERROR * 3 + 2] = 0.0F;
|
|
|
|
*ncolours = NCOLOURS;
|
|
return ret;
|
|
}
|
|
|
|
static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
|
|
{
|
|
struct game_drawstate *ds = snew(struct game_drawstate);
|
|
|
|
ds->started = FALSE;
|
|
ds->w = state->w;
|
|
ds->h = state->h;
|
|
ds->visible = snewn(ds->w * ds->h, unsigned char);
|
|
ds->tilesize = 0; /* not decided yet */
|
|
memset(ds->visible, 255, ds->w * ds->h);
|
|
ds->numcolours = snewn(ds->w + ds->h, unsigned char);
|
|
memset(ds->numcolours, 255, ds->w + ds->h);
|
|
ds->cur_x = ds->cur_y = 0;
|
|
|
|
return ds;
|
|
}
|
|
|
|
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
|
|
{
|
|
sfree(ds->visible);
|
|
sfree(ds);
|
|
}
|
|
|
|
static void grid_square(drawing *dr, game_drawstate *ds,
|
|
int y, int x, int state, int cur)
|
|
{
|
|
int xl, xr, yt, yb, dx, dy, dw, dh;
|
|
|
|
draw_rect(dr, TOCOORD(ds->w, x), TOCOORD(ds->h, y),
|
|
TILE_SIZE, TILE_SIZE, COL_GRID);
|
|
|
|
xl = (x % 5 == 0 ? 1 : 0);
|
|
yt = (y % 5 == 0 ? 1 : 0);
|
|
xr = (x % 5 == 4 || x == ds->w-1 ? 1 : 0);
|
|
yb = (y % 5 == 4 || y == ds->h-1 ? 1 : 0);
|
|
|
|
dx = TOCOORD(ds->w, x) + 1 + xl;
|
|
dy = TOCOORD(ds->h, y) + 1 + yt;
|
|
dw = TILE_SIZE - xl - xr - 1;
|
|
dh = TILE_SIZE - yt - yb - 1;
|
|
|
|
draw_rect(dr, dx, dy, dw, dh,
|
|
(state == GRID_FULL ? COL_FULL :
|
|
state == GRID_EMPTY ? COL_EMPTY : COL_UNKNOWN));
|
|
if (cur) {
|
|
draw_rect_outline(dr, dx, dy, dw, dh, COL_CURSOR);
|
|
draw_rect_outline(dr, dx+1, dy+1, dw-2, dh-2, COL_CURSOR);
|
|
}
|
|
|
|
draw_update(dr, TOCOORD(ds->w, x), TOCOORD(ds->h, y),
|
|
TILE_SIZE, TILE_SIZE);
|
|
}
|
|
|
|
/*
|
|
* Draw the numbers for a single row or column.
|
|
*/
|
|
static void draw_numbers(drawing *dr, game_drawstate *ds, game_state *state,
|
|
int i, int erase, int colour)
|
|
{
|
|
int rowlen = state->rowlen[i];
|
|
int *rowdata = state->rowdata + state->rowsize * i;
|
|
int nfit;
|
|
int j;
|
|
|
|
if (erase) {
|
|
if (i < state->w) {
|
|
draw_rect(dr, TOCOORD(state->w, i), 0,
|
|
TILE_SIZE, BORDER + TLBORDER(state->h) * TILE_SIZE,
|
|
COL_BACKGROUND);
|
|
} else {
|
|
draw_rect(dr, 0, TOCOORD(state->h, i - state->w),
|
|
BORDER + TLBORDER(state->w) * TILE_SIZE, TILE_SIZE,
|
|
COL_BACKGROUND);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Normally I space the numbers out by the same distance as the
|
|
* tile size. However, if there are more numbers than available
|
|
* spaces, I have to squash them up a bit.
|
|
*/
|
|
if (i < state->w)
|
|
nfit = TLBORDER(state->h);
|
|
else
|
|
nfit = TLBORDER(state->w);
|
|
nfit = max(rowlen, nfit) - 1;
|
|
assert(nfit > 0);
|
|
|
|
for (j = 0; j < rowlen; j++) {
|
|
int x, y;
|
|
char str[80];
|
|
|
|
if (i < state->w) {
|
|
x = TOCOORD(state->w, i);
|
|
y = BORDER + TILE_SIZE * (TLBORDER(state->h)-1);
|
|
y -= ((rowlen-j-1)*TILE_SIZE) * (TLBORDER(state->h)-1) / nfit;
|
|
} else {
|
|
y = TOCOORD(state->h, i - state->w);
|
|
x = BORDER + TILE_SIZE * (TLBORDER(state->w)-1);
|
|
x -= ((rowlen-j-1)*TILE_SIZE) * (TLBORDER(state->w)-1) / nfit;
|
|
}
|
|
|
|
sprintf(str, "%d", rowdata[j]);
|
|
draw_text(dr, x+TILE_SIZE/2, y+TILE_SIZE/2, FONT_VARIABLE,
|
|
TILE_SIZE/2, ALIGN_HCENTRE | ALIGN_VCENTRE, colour, str);
|
|
}
|
|
|
|
if (i < state->w) {
|
|
draw_update(dr, TOCOORD(state->w, i), 0,
|
|
TILE_SIZE, BORDER + TLBORDER(state->h) * TILE_SIZE);
|
|
} else {
|
|
draw_update(dr, 0, TOCOORD(state->h, i - state->w),
|
|
BORDER + TLBORDER(state->w) * TILE_SIZE, TILE_SIZE);
|
|
}
|
|
}
|
|
|
|
static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
|
|
game_state *state, int dir, game_ui *ui,
|
|
float animtime, float flashtime)
|
|
{
|
|
int i, j;
|
|
int x1, x2, y1, y2;
|
|
int cx, cy, cmoved;
|
|
|
|
if (!ds->started) {
|
|
/*
|
|
* The initial contents of the window are not guaranteed
|
|
* and can vary with front ends. To be on the safe side,
|
|
* all games should start by drawing a big background-
|
|
* colour rectangle covering the whole window.
|
|
*/
|
|
draw_rect(dr, 0, 0, SIZE(ds->w), SIZE(ds->h), COL_BACKGROUND);
|
|
|
|
/*
|
|
* Draw the grid outline.
|
|
*/
|
|
draw_rect(dr, TOCOORD(ds->w, 0) - 1, TOCOORD(ds->h, 0) - 1,
|
|
ds->w * TILE_SIZE + 3, ds->h * TILE_SIZE + 3,
|
|
COL_GRID);
|
|
|
|
ds->started = TRUE;
|
|
|
|
draw_update(dr, 0, 0, SIZE(ds->w), SIZE(ds->h));
|
|
}
|
|
|
|
if (ui->dragging) {
|
|
x1 = min(ui->drag_start_x, ui->drag_end_x);
|
|
x2 = max(ui->drag_start_x, ui->drag_end_x);
|
|
y1 = min(ui->drag_start_y, ui->drag_end_y);
|
|
y2 = max(ui->drag_start_y, ui->drag_end_y);
|
|
} else {
|
|
x1 = x2 = y1 = y2 = -1; /* placate gcc warnings */
|
|
}
|
|
|
|
if (ui->cur_visible) {
|
|
cx = ui->cur_x; cy = ui->cur_y;
|
|
} else {
|
|
cx = cy = -1;
|
|
}
|
|
cmoved = (cx != ds->cur_x || cy != ds->cur_y);
|
|
|
|
/*
|
|
* Now draw any grid squares which have changed since last
|
|
* redraw.
|
|
*/
|
|
for (i = 0; i < ds->h; i++) {
|
|
for (j = 0; j < ds->w; j++) {
|
|
int val, cc = 0;
|
|
|
|
/*
|
|
* Work out what state this square should be drawn in,
|
|
* taking any current drag operation into account.
|
|
*/
|
|
if (ui->dragging && x1 <= j && j <= x2 && y1 <= i && i <= y2)
|
|
val = ui->state;
|
|
else
|
|
val = state->grid[i * state->w + j];
|
|
|
|
if (cmoved) {
|
|
/* the cursor has moved; if we were the old or
|
|
* the new cursor position we need to redraw. */
|
|
if (j == cx && i == cy) cc = 1;
|
|
if (j == ds->cur_x && i == ds->cur_y) cc = 1;
|
|
}
|
|
|
|
/*
|
|
* Briefly invert everything twice during a completion
|
|
* flash.
|
|
*/
|
|
if (flashtime > 0 &&
|
|
(flashtime <= FLASH_TIME/3 || flashtime >= FLASH_TIME*2/3) &&
|
|
val != GRID_UNKNOWN)
|
|
val = (GRID_FULL ^ GRID_EMPTY) ^ val;
|
|
|
|
if (ds->visible[i * ds->w + j] != val || cc) {
|
|
grid_square(dr, ds, i, j, val,
|
|
(j == cx && i == cy));
|
|
ds->visible[i * ds->w + j] = val;
|
|
}
|
|
}
|
|
}
|
|
ds->cur_x = cx; ds->cur_y = cy;
|
|
|
|
/*
|
|
* Redraw any numbers which have changed their colour due to error
|
|
* indication.
|
|
*/
|
|
for (i = 0; i < state->w + state->h; i++) {
|
|
int colour = check_errors(state, i) ? COL_ERROR : COL_TEXT;
|
|
if (ds->numcolours[i] != colour) {
|
|
draw_numbers(dr, ds, state, i, TRUE, colour);
|
|
ds->numcolours[i] = colour;
|
|
}
|
|
}
|
|
}
|
|
|
|
static float game_anim_length(game_state *oldstate,
|
|
game_state *newstate, int dir, game_ui *ui)
|
|
{
|
|
return 0.0F;
|
|
}
|
|
|
|
static float game_flash_length(game_state *oldstate,
|
|
game_state *newstate, int dir, game_ui *ui)
|
|
{
|
|
if (!oldstate->completed && newstate->completed &&
|
|
!oldstate->cheated && !newstate->cheated)
|
|
return FLASH_TIME;
|
|
return 0.0F;
|
|
}
|
|
|
|
static int game_status(game_state *state)
|
|
{
|
|
return state->completed ? +1 : 0;
|
|
}
|
|
|
|
static int game_timing_state(game_state *state, game_ui *ui)
|
|
{
|
|
return TRUE;
|
|
}
|
|
|
|
static void game_print_size(game_params *params, float *x, float *y)
|
|
{
|
|
int pw, ph;
|
|
|
|
/*
|
|
* I'll use 5mm squares by default.
|
|
*/
|
|
game_compute_size(params, 500, &pw, &ph);
|
|
*x = pw / 100.0F;
|
|
*y = ph / 100.0F;
|
|
}
|
|
|
|
static void game_print(drawing *dr, game_state *state, int tilesize)
|
|
{
|
|
int w = state->w, h = state->h;
|
|
int ink = print_mono_colour(dr, 0);
|
|
int x, y, i;
|
|
|
|
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
|
|
game_drawstate ads, *ds = &ads;
|
|
game_set_size(dr, ds, NULL, tilesize);
|
|
|
|
/*
|
|
* Border.
|
|
*/
|
|
print_line_width(dr, TILE_SIZE / 16);
|
|
draw_rect_outline(dr, TOCOORD(w, 0), TOCOORD(h, 0),
|
|
w*TILE_SIZE, h*TILE_SIZE, ink);
|
|
|
|
/*
|
|
* Grid.
|
|
*/
|
|
for (x = 1; x < w; x++) {
|
|
print_line_width(dr, TILE_SIZE / (x % 5 ? 128 : 24));
|
|
draw_line(dr, TOCOORD(w, x), TOCOORD(h, 0),
|
|
TOCOORD(w, x), TOCOORD(h, h), ink);
|
|
}
|
|
for (y = 1; y < h; y++) {
|
|
print_line_width(dr, TILE_SIZE / (y % 5 ? 128 : 24));
|
|
draw_line(dr, TOCOORD(w, 0), TOCOORD(h, y),
|
|
TOCOORD(w, w), TOCOORD(h, y), ink);
|
|
}
|
|
|
|
/*
|
|
* Clues.
|
|
*/
|
|
for (i = 0; i < state->w + state->h; i++)
|
|
draw_numbers(dr, ds, state, i, FALSE, ink);
|
|
|
|
/*
|
|
* Solution.
|
|
*/
|
|
print_line_width(dr, TILE_SIZE / 128);
|
|
for (y = 0; y < h; y++)
|
|
for (x = 0; x < w; x++) {
|
|
if (state->grid[y*w+x] == GRID_FULL)
|
|
draw_rect(dr, TOCOORD(w, x), TOCOORD(h, y),
|
|
TILE_SIZE, TILE_SIZE, ink);
|
|
else if (state->grid[y*w+x] == GRID_EMPTY)
|
|
draw_circle(dr, TOCOORD(w, x) + TILE_SIZE/2,
|
|
TOCOORD(h, y) + TILE_SIZE/2,
|
|
TILE_SIZE/12, ink, ink);
|
|
}
|
|
}
|
|
|
|
#ifdef COMBINED
|
|
#define thegame pattern
|
|
#endif
|
|
|
|
const struct game thegame = {
|
|
"Pattern", "games.pattern", "pattern",
|
|
default_params,
|
|
game_fetch_preset,
|
|
decode_params,
|
|
encode_params,
|
|
free_params,
|
|
dup_params,
|
|
TRUE, game_configure, custom_params,
|
|
validate_params,
|
|
new_game_desc,
|
|
validate_desc,
|
|
new_game,
|
|
dup_game,
|
|
free_game,
|
|
TRUE, solve_game,
|
|
FALSE, game_can_format_as_text_now, game_text_format,
|
|
new_ui,
|
|
free_ui,
|
|
encode_ui,
|
|
decode_ui,
|
|
game_changed_state,
|
|
interpret_move,
|
|
execute_move,
|
|
PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
|
|
game_colours,
|
|
game_new_drawstate,
|
|
game_free_drawstate,
|
|
game_redraw,
|
|
game_anim_length,
|
|
game_flash_length,
|
|
game_status,
|
|
TRUE, FALSE, game_print_size, game_print,
|
|
FALSE, /* wants_statusbar */
|
|
FALSE, game_timing_state,
|
|
REQUIRE_RBUTTON, /* flags */
|
|
};
|
|
|
|
#ifdef STANDALONE_SOLVER
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
game_params *p;
|
|
game_state *s;
|
|
char *id = NULL, *desc, *err;
|
|
|
|
while (--argc > 0) {
|
|
char *p = *++argv;
|
|
if (*p == '-') {
|
|
if (!strcmp(p, "-v")) {
|
|
verbose = TRUE;
|
|
} else {
|
|
fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
|
|
return 1;
|
|
}
|
|
} else {
|
|
id = p;
|
|
}
|
|
}
|
|
|
|
if (!id) {
|
|
fprintf(stderr, "usage: %s <game_id>\n", argv[0]);
|
|
return 1;
|
|
}
|
|
|
|
desc = strchr(id, ':');
|
|
if (!desc) {
|
|
fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
|
|
return 1;
|
|
}
|
|
*desc++ = '\0';
|
|
|
|
p = default_params();
|
|
decode_params(p, id);
|
|
err = validate_desc(p, desc);
|
|
if (err) {
|
|
fprintf(stderr, "%s: %s\n", argv[0], err);
|
|
return 1;
|
|
}
|
|
s = new_game(NULL, p, desc);
|
|
|
|
{
|
|
int w = p->w, h = p->h, i, j, max, cluewid = 0;
|
|
unsigned char *matrix, *workspace;
|
|
unsigned int *changed_h, *changed_w;
|
|
int *rowdata;
|
|
|
|
matrix = snewn(w*h, unsigned char);
|
|
max = max(w, h);
|
|
workspace = snewn(max*7, unsigned char);
|
|
changed_h = snewn(max+1, unsigned int);
|
|
changed_w = snewn(max+1, unsigned int);
|
|
rowdata = snewn(max+1, int);
|
|
|
|
if (verbose) {
|
|
int thiswid;
|
|
/*
|
|
* Work out the maximum text width of the clue numbers
|
|
* in a row or column, so we can print the solver's
|
|
* working in a nicely lined up way.
|
|
*/
|
|
for (i = 0; i < (w+h); i++) {
|
|
char buf[80];
|
|
for (thiswid = -1, j = 0; j < s->rowlen[i]; j++)
|
|
thiswid += sprintf(buf, " %d", s->rowdata[s->rowsize*i+j]);
|
|
if (cluewid < thiswid)
|
|
cluewid = thiswid;
|
|
}
|
|
}
|
|
|
|
solve_puzzle(s, NULL, w, h, matrix, workspace,
|
|
changed_h, changed_w, rowdata, cluewid);
|
|
|
|
for (i = 0; i < h; i++) {
|
|
for (j = 0; j < w; j++) {
|
|
int c = (matrix[i*w+j] == UNKNOWN ? '?' :
|
|
matrix[i*w+j] == BLOCK ? '#' :
|
|
matrix[i*w+j] == DOT ? '.' :
|
|
'!');
|
|
putchar(c);
|
|
}
|
|
printf("\n");
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
/* vim: set shiftwidth=4 tabstop=8: */
|