Files
puzzles/lightup.c
Simon Tatham c8c576f689 Remove conditional definition of MAX_GRIDGEN_TRIES, for consistency
between Palm and other ports when fed the same random seed.

[originally from svn r6172]
2005-08-07 08:47:08 +00:00

1777 lines
52 KiB
C

/*
* lightup.c: Implementation of the Nikoli game 'Light Up'.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <ctype.h>
#include <math.h>
#include "puzzles.h"
/* --- Constants, structure definitions, etc. --- */
#define PREFERRED_TILE_SIZE 32
#define TILE_SIZE (ds->tilesize)
#define BORDER (TILE_SIZE / 2)
#define TILE_RADIUS (ds->crad)
#define COORD(x) ( (x) * TILE_SIZE + BORDER )
#define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 )
#define FLASH_TIME 0.30F
enum {
COL_BACKGROUND,
COL_GRID,
COL_BLACK, /* black */
COL_LIGHT, /* white */
COL_LIT, /* yellow */
COL_ERROR, /* red */
COL_CURSOR,
NCOLOURS
};
enum { SYMM_NONE, SYMM_REF2, SYMM_ROT2, SYMM_REF4, SYMM_ROT4, SYMM_MAX };
struct game_params {
int w, h;
int blackpc; /* %age of black squares */
int symm;
int recurse;
};
#define F_BLACK 1
/* flags for black squares */
#define F_NUMBERED 2 /* it has a number attached */
#define F_NUMBERUSED 4 /* this number was useful for solving */
/* flags for non-black squares */
#define F_IMPOSSIBLE 8 /* can't put a light here */
#define F_LIGHT 16
#define F_MARK 32
struct game_state {
int w, h, nlights;
int *lights; /* For black squares, (optionally) the number
of surrounding lights. For non-black squares,
the number of times it's lit. size h*w*/
unsigned int *flags; /* size h*w */
int completed, used_solve;
};
#define GRID(gs,grid,x,y) (gs->grid[(y)*((gs)->w) + (x)])
/* A ll_data holds information about which lights would be lit by
* a particular grid location's light (or conversely, which locations
* could light a specific other location). */
/* most things should consider this struct opaque. */
typedef struct {
int ox,oy;
int minx, maxx, miny, maxy;
int include_origin;
} ll_data;
/* Macro that executes 'block' once per light in lld, including
* the origin if include_origin is specified. 'block' can use
* lx and ly as the coords. */
#define FOREACHLIT(lld,block) do { \
int lx,ly; \
ly = (lld)->oy; \
for (lx = (lld)->minx; lx <= (lld)->maxx; lx++) { \
if (lx == (lld)->ox) continue; \
block \
} \
lx = (lld)->ox; \
for (ly = (lld)->miny; ly <= (lld)->maxy; ly++) { \
if (!(lld)->include_origin && ly == (lld)->oy) continue; \
block \
} \
} while(0)
typedef struct {
struct { int x, y; unsigned int f; } points[4];
int npoints;
} surrounds;
/* Fills in (doesn't allocate) a surrounds structure with the grid locations
* around a given square, taking account of the edges. */
static void get_surrounds(game_state *state, int ox, int oy, surrounds *s)
{
assert(ox >= 0 && ox < state->w && oy >= 0 && oy < state->h);
s->npoints = 0;
#define ADDPOINT(cond,nx,ny) do {\
if (cond) { \
s->points[s->npoints].x = (nx); \
s->points[s->npoints].y = (ny); \
s->points[s->npoints].f = 0; \
s->npoints++; \
} } while(0)
ADDPOINT(ox > 0, ox-1, oy);
ADDPOINT(ox < (state->w-1), ox+1, oy);
ADDPOINT(oy > 0, ox, oy-1);
ADDPOINT(oy < (state->h-1), ox, oy+1);
}
/* --- Game parameter functions --- */
#define DEFAULT_PRESET 0
const struct game_params lightup_presets[] = {
{ 7, 7, 20, SYMM_ROT4, 0 },
{ 7, 7, 20, SYMM_ROT4, 1 },
{ 10, 10, 20, SYMM_ROT2, 0 },
{ 10, 10, 20, SYMM_ROT2, 1 },
#ifdef SLOW_SYSTEM
{ 12, 12, 20, SYMM_ROT2, 0 },
{ 12, 12, 20, SYMM_ROT2, 1 }
#else
{ 14, 14, 20, SYMM_ROT2, 0 },
{ 14, 14, 20, SYMM_ROT2, 1 }
#endif
};
static game_params *default_params(void)
{
game_params *ret = snew(game_params);
*ret = lightup_presets[DEFAULT_PRESET];
return ret;
}
static int game_fetch_preset(int i, char **name, game_params **params)
{
game_params *ret;
char buf[80];
if (i < 0 || i >= lenof(lightup_presets))
return FALSE;
ret = default_params();
*ret = lightup_presets[i];
*params = ret;
sprintf(buf, "%dx%d %s",
ret->w, ret->h, ret->recurse ? "hard" : "easy");
*name = dupstr(buf);
return TRUE;
}
static void free_params(game_params *params)
{
sfree(params);
}
static game_params *dup_params(game_params *params)
{
game_params *ret = snew(game_params);
*ret = *params; /* structure copy */
return ret;
}
#define EATNUM(x) do { \
(x) = atoi(string); \
while (*string && isdigit((unsigned char)*string)) string++; \
} while(0)
static void decode_params(game_params *params, char const *string)
{
EATNUM(params->w);
if (*string == 'x') {
string++;
EATNUM(params->h);
}
if (*string == 'b') {
string++;
EATNUM(params->blackpc);
}
if (*string == 's') {
string++;
EATNUM(params->symm);
}
params->recurse = 0;
if (*string == 'r') {
params->recurse = 1;
string++;
}
}
static char *encode_params(game_params *params, int full)
{
char buf[80];
if (full) {
sprintf(buf, "%dx%db%ds%d%s",
params->w, params->h, params->blackpc,
params->symm,
params->recurse ? "r" : "");
} else {
sprintf(buf, "%dx%d", params->w, params->h);
}
return dupstr(buf);
}
static config_item *game_configure(game_params *params)
{
config_item *ret;
char buf[80];
ret = snewn(6, config_item);
ret[0].name = "Width";
ret[0].type = C_STRING;
sprintf(buf, "%d", params->w);
ret[0].sval = dupstr(buf);
ret[0].ival = 0;
ret[1].name = "Height";
ret[1].type = C_STRING;
sprintf(buf, "%d", params->h);
ret[1].sval = dupstr(buf);
ret[1].ival = 0;
ret[2].name = "%age of black squares";
ret[2].type = C_STRING;
sprintf(buf, "%d", params->blackpc);
ret[2].sval = dupstr(buf);
ret[2].ival = 0;
ret[3].name = "Symmetry";
ret[3].type = C_CHOICES;
ret[3].sval = ":None"
":2-way mirror:2-way rotational"
":4-way mirror:4-way rotational";
ret[3].ival = params->symm;
ret[4].name = "Difficulty";
ret[4].type = C_CHOICES;
ret[4].sval = ":Easy:Hard";
ret[4].ival = params->recurse;
ret[5].name = NULL;
ret[5].type = C_END;
ret[5].sval = NULL;
ret[5].ival = 0;
return ret;
}
static game_params *custom_params(config_item *cfg)
{
game_params *ret = snew(game_params);
ret->w = atoi(cfg[0].sval);
ret->h = atoi(cfg[1].sval);
ret->blackpc = atoi(cfg[2].sval);
ret->symm = cfg[3].ival;
ret->recurse = cfg[4].ival;
return ret;
}
static char *validate_params(game_params *params, int full)
{
if (params->w < 2 || params->h < 2)
return "Width and height must be at least 2";
if (full) {
if (params->blackpc < 5 || params->blackpc > 100)
return "Percentage of black squares must be between 5% and 100%";
if (params->w != params->h) {
if (params->symm == SYMM_ROT4)
return "4-fold symmetry is only available with square grids";
}
if (params->symm < 0 || params->symm >= SYMM_MAX)
return "Unknown symmetry type";
}
return NULL;
}
/* --- Game state construction/freeing helper functions --- */
static game_state *new_state(game_params *params)
{
game_state *ret = snew(game_state);
ret->w = params->w;
ret->h = params->h;
ret->lights = snewn(ret->w * ret->h, int);
ret->nlights = 0;
memset(ret->lights, 0, ret->w * ret->h * sizeof(int));
ret->flags = snewn(ret->w * ret->h, unsigned int);
memset(ret->flags, 0, ret->w * ret->h * sizeof(unsigned int));
ret->completed = ret->used_solve = 0;
return ret;
}
static game_state *dup_game(game_state *state)
{
game_state *ret = snew(game_state);
ret->w = state->w;
ret->h = state->h;
ret->lights = snewn(ret->w * ret->h, int);
memcpy(ret->lights, state->lights, ret->w * ret->h * sizeof(int));
ret->nlights = state->nlights;
ret->flags = snewn(ret->w * ret->h, unsigned int);
memcpy(ret->flags, state->flags, ret->w * ret->h * sizeof(unsigned int));
ret->completed = state->completed;
ret->used_solve = state->used_solve;
return ret;
}
static void free_game(game_state *state)
{
sfree(state->lights);
sfree(state->flags);
sfree(state);
}
#ifdef DIAGNOSTICS
static void debug_state(game_state *state)
{
int x, y;
char c = '?';
for (y = 0; y < state->h; y++) {
for (x = 0; x < state->w; x++) {
c = '.';
if (GRID(state, flags, x, y) & F_BLACK) {
if (GRID(state, flags, x, y) & F_NUMBERED)
c = GRID(state, lights, x, y) + '0';
else
c = '#';
} else {
if (GRID(state, flags, x, y) & F_LIGHT)
c = 'O';
else if (GRID(state, flags, x, y) & F_IMPOSSIBLE)
c = 'X';
}
printf("%c", (int)c);
}
printf(" ");
for (x = 0; x < state->w; x++) {
if (GRID(state, flags, x, y) & F_BLACK)
c = '#';
else {
c = (GRID(state, flags, x, y) & F_LIGHT) ? 'A' : 'a';
c += GRID(state, lights, x, y);
}
printf("%c", (int)c);
}
printf("\n");
}
printf("\n");
}
#endif
/* --- Game completion test routines. --- */
/* These are split up because occasionally functions are only
* interested in one particular aspect. */
/* Returns non-zero if all grid spaces are lit. */
static int grid_lit(game_state *state)
{
int x, y;
for (x = 0; x < state->w; x++) {
for (y = 0; y < state->h; y++) {
if (GRID(state,flags,x,y) & F_BLACK) continue;
if (GRID(state,lights,x,y) == 0)
return 0;
}
}
return 1;
}
/* Returns non-zero if any lights are lit by other lights. */
static int grid_overlap(game_state *state)
{
int x, y;
for (x = 0; x < state->w; x++) {
for (y = 0; y < state->h; y++) {
if (!(GRID(state, flags, x, y) & F_LIGHT)) continue;
if (GRID(state, lights, x, y) > 1)
return 1;
}
}
return 0;
}
static int number_wrong(game_state *state, int x, int y)
{
surrounds s;
int i, n, empty, lights = GRID(state, lights, x, y);
/*
* This function computes the display hint for a number: we
* turn the number red if it is definitely wrong. This means
* that either
*
* (a) it has too many lights around it, or
* (b) it would have too few lights around it even if all the
* plausible squares (not black, lit or F_IMPOSSIBLE) were
* filled with lights.
*/
assert(GRID(state, flags, x, y) & F_NUMBERED);
get_surrounds(state, x, y, &s);
empty = n = 0;
for (i = 0; i < s.npoints; i++) {
if (GRID(state,flags,s.points[i].x,s.points[i].y) & F_LIGHT) {
n++;
continue;
}
if (GRID(state,flags,s.points[i].x,s.points[i].y) & F_BLACK)
continue;
if (GRID(state,flags,s.points[i].x,s.points[i].y) & F_IMPOSSIBLE)
continue;
if (GRID(state,lights,s.points[i].x,s.points[i].y))
continue;
empty++;
}
return (n > lights || (n + empty < lights));
}
static int number_correct(game_state *state, int x, int y)
{
surrounds s;
int n = 0, i, lights = GRID(state, lights, x, y);
assert(GRID(state, flags, x, y) & F_NUMBERED);
get_surrounds(state, x, y, &s);
for (i = 0; i < s.npoints; i++) {
if (GRID(state,flags,s.points[i].x,s.points[i].y) & F_LIGHT)
n++;
}
return (n == lights) ? 1 : 0;
}
/* Returns non-zero if any numbers add up incorrectly. */
static int grid_addsup(game_state *state)
{
int x, y;
for (x = 0; x < state->w; x++) {
for (y = 0; y < state->h; y++) {
if (!(GRID(state, flags, x, y) & F_NUMBERED)) continue;
if (!number_correct(state, x, y)) return 0;
}
}
return 1;
}
static int grid_correct(game_state *state)
{
if (grid_lit(state) &&
!grid_overlap(state) &&
grid_addsup(state)) return 1;
return 0;
}
/* --- Board initial setup (blacks, lights, numbers) --- */
static void clean_board(game_state *state, int leave_blacks)
{
int x,y;
for (x = 0; x < state->w; x++) {
for (y = 0; y < state->h; y++) {
if (leave_blacks)
GRID(state, flags, x, y) &= F_BLACK;
else
GRID(state, flags, x, y) = 0;
GRID(state, lights, x, y) = 0;
}
}
state->nlights = 0;
}
static void set_blacks(game_state *state, game_params *params, random_state *rs)
{
int x, y, degree = 0, rotate = 0, nblack;
int rh, rw, i;
int wodd = (state->w % 2) ? 1 : 0;
int hodd = (state->h % 2) ? 1 : 0;
int xs[4], ys[4];
switch (params->symm) {
case SYMM_NONE: degree = 1; rotate = 0; break;
case SYMM_ROT2: degree = 2; rotate = 1; break;
case SYMM_REF2: degree = 2; rotate = 0; break;
case SYMM_ROT4: degree = 4; rotate = 1; break;
case SYMM_REF4: degree = 4; rotate = 0; break;
default: assert(!"Unknown symmetry type");
}
if (params->symm == SYMM_ROT4 && (state->h != state->w))
assert(!"4-fold symmetry unavailable without square grid");
if (degree == 4) {
rw = state->w/2;
rh = state->h/2;
if (!rotate) rw += wodd; /* ... but see below. */
rh += hodd;
} else if (degree == 2) {
rw = state->w;
rh = state->h/2;
rh += hodd;
} else {
rw = state->w;
rh = state->h;
}
/* clear, then randomise, required region. */
clean_board(state, 0);
nblack = (rw * rh * params->blackpc) / 100;
for (i = 0; i < nblack; i++) {
do {
x = random_upto(rs,rw);
y = random_upto(rs,rh);
} while (GRID(state,flags,x,y) & F_BLACK);
GRID(state, flags, x, y) |= F_BLACK;
}
/* Copy required region. */
if (params->symm == SYMM_NONE) return;
for (x = 0; x < rw; x++) {
for (y = 0; y < rh; y++) {
if (degree == 4) {
xs[0] = x;
ys[0] = y;
xs[1] = state->w - 1 - (rotate ? y : x);
ys[1] = rotate ? x : y;
xs[2] = rotate ? (state->w - 1 - x) : x;
ys[2] = state->h - 1 - y;
xs[3] = rotate ? y : (state->w - 1 - x);
ys[3] = state->h - 1 - (rotate ? x : y);
} else {
xs[0] = x;
ys[0] = y;
xs[1] = rotate ? (state->w - 1 - x) : x;
ys[1] = state->h - 1 - y;
}
for (i = 1; i < degree; i++) {
GRID(state, flags, xs[i], ys[i]) =
GRID(state, flags, xs[0], ys[0]);
}
}
}
/* SYMM_ROT4 misses the middle square above; fix that here. */
if (degree == 4 && rotate && wodd &&
(random_upto(rs,100) <= (unsigned int)params->blackpc))
GRID(state,flags,
state->w/2 + wodd - 1, state->h/2 + hodd - 1) |= F_BLACK;
#ifdef DIAGNOSTICS
debug_state(state);
#endif
}
/* Fills in (does not allocate) a ll_data with all the tiles that would
* be illuminated by a light at point (ox,oy). If origin=1 then the
* origin is included in this list. */
static void list_lights(game_state *state, int ox, int oy, int origin,
ll_data *lld)
{
int x,y;
memset(lld, 0, sizeof(lld));
lld->ox = lld->minx = lld->maxx = ox;
lld->oy = lld->miny = lld->maxy = oy;
lld->include_origin = origin;
y = oy;
for (x = ox-1; x >= 0; x--) {
if (GRID(state, flags, x, y) & F_BLACK) break;
if (x < lld->minx) lld->minx = x;
}
for (x = ox+1; x < state->w; x++) {
if (GRID(state, flags, x, y) & F_BLACK) break;
if (x > lld->maxx) lld->maxx = x;
}
x = ox;
for (y = oy-1; y >= 0; y--) {
if (GRID(state, flags, x, y) & F_BLACK) break;
if (y < lld->miny) lld->miny = y;
}
for (y = oy+1; y < state->h; y++) {
if (GRID(state, flags, x, y) & F_BLACK) break;
if (y > lld->maxy) lld->maxy = y;
}
}
/* Makes sure a light is the given state, editing the lights table to suit the
* new state if necessary. */
static void set_light(game_state *state, int ox, int oy, int on)
{
ll_data lld;
int diff = 0;
assert(!(GRID(state,flags,ox,oy) & F_BLACK));
if (!on && GRID(state,flags,ox,oy) & F_LIGHT) {
diff = -1;
GRID(state,flags,ox,oy) &= ~F_LIGHT;
state->nlights--;
} else if (on && !(GRID(state,flags,ox,oy) & F_LIGHT)) {
diff = 1;
GRID(state,flags,ox,oy) |= F_LIGHT;
state->nlights++;
}
if (diff != 0) {
list_lights(state,ox,oy,1,&lld);
FOREACHLIT(&lld, GRID(state,lights,lx,ly) += diff; );
}
}
/* Returns 1 if removing a light at (x,y) would cause a square to go dark. */
static int check_dark(game_state *state, int x, int y)
{
ll_data lld;
list_lights(state, x, y, 1, &lld);
FOREACHLIT(&lld, if (GRID(state,lights,lx,ly) == 1) { return 1; } );
return 0;
}
/* Sets up an initial random correct position (i.e. every
* space lit, and no lights lit by other lights) by filling the
* grid with lights and then removing lights one by one at random. */
static void place_lights(game_state *state, random_state *rs)
{
int i, x, y, n, *numindices, wh = state->w*state->h;
ll_data lld;
numindices = snewn(wh, int);
for (i = 0; i < wh; i++) numindices[i] = i;
shuffle(numindices, wh, sizeof(*numindices), rs);
/* Place a light on all grid squares without lights. */
for (x = 0; x < state->w; x++) {
for (y = 0; y < state->h; y++) {
GRID(state, flags, x, y) &= ~F_MARK; /* we use this later. */
if (GRID(state, flags, x, y) & F_BLACK) continue;
set_light(state, x, y, 1);
}
}
for (i = 0; i < wh; i++) {
y = numindices[i] / state->w;
x = numindices[i] % state->w;
if (!(GRID(state, flags, x, y) & F_LIGHT)) continue;
if (GRID(state, flags, x, y) & F_MARK) continue;
list_lights(state, x, y, 0, &lld);
/* If we're not lighting any lights ourself, don't remove anything. */
n = 0;
FOREACHLIT(&lld, if (GRID(state,flags,lx,ly) & F_LIGHT) { n += 1; } );
if (n == 0) continue;
/* Check whether removing lights we're lighting would cause anything
* to go dark. */
n = 0;
FOREACHLIT(&lld, if (GRID(state,flags,lx,ly) & F_LIGHT) { n += check_dark(state,lx,ly); } );
if (n == 0) {
/* No, it wouldn't, so we can remove them all. */
FOREACHLIT(&lld, set_light(state,lx,ly, 0); );
GRID(state,flags,x,y) |= F_MARK;
}
if (!grid_overlap(state)) {
sfree(numindices);
return; /* we're done. */
}
assert(grid_lit(state));
}
/* if we got here, we've somehow removed all our lights and still have overlaps. */
assert(!"Shouldn't get here!");
}
/* Fills in all black squares with numbers of adjacent lights. */
static void place_numbers(game_state *state)
{
int x, y, i, n;
surrounds s;
for (x = 0; x < state->w; x++) {
for (y = 0; y < state->h; y++) {
if (!(GRID(state,flags,x,y) & F_BLACK)) continue;
get_surrounds(state, x, y, &s);
n = 0;
for (i = 0; i < s.npoints; i++) {
if (GRID(state,flags,s.points[i].x, s.points[i].y) & F_LIGHT)
n++;
}
GRID(state,flags,x,y) |= F_NUMBERED;
GRID(state,lights,x,y) = n;
}
}
}
/* --- Actual solver, with helper subroutines. --- */
static void tsl_callback(game_state *state,
int lx, int ly, int *x, int *y, int *n)
{
if (GRID(state,flags,lx,ly) & F_IMPOSSIBLE) return;
if (GRID(state,lights,lx,ly) > 0) return;
*x = lx; *y = ly; (*n)++;
}
static int try_solve_light(game_state *state, int ox, int oy,
unsigned int flags, int lights)
{
ll_data lld;
int sx,sy,n = 0;
if (lights > 0) return 0;
if (flags & F_BLACK) return 0;
/* We have an unlit square; count how many ways there are left to
* place a light that lights us (including this square); if only
* one, we must put a light there. Squares that could light us
* are, of course, the same as the squares we would light... */
list_lights(state, ox, oy, 1, &lld);
FOREACHLIT(&lld, { tsl_callback(state, lx, ly, &sx, &sy, &n); });
if (n == 1) {
set_light(state, sx, sy, 1);
#ifdef SOLVE_DIAGNOSTICS
printf("(%d,%d) can only be lit from (%d,%d); setting to LIGHT\n",
ox,oy,sx,sy);
#endif
return 1;
}
return 0;
}
static int could_place_light(unsigned int flags, int lights)
{
if (flags & (F_BLACK | F_IMPOSSIBLE)) return 0;
return (lights > 0) ? 0 : 1;
}
/* For a given number square, determine whether we have enough info
* to unambiguously place its lights. */
static int try_solve_number(game_state *state, int nx, int ny,
unsigned int nflags, int nlights)
{
surrounds s;
int x, y, nl, ns, i, ret = 0, lights;
unsigned int flags;
if (!(nflags & F_NUMBERED)) return 0;
nl = nlights;
get_surrounds(state,nx,ny,&s);
ns = s.npoints;
/* nl is no. of lights we need to place, ns is no. of spaces we
* have to place them in. Try and narrow these down, and mark
* points we can ignore later. */
for (i = 0; i < s.npoints; i++) {
x = s.points[i].x; y = s.points[i].y;
flags = GRID(state,flags,x,y);
lights = GRID(state,lights,x,y);
if (flags & F_LIGHT) {
/* light here already; one less light for one less place. */
nl--; ns--;
s.points[i].f |= F_MARK;
} else if (!could_place_light(flags, lights)) {
ns--;
s.points[i].f |= F_MARK;
}
}
if (ns == 0) return 0; /* nowhere to put anything. */
if (nl == 0) {
/* we have placed all lights we need to around here; all remaining
* surrounds are therefore IMPOSSIBLE. */
#ifdef SOLVE_DIAGNOSTICS
printf("Setting remaining surrounds to (%d,%d) IMPOSSIBLE.\n",
nx,ny);
#endif
GRID(state,flags,nx,ny) |= F_NUMBERUSED;
for (i = 0; i < s.npoints; i++) {
if (!(s.points[i].f & F_MARK)) {
GRID(state,flags,s.points[i].x,s.points[i].y) |= F_IMPOSSIBLE;
ret = 1;
}
}
} else if (nl == ns) {
/* we have as many lights to place as spaces; fill them all. */
#ifdef SOLVE_DIAGNOSTICS
printf("Setting all remaining surrounds to (%d,%d) LIGHT.\n",
nx,ny);
#endif
GRID(state,flags,nx,ny) |= F_NUMBERUSED;
for (i = 0; i < s.npoints; i++) {
if (!(s.points[i].f & F_MARK)) {
set_light(state, s.points[i].x,s.points[i].y, 1);
ret = 1;
}
}
}
return ret;
}
static int solve_sub(game_state *state,
int forceunique, int maxrecurse, int depth,
int *maxdepth)
{
unsigned int flags;
int x, y, didstuff, ncanplace, lights;
int bestx, besty, n, bestn, copy_soluble, self_soluble, ret;
game_state *scopy;
ll_data lld;
#ifdef SOLVE_DIAGNOSTICS
printf("solve_sub: depth = %d\n", depth);
#endif
if (maxdepth && *maxdepth < depth) *maxdepth = depth;
while (1) {
if (grid_overlap(state)) {
/* Our own solver, from scratch, should never cause this to happen
* (assuming a soluble grid). However, if we're trying to solve
* from a half-completed *incorrect* grid this might occur; we
* just return the 'no solutions' code in this case. */
return 0;
}
if (grid_correct(state)) return 1;
ncanplace = 0;
didstuff = 0;
/* These 2 loops, and the functions they call, are the critical loops
* for timing; any optimisations should look here first. */
for (x = 0; x < state->w; x++) {
for (y = 0; y < state->h; y++) {
flags = GRID(state,flags,x,y);
lights = GRID(state,lights,x,y);
ncanplace += could_place_light(flags, lights);
if (try_solve_light(state, x, y, flags, lights)) didstuff = 1;
if (try_solve_number(state, x, y, flags, lights)) didstuff = 1;
}
}
if (didstuff) continue;
if (!ncanplace) return 0; /* nowhere to put a light, puzzle in unsoluble. */
/* We now have to make a guess; we have places to put lights but
* no definite idea about where they can go. */
if (depth >= maxrecurse) return -1; /* mustn't delve any deeper. */
/* Of all the squares that we could place a light, pick the one
* that would light the most currently unlit squares. */
/* This heuristic was just plucked from the air; there may well be
* a more efficient way of choosing a square to flip to minimise
* recursion. */
bestn = 0;
bestx = besty = -1; /* suyb */
for (x = 0; x < state->w; x++) {
for (y = 0; y < state->h; y++) {
flags = GRID(state,flags,x,y);
lights = GRID(state,lights,x,y);
if (!could_place_light(flags, lights)) continue;
n = 0;
list_lights(state, x, y, 1, &lld);
FOREACHLIT(&lld, { if (GRID(state,lights,lx,ly) == 0) n++; });
if (n > bestn) {
bestn = n; bestx = x; besty = y;
}
}
}
assert(bestn > 0);
assert(bestx >= 0 && besty >= 0);
/* Now we've chosen a plausible (x,y), try to solve it once as 'lit'
* and once as 'impossible'; we need to make one copy to do this. */
scopy = dup_game(state);
GRID(state,flags,bestx,besty) |= F_IMPOSSIBLE;
self_soluble = solve_sub(state, forceunique, maxrecurse,
depth+1, maxdepth);
if (!forceunique && self_soluble > 0) {
/* we didn't care about finding all solutions, and we just
* found one; return with it immediately. */
free_game(scopy);
return self_soluble;
}
set_light(scopy, bestx, besty, 1);
copy_soluble = solve_sub(scopy, forceunique, maxrecurse,
depth+1, maxdepth);
/* If we wanted a unique solution but we hit our recursion limit
* (on either branch) then we have to assume we didn't find possible
* extra solutions, and return 'not soluble'. */
if (forceunique &&
((copy_soluble < 0) || (self_soluble < 0))) {
ret = -1;
/* Make sure that whether or not it was self or copy (or both) that
* were soluble, that we return a solved state in self. */
} else if (copy_soluble <= 0) {
/* copy wasn't soluble; keep self state and return that result. */
ret = self_soluble;
} else if (self_soluble <= 0) {
/* copy solved and we didn't, so copy in copy's (now solved)
* flags and light state. */
memcpy(state->lights, scopy->lights,
scopy->w * scopy->h * sizeof(int));
memcpy(state->flags, scopy->flags,
scopy->w * scopy->h * sizeof(unsigned int));
ret = copy_soluble;
} else {
ret = copy_soluble + self_soluble;
}
free_game(scopy);
return ret;
}
}
#define MAXRECURSE 5
/* Fills in the (possibly partially-complete) game_state as far as it can,
* returning the number of possible solutions. If it returns >0 then the
* game_state will be in a solved state, but you won't know which one. */
static int dosolve(game_state *state,
int allowguess, int forceunique, int *maxdepth)
{
int x, y, nsol;
for (x = 0; x < state->w; x++) {
for (y = 0; y < state->h; y++) {
GRID(state,flags,x,y) &= ~F_NUMBERUSED;
}
}
nsol = solve_sub(state, forceunique,
allowguess ? MAXRECURSE : 0, 0, maxdepth);
return nsol;
}
static int strip_unused_nums(game_state *state)
{
int x,y,n=0;
for (x = 0; x < state->w; x++) {
for (y = 0; y < state->h; y++) {
if ((GRID(state,flags,x,y) & F_NUMBERED) &&
!(GRID(state,flags,x,y) & F_NUMBERUSED)) {
GRID(state,flags,x,y) &= ~F_NUMBERED;
GRID(state,lights,x,y) = 0;
n++;
}
}
}
return n;
}
static void unplace_lights(game_state *state)
{
int x,y;
for (x = 0; x < state->w; x++) {
for (y = 0; y < state->h; y++) {
if (GRID(state,flags,x,y) & F_LIGHT)
set_light(state,x,y,0);
GRID(state,flags,x,y) &= ~F_IMPOSSIBLE;
GRID(state,flags,x,y) &= ~F_NUMBERUSED;
}
}
}
static int puzzle_is_good(game_state *state, game_params *params, int *mdepth)
{
int nsol;
*mdepth = 0;
unplace_lights(state);
#ifdef DIAGNOSTICS
debug_state(state);
#endif
nsol = dosolve(state, params->recurse, TRUE, mdepth);
/* if we wanted an easy puzzle, make sure we didn't need recursion. */
if (!params->recurse && *mdepth > 0) {
#ifdef DIAGNOSTICS
printf("Ignoring recursive puzzle.\n");
#endif
return 0;
}
#ifdef DIAGNOSTICS
printf("%d solutions found.\n", nsol);
#endif
if (nsol <= 0) return 0;
if (nsol > 1) return 0;
return 1;
}
/* --- New game creation and user input code. --- */
/* The basic algorithm here is to generate the most complex grid possible
* while honouring two restrictions:
*
* * we require a unique solution, and
* * either we require solubility with no recursion (!params->recurse)
* * or we require some recursion. (params->recurse).
*
* The solver helpfully keeps track of the numbers it needed to use to
* get its solution, so we use that to remove an initial set of numbers
* and check we still satsify our requirements (on uniqueness and
* non-recursiveness, if applicable; we don't check explicit recursiveness
* until the end).
*
* Then we try to remove all numbers in a random order, and see if we
* still satisfy requirements (putting them back if we didn't).
*
* Removing numbers will always, in general terms, make a puzzle require
* more recursion but it may also mean a puzzle becomes non-unique.
*
* Once we're done, if we wanted a recursive puzzle but the most difficult
* puzzle we could come up with was non-recursive, we give up and try a new
* grid. */
#define MAX_GRIDGEN_TRIES 20
static char *new_game_desc(game_params *params, random_state *rs,
char **aux, int interactive)
{
game_state *news = new_state(params), *copys;
int nsol, i, run, x, y, wh = params->w*params->h, num, mdepth;
char *ret, *p;
int *numindices;
/* Construct a shuffled list of grid positions; we only
* do this once, because if it gets used more than once it'll
* be on a different grid layout. */
numindices = snewn(wh, int);
for (i = 0; i < wh; i++) numindices[i] = i;
shuffle(numindices, wh, sizeof(*numindices), rs);
while (1) {
for (i = 0; i < MAX_GRIDGEN_TRIES; i++) {
set_blacks(news, params, rs); /* also cleans board. */
/* set up lights and then the numbers, and remove the lights */
place_lights(news, rs);
debug(("Generating initial grid.\n"));
place_numbers(news);
if (!puzzle_is_good(news, params, &mdepth)) continue;
/* Take a copy, remove numbers we didn't use and check there's
* still a unique solution; if so, use the copy subsequently. */
copys = dup_game(news);
nsol = strip_unused_nums(copys);
debug(("Stripped %d unused numbers.\n", nsol));
if (!puzzle_is_good(copys, params, &mdepth)) {
debug(("Stripped grid is not good, reverting.\n"));
free_game(copys);
} else {
free_game(news);
news = copys;
}
/* Go through grid removing numbers at random one-by-one and
* trying to solve again; if it ceases to be good put the number back. */
for (i = 0; i < wh; i++) {
y = numindices[i] / params->w;
x = numindices[i] % params->w;
if (!(GRID(news, flags, x, y) & F_NUMBERED)) continue;
num = GRID(news, lights, x, y);
GRID(news, lights, x, y) = 0;
GRID(news, flags, x, y) &= ~F_NUMBERED;
if (!puzzle_is_good(news, params, &mdepth)) {
GRID(news, lights, x, y) = num;
GRID(news, flags, x, y) |= F_NUMBERED;
} else
debug(("Removed (%d,%d) still soluble.\n", x, y));
}
/* Get a good value of mdepth for the following test */
i = puzzle_is_good(news, params, &mdepth);
assert(i);
if (params->recurse && mdepth == 0) {
debug(("Maximum-difficulty puzzle still not recursive, skipping.\n"));
continue;
}
goto goodpuzzle;
}
/* Couldn't generate a good puzzle in however many goes. Ramp up the
* %age of black squares (if we didn't already have lots; in which case
* why couldn't we generate a puzzle?) and try again. */
if (params->blackpc < 90) params->blackpc += 5;
#ifdef DIAGNOSTICS
printf("New black layout %d%%.\n", params->blackpc);
#endif
}
goodpuzzle:
/* Game is encoded as a long string one character per square;
* 'S' is a space
* 'B' is a black square with no number
* '0', '1', '2', '3', '4' is a black square with a number. */
ret = snewn((params->w * params->h) + 1, char);
p = ret;
run = 0;
for (y = 0; y < params->h; y++) {
for (x = 0; x < params->w; x++) {
if (GRID(news,flags,x,y) & F_BLACK) {
if (run) {
*p++ = ('a'-1) + run;
run = 0;
}
if (GRID(news,flags,x,y) & F_NUMBERED)
*p++ = '0' + GRID(news,lights,x,y);
else
*p++ = 'B';
} else {
if (run == 26) {
*p++ = ('a'-1) + run;
run = 0;
}
run++;
}
}
}
if (run) {
*p++ = ('a'-1) + run;
run = 0;
}
*p = '\0';
assert(p - ret <= params->w * params->h);
free_game(news);
sfree(numindices);
return ret;
}
static char *validate_desc(game_params *params, char *desc)
{
int i;
for (i = 0; i < params->w*params->h; i++) {
if (*desc >= '0' && *desc <= '4')
/* OK */;
else if (*desc == 'B')
/* OK */;
else if (*desc >= 'a' && *desc <= 'z')
i += *desc - 'a'; /* and the i++ will add another one */
else if (!*desc)
return "Game description shorter than expected";
else
return "Game description contained unexpected character";
desc++;
}
if (*desc || i > params->w*params->h)
return "Game description longer than expected";
return NULL;
}
static game_state *new_game(midend_data *me, game_params *params, char *desc)
{
game_state *ret = new_state(params);
int x,y;
int run = 0;
for (y = 0; y < params->h; y++) {
for (x = 0; x < params->w; x++) {
char c = '\0';
if (run == 0) {
c = *desc++;
assert(c != 'S');
if (c >= 'a' && c <= 'z')
run = c - 'a' + 1;
}
if (run > 0) {
c = 'S';
run--;
}
switch (c) {
case '0': case '1': case '2': case '3': case '4':
GRID(ret,flags,x,y) |= F_NUMBERED;
GRID(ret,lights,x,y) = (c - '0');
/* run-on... */
case 'B':
GRID(ret,flags,x,y) |= F_BLACK;
break;
case 'S':
/* empty square */
break;
default:
assert(!"Malformed desc.");
break;
}
}
}
if (*desc) assert(!"Over-long desc.");
return ret;
}
static char *solve_game(game_state *state, game_state *currstate,
char *aux, char **error)
{
game_state *solved;
char *move = NULL, buf[80];
int movelen, movesize, x, y, len;
unsigned int oldflags, solvedflags;
/* We don't care here about non-unique puzzles; if the
* user entered one themself then I doubt they care. */
/* Try and solve from where we are now (for non-unique
* puzzles this may produce a different answer). */
solved = dup_game(currstate);
if (dosolve(solved, 1, 0, NULL) > 0) goto solved;
free_game(solved);
/* That didn't work; try solving from the clean puzzle. */
solved = dup_game(state);
if (dosolve(solved, 1, 0, NULL) > 0) goto solved;
*error = "Puzzle is not self-consistent.";
goto done;
solved:
movesize = 256;
move = snewn(movesize, char);
movelen = 0;
move[movelen++] = 'S';
move[movelen] = '\0';
for (x = 0; x < currstate->w; x++) {
for (y = 0; y < currstate->h; y++) {
len = 0;
oldflags = GRID(currstate, flags, x, y);
solvedflags = GRID(solved, flags, x, y);
if ((oldflags & F_LIGHT) != (solvedflags & F_LIGHT))
len = sprintf(buf, ";L%d,%d", x, y);
else if ((oldflags & F_IMPOSSIBLE) != (solvedflags & F_IMPOSSIBLE))
len = sprintf(buf, ";I%d,%d", x, y);
if (len) {
if (movelen + len >= movesize) {
movesize = movelen + len + 256;
move = sresize(move, movesize, char);
}
strcpy(move + movelen, buf);
movelen += len;
}
}
}
done:
free_game(solved);
return move;
}
/* 'borrowed' from slant.c, mainly. I could have printed it one
* character per cell (like debug_state) but that comes out tiny.
* 'L' is used for 'light here' because 'O' looks too much like '0'
* (black square with no surrounding lights). */
static char *game_text_format(game_state *state)
{
int w = state->w, h = state->h, W = w+1, H = h+1;
int x, y, len, lights;
unsigned int flags;
char *ret, *p;
len = (h+H) * (w+W+1) + 1;
ret = snewn(len, char);
p = ret;
for (y = 0; y < H; y++) {
for (x = 0; x < W; x++) {
*p++ = '+';
if (x < w)
*p++ = '-';
}
*p++ = '\n';
if (y < h) {
for (x = 0; x < W; x++) {
*p++ = '|';
if (x < w) {
/* actual interesting bit. */
flags = GRID(state, flags, x, y);
lights = GRID(state, lights, x, y);
if (flags & F_BLACK) {
if (flags & F_NUMBERED)
*p++ = '0' + lights;
else
*p++ = '#';
} else {
if (flags & F_LIGHT)
*p++ = 'L';
else if (flags & F_IMPOSSIBLE)
*p++ = 'x';
else if (lights > 0)
*p++ = '.';
else
*p++ = ' ';
}
}
}
*p++ = '\n';
}
}
*p++ = '\0';
assert(p - ret == len);
return ret;
}
struct game_ui {
int cur_x, cur_y, cur_visible;
};
static game_ui *new_ui(game_state *state)
{
game_ui *ui = snew(game_ui);
ui->cur_x = ui->cur_y = ui->cur_visible = 0;
return ui;
}
static void free_ui(game_ui *ui)
{
sfree(ui);
}
static char *encode_ui(game_ui *ui)
{
/* nothing to encode. */
return NULL;
}
static void decode_ui(game_ui *ui, char *encoding)
{
/* nothing to decode. */
}
static void game_changed_state(game_ui *ui, game_state *oldstate,
game_state *newstate)
{
if (newstate->completed)
ui->cur_visible = 0;
}
#define DF_BLACK 1 /* black square */
#define DF_NUMBERED 2 /* black square with number */
#define DF_LIT 4 /* display (white) square lit up */
#define DF_LIGHT 8 /* display light in square */
#define DF_OVERLAP 16 /* display light as overlapped */
#define DF_CURSOR 32 /* display cursor */
#define DF_NUMBERWRONG 64 /* display black numbered square as error. */
#define DF_FLASH 128 /* background flash is on. */
#define DF_IMPOSSIBLE 256 /* display non-light little square */
struct game_drawstate {
int tilesize, crad;
int w, h;
unsigned int *flags; /* width * height */
int started;
};
/* Believe it or not, this empty = "" hack is needed to get around a bug in
* the prc-tools gcc when optimisation is turned on; before, it produced:
lightup-sect.c: In function `interpret_move':
lightup-sect.c:1416: internal error--unrecognizable insn:
(insn 582 580 583 (set (reg:SI 134)
(pc)) -1 (nil)
(nil))
*/
static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
int x, int y, int button)
{
enum { NONE, FLIP_LIGHT, FLIP_IMPOSSIBLE } action = NONE;
int cx = -1, cy = -1, cv = ui->cur_visible;
unsigned int flags;
char buf[80], *nullret, *empty = "", c;
if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
ui->cur_visible = 0;
cx = FROMCOORD(x);
cy = FROMCOORD(y);
action = (button == LEFT_BUTTON) ? FLIP_LIGHT : FLIP_IMPOSSIBLE;
} else if (button == CURSOR_SELECT ||
button == 'i' || button == 'I' ||
button == ' ' || button == '\r' || button == '\n') {
ui->cur_visible = 1;
cx = ui->cur_x;
cy = ui->cur_y;
action = (button == 'i' || button == 'I') ?
FLIP_IMPOSSIBLE : FLIP_LIGHT;
} else if (button == CURSOR_UP || button == CURSOR_DOWN ||
button == CURSOR_RIGHT || button == CURSOR_LEFT) {
int dx = 0, dy = 0;
switch (button) {
case CURSOR_UP: dy = -1; break;
case CURSOR_DOWN: dy = 1; break;
case CURSOR_RIGHT: dx = 1; break;
case CURSOR_LEFT: dx = -1; break;
default: assert(!"shouldn't get here");
}
ui->cur_x += dx; ui->cur_y += dy;
ui->cur_x = min(max(ui->cur_x, 0), state->w - 1);
ui->cur_y = min(max(ui->cur_y, 0), state->h - 1);
ui->cur_visible = 1;
}
/* Always redraw if the cursor is on, or if it's just been
* removed. */
if (ui->cur_visible) nullret = empty;
else if (cv) nullret = empty;
else nullret = NULL;
switch (action) {
case FLIP_LIGHT:
case FLIP_IMPOSSIBLE:
if (cx < 0 || cy < 0 || cx >= state->w || cy >= state->h)
return nullret;
flags = GRID(state, flags, cx, cy);
if (flags & F_BLACK)
return nullret;
if (action == FLIP_LIGHT) {
if (flags & F_IMPOSSIBLE) return nullret;
c = 'L';
} else {
if (flags & F_LIGHT) return nullret;
c = 'I';
}
sprintf(buf, "%c%d,%d", (int)c, cx, cy);
break;
case NONE:
return nullret;
default:
assert(!"Shouldn't get here!");
}
return dupstr(buf);
}
static game_state *execute_move(game_state *state, char *move)
{
game_state *ret = dup_game(state);
int x, y, n, flags;
char c;
if (!*move) goto badmove;
while (*move) {
c = *move;
if (c == 'S') {
ret->used_solve = TRUE;
move++;
} else if (c == 'L' || c == 'I') {
move++;
if (sscanf(move, "%d,%d%n", &x, &y, &n) != 2 ||
x < 0 || y < 0 || x >= ret->w || y >= ret->h)
goto badmove;
flags = GRID(ret, flags, x, y);
if (flags & F_BLACK) goto badmove;
/* LIGHT and IMPOSSIBLE are mutually exclusive. */
if (c == 'L') {
GRID(ret, flags, x, y) &= ~F_IMPOSSIBLE;
set_light(ret, x, y, (flags & F_LIGHT) ? 0 : 1);
} else {
set_light(ret, x, y, 0);
GRID(ret, flags, x, y) ^= F_IMPOSSIBLE;
}
move += n;
} else goto badmove;
if (*move == ';')
move++;
else if (*move) goto badmove;
}
if (grid_correct(ret)) ret->completed = 1;
return ret;
badmove:
free_game(ret);
return NULL;
}
/* ----------------------------------------------------------------------
* Drawing routines.
*/
/* XXX entirely cloned from fifteen.c; separate out? */
static void game_compute_size(game_params *params, int tilesize,
int *x, int *y)
{
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
struct { int tilesize; } ads, *ds = &ads;
ads.tilesize = tilesize;
*x = TILE_SIZE * params->w + 2 * BORDER;
*y = TILE_SIZE * params->h + 2 * BORDER;
}
static void game_set_size(game_drawstate *ds, game_params *params,
int tilesize)
{
ds->tilesize = tilesize;
ds->crad = 3*(tilesize-1)/8;
}
static float *game_colours(frontend *fe, game_state *state, int *ncolours)
{
float *ret = snewn(3 * NCOLOURS, float);
int i;
frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
for (i = 0; i < 3; i++) {
ret[COL_BLACK * 3 + i] = 0.0F;
ret[COL_LIGHT * 3 + i] = 1.0F;
ret[COL_CURSOR * 3 + i] = ret[COL_BACKGROUND * 3 + i] / 2.0F;
ret[COL_GRID * 3 + i] = ret[COL_BACKGROUND * 3 + i] / 1.5F;
}
ret[COL_ERROR * 3 + 0] = 1.0F;
ret[COL_ERROR * 3 + 1] = 0.25F;
ret[COL_ERROR * 3 + 2] = 0.25F;
ret[COL_LIT * 3 + 0] = 1.0F;
ret[COL_LIT * 3 + 1] = 1.0F;
ret[COL_LIT * 3 + 2] = 0.0F;
*ncolours = NCOLOURS;
return ret;
}
static game_drawstate *game_new_drawstate(game_state *state)
{
struct game_drawstate *ds = snew(struct game_drawstate);
int i;
ds->tilesize = ds->crad = 0;
ds->w = state->w; ds->h = state->h;
ds->flags = snewn(ds->w*ds->h, unsigned int);
for (i = 0; i < ds->w*ds->h; i++)
ds->flags[i] = -1;
ds->started = 0;
return ds;
}
static void game_free_drawstate(game_drawstate *ds)
{
sfree(ds->flags);
sfree(ds);
}
/* At some stage we should put these into a real options struct.
* Note that tile_redraw has no #ifdeffery; it relies on tile_flags not
* to put those flags in. */
#define HINT_LIGHTS
#define HINT_OVERLAPS
#define HINT_NUMBERS
static unsigned int tile_flags(game_drawstate *ds, game_state *state, game_ui *ui,
int x, int y, int flashing)
{
unsigned int flags = GRID(state, flags, x, y);
int lights = GRID(state, lights, x, y);
unsigned int ret = 0;
if (flashing) ret |= DF_FLASH;
if (ui->cur_visible && x == ui->cur_x && y == ui->cur_y)
ret |= DF_CURSOR;
if (flags & F_BLACK) {
ret |= DF_BLACK;
if (flags & F_NUMBERED) {
#ifdef HINT_NUMBERS
if (number_wrong(state, x, y))
ret |= DF_NUMBERWRONG;
#endif
ret |= DF_NUMBERED;
}
} else {
#ifdef HINT_LIGHTS
if (lights > 0) ret |= DF_LIT;
#endif
if (flags & F_LIGHT) {
ret |= DF_LIGHT;
#ifdef HINT_OVERLAPS
if (lights > 1) ret |= DF_OVERLAP;
#endif
}
if (flags & F_IMPOSSIBLE) ret |= DF_IMPOSSIBLE;
}
return ret;
}
static void tile_redraw(frontend *fe, game_drawstate *ds, game_state *state,
int x, int y)
{
unsigned int ds_flags = GRID(ds, flags, x, y);
int dx = COORD(x), dy = COORD(y);
int lit = (ds_flags & DF_FLASH) ? COL_GRID : COL_LIT;
if (ds_flags & DF_BLACK) {
draw_rect(fe, dx, dy, TILE_SIZE, TILE_SIZE, COL_BLACK);
if (ds_flags & DF_NUMBERED) {
int ccol = (ds_flags & DF_NUMBERWRONG) ? COL_ERROR : COL_LIGHT;
char str[10];
/* We know that this won't change over the course of the game
* so it's OK to ignore this when calculating whether or not
* to redraw the tile. */
sprintf(str, "%d", GRID(state, lights, x, y));
draw_text(fe, dx + TILE_SIZE/2, dy + TILE_SIZE/2,
FONT_VARIABLE, TILE_SIZE*3/5,
ALIGN_VCENTRE | ALIGN_HCENTRE, ccol, str);
}
} else {
draw_rect(fe, dx, dy, TILE_SIZE, TILE_SIZE,
(ds_flags & DF_LIT) ? lit : COL_BACKGROUND);
draw_rect_outline(fe, dx, dy, TILE_SIZE, TILE_SIZE, COL_GRID);
if (ds_flags & DF_LIGHT) {
int lcol = (ds_flags & DF_OVERLAP) ? COL_ERROR : COL_LIGHT;
draw_circle(fe, dx + TILE_SIZE/2, dy + TILE_SIZE/2, TILE_RADIUS,
lcol, COL_BLACK);
} else if (ds_flags & DF_IMPOSSIBLE) {
int rlen = TILE_SIZE / 4;
draw_rect(fe, dx + TILE_SIZE/2 - rlen/2, dy + TILE_SIZE/2 - rlen/2,
rlen, rlen, COL_BLACK);
}
}
if (ds_flags & DF_CURSOR) {
int coff = TILE_SIZE/8;
draw_rect_outline(fe, dx + coff, dy + coff,
TILE_SIZE - coff*2, TILE_SIZE - coff*2, COL_CURSOR);
}
draw_update(fe, dx, dy, TILE_SIZE, TILE_SIZE);
}
static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
game_state *state, int dir, game_ui *ui,
float animtime, float flashtime)
{
int flashing = FALSE;
int x,y;
if (flashtime) flashing = (int)(flashtime * 3 / FLASH_TIME) != 1;
if (!ds->started) {
draw_rect(fe, 0, 0,
TILE_SIZE * ds->w + 2 * BORDER,
TILE_SIZE * ds->h + 2 * BORDER, COL_BACKGROUND);
draw_rect_outline(fe, COORD(0)-1, COORD(0)-1,
TILE_SIZE * ds->w + 2,
TILE_SIZE * ds->h + 2,
COL_GRID);
draw_update(fe, 0, 0,
TILE_SIZE * ds->w + 2 * BORDER,
TILE_SIZE * ds->h + 2 * BORDER);
ds->started = 1;
}
for (x = 0; x < ds->w; x++) {
for (y = 0; y < ds->h; y++) {
unsigned int ds_flags = tile_flags(ds, state, ui, x, y, flashing);
if (ds_flags != GRID(ds, flags, x, y)) {
GRID(ds, flags, x, y) = ds_flags;
tile_redraw(fe, ds, state, x, y);
}
}
}
}
static float game_anim_length(game_state *oldstate, game_state *newstate,
int dir, game_ui *ui)
{
return 0.0F;
}
static float game_flash_length(game_state *oldstate, game_state *newstate,
int dir, game_ui *ui)
{
if (!oldstate->completed && newstate->completed &&
!oldstate->used_solve && !newstate->used_solve)
return FLASH_TIME;
return 0.0F;
}
static int game_wants_statusbar(void)
{
return FALSE;
}
static int game_timing_state(game_state *state, game_ui *ui)
{
return TRUE;
}
#ifdef COMBINED
#define thegame lightup
#endif
const struct game thegame = {
"Light Up", "games.lightup",
default_params,
game_fetch_preset,
decode_params,
encode_params,
free_params,
dup_params,
TRUE, game_configure, custom_params,
validate_params,
new_game_desc,
validate_desc,
new_game,
dup_game,
free_game,
TRUE, solve_game,
TRUE, game_text_format,
new_ui,
free_ui,
encode_ui,
decode_ui,
game_changed_state,
interpret_move,
execute_move,
PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
game_colours,
game_new_drawstate,
game_free_drawstate,
game_redraw,
game_anim_length,
game_flash_length,
game_wants_statusbar,
FALSE, game_timing_state,
0, /* mouse_priorities */
};
/* vim: set shiftwidth=4 tabstop=8: */