mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-21 08:01:30 -07:00
Files

various things: - if you haven't fully understood what a game is about, it gives you an immediate example of a puzzle plus its solution so you can understand it - in some games it's useful to compare your solution with the real one and see where you made a mistake - in the rearrangement games (Fifteen, Sixteen, Twiddle) it's handy to be able to get your hands on a pristine grid quickly so you can practise or experiment with manoeuvres on it - it provides a good way of debugging the games if you think you've encountered an unsolvable grid! [originally from svn r5731]
1612 lines
46 KiB
C
1612 lines
46 KiB
C
/*
|
|
* net.c: Net game.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <ctype.h>
|
|
#include <math.h>
|
|
|
|
#include "puzzles.h"
|
|
#include "tree234.h"
|
|
|
|
#define PI 3.141592653589793238462643383279502884197169399
|
|
|
|
#define MATMUL(xr,yr,m,x,y) do { \
|
|
float rx, ry, xx = (x), yy = (y), *mat = (m); \
|
|
rx = mat[0] * xx + mat[2] * yy; \
|
|
ry = mat[1] * xx + mat[3] * yy; \
|
|
(xr) = rx; (yr) = ry; \
|
|
} while (0)
|
|
|
|
/* Direction and other bitfields */
|
|
#define R 0x01
|
|
#define U 0x02
|
|
#define L 0x04
|
|
#define D 0x08
|
|
#define LOCKED 0x10
|
|
#define ACTIVE 0x20
|
|
/* Corner flags go in the barriers array */
|
|
#define RU 0x10
|
|
#define UL 0x20
|
|
#define LD 0x40
|
|
#define DR 0x80
|
|
|
|
/* Rotations: Anticlockwise, Clockwise, Flip, general rotate */
|
|
#define A(x) ( (((x) & 0x07) << 1) | (((x) & 0x08) >> 3) )
|
|
#define C(x) ( (((x) & 0x0E) >> 1) | (((x) & 0x01) << 3) )
|
|
#define F(x) ( (((x) & 0x0C) >> 2) | (((x) & 0x03) << 2) )
|
|
#define ROT(x, n) ( ((n)&3) == 0 ? (x) : \
|
|
((n)&3) == 1 ? A(x) : \
|
|
((n)&3) == 2 ? F(x) : C(x) )
|
|
|
|
/* X and Y displacements */
|
|
#define X(x) ( (x) == R ? +1 : (x) == L ? -1 : 0 )
|
|
#define Y(x) ( (x) == D ? +1 : (x) == U ? -1 : 0 )
|
|
|
|
/* Bit count */
|
|
#define COUNT(x) ( (((x) & 0x08) >> 3) + (((x) & 0x04) >> 2) + \
|
|
(((x) & 0x02) >> 1) + ((x) & 0x01) )
|
|
|
|
#define TILE_SIZE 32
|
|
#define TILE_BORDER 1
|
|
#define WINDOW_OFFSET 16
|
|
|
|
#define ROTATE_TIME 0.13F
|
|
#define FLASH_FRAME 0.07F
|
|
|
|
enum {
|
|
COL_BACKGROUND,
|
|
COL_LOCKED,
|
|
COL_BORDER,
|
|
COL_WIRE,
|
|
COL_ENDPOINT,
|
|
COL_POWERED,
|
|
COL_BARRIER,
|
|
NCOLOURS
|
|
};
|
|
|
|
struct game_params {
|
|
int width;
|
|
int height;
|
|
int wrapping;
|
|
float barrier_probability;
|
|
};
|
|
|
|
struct solved_game_state {
|
|
int width, height;
|
|
int refcount;
|
|
unsigned char *tiles;
|
|
};
|
|
|
|
struct game_state {
|
|
int width, height, cx, cy, wrapping, completed, last_rotate_dir;
|
|
int used_solve, just_used_solve;
|
|
unsigned char *tiles;
|
|
unsigned char *barriers;
|
|
struct solved_game_state *solution;
|
|
};
|
|
|
|
#define OFFSET(x2,y2,x1,y1,dir,state) \
|
|
( (x2) = ((x1) + (state)->width + X((dir))) % (state)->width, \
|
|
(y2) = ((y1) + (state)->height + Y((dir))) % (state)->height)
|
|
|
|
#define index(state, a, x, y) ( a[(y) * (state)->width + (x)] )
|
|
#define tile(state, x, y) index(state, (state)->tiles, x, y)
|
|
#define barrier(state, x, y) index(state, (state)->barriers, x, y)
|
|
|
|
struct xyd {
|
|
int x, y, direction;
|
|
};
|
|
|
|
static int xyd_cmp(void *av, void *bv) {
|
|
struct xyd *a = (struct xyd *)av;
|
|
struct xyd *b = (struct xyd *)bv;
|
|
if (a->x < b->x)
|
|
return -1;
|
|
if (a->x > b->x)
|
|
return +1;
|
|
if (a->y < b->y)
|
|
return -1;
|
|
if (a->y > b->y)
|
|
return +1;
|
|
if (a->direction < b->direction)
|
|
return -1;
|
|
if (a->direction > b->direction)
|
|
return +1;
|
|
return 0;
|
|
};
|
|
|
|
static struct xyd *new_xyd(int x, int y, int direction)
|
|
{
|
|
struct xyd *xyd = snew(struct xyd);
|
|
xyd->x = x;
|
|
xyd->y = y;
|
|
xyd->direction = direction;
|
|
return xyd;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Manage game parameters.
|
|
*/
|
|
static game_params *default_params(void)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->width = 5;
|
|
ret->height = 5;
|
|
ret->wrapping = FALSE;
|
|
ret->barrier_probability = 0.0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int game_fetch_preset(int i, char **name, game_params **params)
|
|
{
|
|
game_params *ret;
|
|
char str[80];
|
|
static const struct { int x, y, wrap; } values[] = {
|
|
{5, 5, FALSE},
|
|
{7, 7, FALSE},
|
|
{9, 9, FALSE},
|
|
{11, 11, FALSE},
|
|
{13, 11, FALSE},
|
|
{5, 5, TRUE},
|
|
{7, 7, TRUE},
|
|
{9, 9, TRUE},
|
|
{11, 11, TRUE},
|
|
{13, 11, TRUE},
|
|
};
|
|
|
|
if (i < 0 || i >= lenof(values))
|
|
return FALSE;
|
|
|
|
ret = snew(game_params);
|
|
ret->width = values[i].x;
|
|
ret->height = values[i].y;
|
|
ret->wrapping = values[i].wrap;
|
|
ret->barrier_probability = 0.0;
|
|
|
|
sprintf(str, "%dx%d%s", ret->width, ret->height,
|
|
ret->wrapping ? " wrapping" : "");
|
|
|
|
*name = dupstr(str);
|
|
*params = ret;
|
|
return TRUE;
|
|
}
|
|
|
|
static void free_params(game_params *params)
|
|
{
|
|
sfree(params);
|
|
}
|
|
|
|
static game_params *dup_params(game_params *params)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
*ret = *params; /* structure copy */
|
|
return ret;
|
|
}
|
|
|
|
static game_params *decode_params(char const *string)
|
|
{
|
|
game_params *ret = default_params();
|
|
char const *p = string;
|
|
|
|
ret->width = atoi(p);
|
|
while (*p && isdigit(*p)) p++;
|
|
if (*p == 'x') {
|
|
p++;
|
|
ret->height = atoi(p);
|
|
while (*p && isdigit(*p)) p++;
|
|
if ( (ret->wrapping = (*p == 'w')) != 0 )
|
|
p++;
|
|
if (*p == 'b')
|
|
ret->barrier_probability = atof(p+1);
|
|
} else {
|
|
ret->height = ret->width;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static char *encode_params(game_params *params)
|
|
{
|
|
char ret[400];
|
|
int len;
|
|
|
|
len = sprintf(ret, "%dx%d", params->width, params->height);
|
|
if (params->wrapping)
|
|
ret[len++] = 'w';
|
|
if (params->barrier_probability)
|
|
len += sprintf(ret+len, "b%g", params->barrier_probability);
|
|
assert(len < lenof(ret));
|
|
ret[len] = '\0';
|
|
|
|
return dupstr(ret);
|
|
}
|
|
|
|
static config_item *game_configure(game_params *params)
|
|
{
|
|
config_item *ret;
|
|
char buf[80];
|
|
|
|
ret = snewn(5, config_item);
|
|
|
|
ret[0].name = "Width";
|
|
ret[0].type = C_STRING;
|
|
sprintf(buf, "%d", params->width);
|
|
ret[0].sval = dupstr(buf);
|
|
ret[0].ival = 0;
|
|
|
|
ret[1].name = "Height";
|
|
ret[1].type = C_STRING;
|
|
sprintf(buf, "%d", params->height);
|
|
ret[1].sval = dupstr(buf);
|
|
ret[1].ival = 0;
|
|
|
|
ret[2].name = "Walls wrap around";
|
|
ret[2].type = C_BOOLEAN;
|
|
ret[2].sval = NULL;
|
|
ret[2].ival = params->wrapping;
|
|
|
|
ret[3].name = "Barrier probability";
|
|
ret[3].type = C_STRING;
|
|
sprintf(buf, "%g", params->barrier_probability);
|
|
ret[3].sval = dupstr(buf);
|
|
ret[3].ival = 0;
|
|
|
|
ret[4].name = NULL;
|
|
ret[4].type = C_END;
|
|
ret[4].sval = NULL;
|
|
ret[4].ival = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static game_params *custom_params(config_item *cfg)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->width = atoi(cfg[0].sval);
|
|
ret->height = atoi(cfg[1].sval);
|
|
ret->wrapping = cfg[2].ival;
|
|
ret->barrier_probability = (float)atof(cfg[3].sval);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static char *validate_params(game_params *params)
|
|
{
|
|
if (params->width <= 0 && params->height <= 0)
|
|
return "Width and height must both be greater than zero";
|
|
if (params->width <= 0)
|
|
return "Width must be greater than zero";
|
|
if (params->height <= 0)
|
|
return "Height must be greater than zero";
|
|
if (params->width <= 1 && params->height <= 1)
|
|
return "At least one of width and height must be greater than one";
|
|
if (params->barrier_probability < 0)
|
|
return "Barrier probability may not be negative";
|
|
if (params->barrier_probability > 1)
|
|
return "Barrier probability may not be greater than 1";
|
|
return NULL;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Randomly select a new game seed.
|
|
*/
|
|
|
|
static char *new_game_seed(game_params *params, random_state *rs,
|
|
game_aux_info **aux)
|
|
{
|
|
/*
|
|
* The full description of a Net game is far too large to
|
|
* encode directly in the seed, so by default we'll have to go
|
|
* for the simple approach of providing a random-number seed.
|
|
*
|
|
* (This does not restrict me from _later on_ inventing a seed
|
|
* string syntax which can never be generated by this code -
|
|
* for example, strings beginning with a letter - allowing me
|
|
* to type in a precise game, and have new_game detect it and
|
|
* understand it and do something completely different.)
|
|
*/
|
|
char buf[40];
|
|
sprintf(buf, "%lu", random_bits(rs, 32));
|
|
return dupstr(buf);
|
|
}
|
|
|
|
static void game_free_aux_info(game_aux_info *aux)
|
|
{
|
|
assert(!"Shouldn't happen");
|
|
}
|
|
|
|
static char *validate_seed(game_params *params, char *seed)
|
|
{
|
|
/*
|
|
* Since any string at all will suffice to seed the RNG, there
|
|
* is no validation required.
|
|
*/
|
|
return NULL;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Construct an initial game state, given a seed and parameters.
|
|
*/
|
|
|
|
static game_state *new_game(game_params *params, char *seed)
|
|
{
|
|
random_state *rs;
|
|
game_state *state;
|
|
tree234 *possibilities, *barriers;
|
|
int w, h, x, y, nbarriers;
|
|
|
|
assert(params->width > 0 && params->height > 0);
|
|
assert(params->width > 1 || params->height > 1);
|
|
|
|
/*
|
|
* Create a blank game state.
|
|
*/
|
|
state = snew(game_state);
|
|
w = state->width = params->width;
|
|
h = state->height = params->height;
|
|
state->cx = state->width / 2;
|
|
state->cy = state->height / 2;
|
|
state->wrapping = params->wrapping;
|
|
state->last_rotate_dir = 0;
|
|
state->completed = state->used_solve = state->just_used_solve = FALSE;
|
|
state->tiles = snewn(state->width * state->height, unsigned char);
|
|
memset(state->tiles, 0, state->width * state->height);
|
|
state->barriers = snewn(state->width * state->height, unsigned char);
|
|
memset(state->barriers, 0, state->width * state->height);
|
|
|
|
/*
|
|
* Set up border barriers if this is a non-wrapping game.
|
|
*/
|
|
if (!state->wrapping) {
|
|
for (x = 0; x < state->width; x++) {
|
|
barrier(state, x, 0) |= U;
|
|
barrier(state, x, state->height-1) |= D;
|
|
}
|
|
for (y = 0; y < state->height; y++) {
|
|
barrier(state, 0, y) |= L;
|
|
barrier(state, state->width-1, y) |= R;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Seed the internal random number generator.
|
|
*/
|
|
rs = random_init(seed, strlen(seed));
|
|
|
|
/*
|
|
* Construct the unshuffled grid.
|
|
*
|
|
* To do this, we simply start at the centre point, repeatedly
|
|
* choose a random possibility out of the available ways to
|
|
* extend a used square into an unused one, and do it. After
|
|
* extending the third line out of a square, we remove the
|
|
* fourth from the possibilities list to avoid any full-cross
|
|
* squares (which would make the game too easy because they
|
|
* only have one orientation).
|
|
*
|
|
* The slightly worrying thing is the avoidance of full-cross
|
|
* squares. Can this cause our unsophisticated construction
|
|
* algorithm to paint itself into a corner, by getting into a
|
|
* situation where there are some unreached squares and the
|
|
* only way to reach any of them is to extend a T-piece into a
|
|
* full cross?
|
|
*
|
|
* Answer: no it can't, and here's a proof.
|
|
*
|
|
* Any contiguous group of such unreachable squares must be
|
|
* surrounded on _all_ sides by T-pieces pointing away from the
|
|
* group. (If not, then there is a square which can be extended
|
|
* into one of the `unreachable' ones, and so it wasn't
|
|
* unreachable after all.) In particular, this implies that
|
|
* each contiguous group of unreachable squares must be
|
|
* rectangular in shape (any deviation from that yields a
|
|
* non-T-piece next to an `unreachable' square).
|
|
*
|
|
* So we have a rectangle of unreachable squares, with T-pieces
|
|
* forming a solid border around the rectangle. The corners of
|
|
* that border must be connected (since every tile connects all
|
|
* the lines arriving in it), and therefore the border must
|
|
* form a closed loop around the rectangle.
|
|
*
|
|
* But this can't have happened in the first place, since we
|
|
* _know_ we've avoided creating closed loops! Hence, no such
|
|
* situation can ever arise, and the naive grid construction
|
|
* algorithm will guaranteeably result in a complete grid
|
|
* containing no unreached squares, no full crosses _and_ no
|
|
* closed loops. []
|
|
*/
|
|
possibilities = newtree234(xyd_cmp);
|
|
|
|
if (state->cx+1 < state->width)
|
|
add234(possibilities, new_xyd(state->cx, state->cy, R));
|
|
if (state->cy-1 >= 0)
|
|
add234(possibilities, new_xyd(state->cx, state->cy, U));
|
|
if (state->cx-1 >= 0)
|
|
add234(possibilities, new_xyd(state->cx, state->cy, L));
|
|
if (state->cy+1 < state->height)
|
|
add234(possibilities, new_xyd(state->cx, state->cy, D));
|
|
|
|
while (count234(possibilities) > 0) {
|
|
int i;
|
|
struct xyd *xyd;
|
|
int x1, y1, d1, x2, y2, d2, d;
|
|
|
|
/*
|
|
* Extract a randomly chosen possibility from the list.
|
|
*/
|
|
i = random_upto(rs, count234(possibilities));
|
|
xyd = delpos234(possibilities, i);
|
|
x1 = xyd->x;
|
|
y1 = xyd->y;
|
|
d1 = xyd->direction;
|
|
sfree(xyd);
|
|
|
|
OFFSET(x2, y2, x1, y1, d1, state);
|
|
d2 = F(d1);
|
|
#ifdef DEBUG
|
|
printf("picked (%d,%d,%c) <-> (%d,%d,%c)\n",
|
|
x1, y1, "0RU3L567D9abcdef"[d1], x2, y2, "0RU3L567D9abcdef"[d2]);
|
|
#endif
|
|
|
|
/*
|
|
* Make the connection. (We should be moving to an as yet
|
|
* unused tile.)
|
|
*/
|
|
tile(state, x1, y1) |= d1;
|
|
assert(tile(state, x2, y2) == 0);
|
|
tile(state, x2, y2) |= d2;
|
|
|
|
/*
|
|
* If we have created a T-piece, remove its last
|
|
* possibility.
|
|
*/
|
|
if (COUNT(tile(state, x1, y1)) == 3) {
|
|
struct xyd xyd1, *xydp;
|
|
|
|
xyd1.x = x1;
|
|
xyd1.y = y1;
|
|
xyd1.direction = 0x0F ^ tile(state, x1, y1);
|
|
|
|
xydp = find234(possibilities, &xyd1, NULL);
|
|
|
|
if (xydp) {
|
|
#ifdef DEBUG
|
|
printf("T-piece; removing (%d,%d,%c)\n",
|
|
xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
|
|
#endif
|
|
del234(possibilities, xydp);
|
|
sfree(xydp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Remove all other possibilities that were pointing at the
|
|
* tile we've just moved into.
|
|
*/
|
|
for (d = 1; d < 0x10; d <<= 1) {
|
|
int x3, y3, d3;
|
|
struct xyd xyd1, *xydp;
|
|
|
|
OFFSET(x3, y3, x2, y2, d, state);
|
|
d3 = F(d);
|
|
|
|
xyd1.x = x3;
|
|
xyd1.y = y3;
|
|
xyd1.direction = d3;
|
|
|
|
xydp = find234(possibilities, &xyd1, NULL);
|
|
|
|
if (xydp) {
|
|
#ifdef DEBUG
|
|
printf("Loop avoidance; removing (%d,%d,%c)\n",
|
|
xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
|
|
#endif
|
|
del234(possibilities, xydp);
|
|
sfree(xydp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Add new possibilities to the list for moving _out_ of
|
|
* the tile we have just moved into.
|
|
*/
|
|
for (d = 1; d < 0x10; d <<= 1) {
|
|
int x3, y3;
|
|
|
|
if (d == d2)
|
|
continue; /* we've got this one already */
|
|
|
|
if (!state->wrapping) {
|
|
if (d == U && y2 == 0)
|
|
continue;
|
|
if (d == D && y2 == state->height-1)
|
|
continue;
|
|
if (d == L && x2 == 0)
|
|
continue;
|
|
if (d == R && x2 == state->width-1)
|
|
continue;
|
|
}
|
|
|
|
OFFSET(x3, y3, x2, y2, d, state);
|
|
|
|
if (tile(state, x3, y3))
|
|
continue; /* this would create a loop */
|
|
|
|
#ifdef DEBUG
|
|
printf("New frontier; adding (%d,%d,%c)\n",
|
|
x2, y2, "0RU3L567D9abcdef"[d]);
|
|
#endif
|
|
add234(possibilities, new_xyd(x2, y2, d));
|
|
}
|
|
}
|
|
/* Having done that, we should have no possibilities remaining. */
|
|
assert(count234(possibilities) == 0);
|
|
freetree234(possibilities);
|
|
|
|
/*
|
|
* Now compute a list of the possible barrier locations.
|
|
*/
|
|
barriers = newtree234(xyd_cmp);
|
|
for (y = 0; y < state->height; y++) {
|
|
for (x = 0; x < state->width; x++) {
|
|
|
|
if (!(tile(state, x, y) & R) &&
|
|
(state->wrapping || x < state->width-1))
|
|
add234(barriers, new_xyd(x, y, R));
|
|
if (!(tile(state, x, y) & D) &&
|
|
(state->wrapping || y < state->height-1))
|
|
add234(barriers, new_xyd(x, y, D));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Save the unshuffled grid. We do this using a separate
|
|
* reference-counted structure since it's a large chunk of
|
|
* memory which we don't want to have to replicate in every
|
|
* game state while playing.
|
|
*/
|
|
{
|
|
struct solved_game_state *solution;
|
|
|
|
solution = snew(struct solved_game_state);
|
|
solution->width = state->width;
|
|
solution->height = state->height;
|
|
solution->refcount = 1;
|
|
solution->tiles = snewn(state->width * state->height, unsigned char);
|
|
memcpy(solution->tiles, state->tiles, state->width * state->height);
|
|
|
|
state->solution = solution;
|
|
}
|
|
|
|
/*
|
|
* Now shuffle the grid.
|
|
*/
|
|
for (y = 0; y < state->height; y++) {
|
|
for (x = 0; x < state->width; x++) {
|
|
int orig = tile(state, x, y);
|
|
int rot = random_upto(rs, 4);
|
|
tile(state, x, y) = ROT(orig, rot);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* And now choose barrier locations. (We carefully do this
|
|
* _after_ shuffling, so that changing the barrier rate in the
|
|
* params while keeping the game seed the same will give the
|
|
* same shuffled grid and _only_ change the barrier locations.
|
|
* Also the way we choose barrier locations, by repeatedly
|
|
* choosing one possibility from the list until we have enough,
|
|
* is designed to ensure that raising the barrier rate while
|
|
* keeping the seed the same will provide a superset of the
|
|
* previous barrier set - i.e. if you ask for 10 barriers, and
|
|
* then decide that's still too hard and ask for 20, you'll get
|
|
* the original 10 plus 10 more, rather than getting 20 new
|
|
* ones and the chance of remembering your first 10.)
|
|
*/
|
|
nbarriers = (int)(params->barrier_probability * count234(barriers));
|
|
assert(nbarriers >= 0 && nbarriers <= count234(barriers));
|
|
|
|
while (nbarriers > 0) {
|
|
int i;
|
|
struct xyd *xyd;
|
|
int x1, y1, d1, x2, y2, d2;
|
|
|
|
/*
|
|
* Extract a randomly chosen barrier from the list.
|
|
*/
|
|
i = random_upto(rs, count234(barriers));
|
|
xyd = delpos234(barriers, i);
|
|
|
|
assert(xyd != NULL);
|
|
|
|
x1 = xyd->x;
|
|
y1 = xyd->y;
|
|
d1 = xyd->direction;
|
|
sfree(xyd);
|
|
|
|
OFFSET(x2, y2, x1, y1, d1, state);
|
|
d2 = F(d1);
|
|
|
|
barrier(state, x1, y1) |= d1;
|
|
barrier(state, x2, y2) |= d2;
|
|
|
|
nbarriers--;
|
|
}
|
|
|
|
/*
|
|
* Clean up the rest of the barrier list.
|
|
*/
|
|
{
|
|
struct xyd *xyd;
|
|
|
|
while ( (xyd = delpos234(barriers, 0)) != NULL)
|
|
sfree(xyd);
|
|
|
|
freetree234(barriers);
|
|
}
|
|
|
|
/*
|
|
* Set up the barrier corner flags, for drawing barriers
|
|
* prettily when they meet.
|
|
*/
|
|
for (y = 0; y < state->height; y++) {
|
|
for (x = 0; x < state->width; x++) {
|
|
int dir;
|
|
|
|
for (dir = 1; dir < 0x10; dir <<= 1) {
|
|
int dir2 = A(dir);
|
|
int x1, y1, x2, y2, x3, y3;
|
|
int corner = FALSE;
|
|
|
|
if (!(barrier(state, x, y) & dir))
|
|
continue;
|
|
|
|
if (barrier(state, x, y) & dir2)
|
|
corner = TRUE;
|
|
|
|
x1 = x + X(dir), y1 = y + Y(dir);
|
|
if (x1 >= 0 && x1 < state->width &&
|
|
y1 >= 0 && y1 < state->height &&
|
|
(barrier(state, x1, y1) & dir2))
|
|
corner = TRUE;
|
|
|
|
x2 = x + X(dir2), y2 = y + Y(dir2);
|
|
if (x2 >= 0 && x2 < state->width &&
|
|
y2 >= 0 && y2 < state->height &&
|
|
(barrier(state, x2, y2) & dir))
|
|
corner = TRUE;
|
|
|
|
if (corner) {
|
|
barrier(state, x, y) |= (dir << 4);
|
|
if (x1 >= 0 && x1 < state->width &&
|
|
y1 >= 0 && y1 < state->height)
|
|
barrier(state, x1, y1) |= (A(dir) << 4);
|
|
if (x2 >= 0 && x2 < state->width &&
|
|
y2 >= 0 && y2 < state->height)
|
|
barrier(state, x2, y2) |= (C(dir) << 4);
|
|
x3 = x + X(dir) + X(dir2), y3 = y + Y(dir) + Y(dir2);
|
|
if (x3 >= 0 && x3 < state->width &&
|
|
y3 >= 0 && y3 < state->height)
|
|
barrier(state, x3, y3) |= (F(dir) << 4);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
random_free(rs);
|
|
|
|
return state;
|
|
}
|
|
|
|
static game_state *dup_game(game_state *state)
|
|
{
|
|
game_state *ret;
|
|
|
|
ret = snew(game_state);
|
|
ret->width = state->width;
|
|
ret->height = state->height;
|
|
ret->cx = state->cx;
|
|
ret->cy = state->cy;
|
|
ret->wrapping = state->wrapping;
|
|
ret->completed = state->completed;
|
|
ret->used_solve = state->used_solve;
|
|
ret->just_used_solve = state->just_used_solve;
|
|
ret->last_rotate_dir = state->last_rotate_dir;
|
|
ret->tiles = snewn(state->width * state->height, unsigned char);
|
|
memcpy(ret->tiles, state->tiles, state->width * state->height);
|
|
ret->barriers = snewn(state->width * state->height, unsigned char);
|
|
memcpy(ret->barriers, state->barriers, state->width * state->height);
|
|
ret->solution = state->solution;
|
|
if (ret->solution)
|
|
ret->solution->refcount++;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void free_game(game_state *state)
|
|
{
|
|
if (state->solution && --state->solution->refcount <= 0) {
|
|
sfree(state->solution->tiles);
|
|
sfree(state->solution);
|
|
}
|
|
sfree(state->tiles);
|
|
sfree(state->barriers);
|
|
sfree(state);
|
|
}
|
|
|
|
static game_state *solve_game(game_state *state, game_aux_info *aux,
|
|
char **error)
|
|
{
|
|
game_state *ret;
|
|
|
|
if (!state->solution) {
|
|
/*
|
|
* 2005-05-02: This shouldn't happen, at the time of
|
|
* writing, because Net is incapable of receiving a puzzle
|
|
* description from outside. If in future it becomes so,
|
|
* then we will have puzzles for which we don't know the
|
|
* solution.
|
|
*/
|
|
*error = "Solution not known for this puzzle";
|
|
return NULL;
|
|
}
|
|
|
|
assert(state->solution->width == state->width);
|
|
assert(state->solution->height == state->height);
|
|
ret = dup_game(state);
|
|
memcpy(ret->tiles, state->solution->tiles, ret->width * ret->height);
|
|
ret->used_solve = ret->just_used_solve = TRUE;
|
|
ret->completed = TRUE;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static char *game_text_format(game_state *state)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Utility routine.
|
|
*/
|
|
|
|
/*
|
|
* Compute which squares are reachable from the centre square, as a
|
|
* quick visual aid to determining how close the game is to
|
|
* completion. This is also a simple way to tell if the game _is_
|
|
* completed - just call this function and see whether every square
|
|
* is marked active.
|
|
*/
|
|
static unsigned char *compute_active(game_state *state)
|
|
{
|
|
unsigned char *active;
|
|
tree234 *todo;
|
|
struct xyd *xyd;
|
|
|
|
active = snewn(state->width * state->height, unsigned char);
|
|
memset(active, 0, state->width * state->height);
|
|
|
|
/*
|
|
* We only store (x,y) pairs in todo, but it's easier to reuse
|
|
* xyd_cmp and just store direction 0 every time.
|
|
*/
|
|
todo = newtree234(xyd_cmp);
|
|
index(state, active, state->cx, state->cy) = ACTIVE;
|
|
add234(todo, new_xyd(state->cx, state->cy, 0));
|
|
|
|
while ( (xyd = delpos234(todo, 0)) != NULL) {
|
|
int x1, y1, d1, x2, y2, d2;
|
|
|
|
x1 = xyd->x;
|
|
y1 = xyd->y;
|
|
sfree(xyd);
|
|
|
|
for (d1 = 1; d1 < 0x10; d1 <<= 1) {
|
|
OFFSET(x2, y2, x1, y1, d1, state);
|
|
d2 = F(d1);
|
|
|
|
/*
|
|
* If the next tile in this direction is connected to
|
|
* us, and there isn't a barrier in the way, and it
|
|
* isn't already marked active, then mark it active and
|
|
* add it to the to-examine list.
|
|
*/
|
|
if ((tile(state, x1, y1) & d1) &&
|
|
(tile(state, x2, y2) & d2) &&
|
|
!(barrier(state, x1, y1) & d1) &&
|
|
!index(state, active, x2, y2)) {
|
|
index(state, active, x2, y2) = ACTIVE;
|
|
add234(todo, new_xyd(x2, y2, 0));
|
|
}
|
|
}
|
|
}
|
|
/* Now we expect the todo list to have shrunk to zero size. */
|
|
assert(count234(todo) == 0);
|
|
freetree234(todo);
|
|
|
|
return active;
|
|
}
|
|
|
|
struct game_ui {
|
|
int cur_x, cur_y;
|
|
int cur_visible;
|
|
random_state *rs; /* used for jumbling */
|
|
};
|
|
|
|
static game_ui *new_ui(game_state *state)
|
|
{
|
|
void *seed;
|
|
int seedsize;
|
|
game_ui *ui = snew(game_ui);
|
|
ui->cur_x = state->width / 2;
|
|
ui->cur_y = state->height / 2;
|
|
ui->cur_visible = FALSE;
|
|
get_random_seed(&seed, &seedsize);
|
|
ui->rs = random_init(seed, seedsize);
|
|
sfree(seed);
|
|
|
|
return ui;
|
|
}
|
|
|
|
static void free_ui(game_ui *ui)
|
|
{
|
|
random_free(ui->rs);
|
|
sfree(ui);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Process a move.
|
|
*/
|
|
static game_state *make_move(game_state *state, game_ui *ui,
|
|
int x, int y, int button)
|
|
{
|
|
game_state *ret, *nullret;
|
|
int tx, ty, orig;
|
|
|
|
nullret = NULL;
|
|
|
|
if (button == LEFT_BUTTON ||
|
|
button == MIDDLE_BUTTON ||
|
|
button == RIGHT_BUTTON) {
|
|
|
|
if (ui->cur_visible) {
|
|
ui->cur_visible = FALSE;
|
|
nullret = state;
|
|
}
|
|
|
|
/*
|
|
* The button must have been clicked on a valid tile.
|
|
*/
|
|
x -= WINDOW_OFFSET + TILE_BORDER;
|
|
y -= WINDOW_OFFSET + TILE_BORDER;
|
|
if (x < 0 || y < 0)
|
|
return nullret;
|
|
tx = x / TILE_SIZE;
|
|
ty = y / TILE_SIZE;
|
|
if (tx >= state->width || ty >= state->height)
|
|
return nullret;
|
|
if (x % TILE_SIZE >= TILE_SIZE - TILE_BORDER ||
|
|
y % TILE_SIZE >= TILE_SIZE - TILE_BORDER)
|
|
return nullret;
|
|
} else if (button == CURSOR_UP || button == CURSOR_DOWN ||
|
|
button == CURSOR_RIGHT || button == CURSOR_LEFT) {
|
|
if (button == CURSOR_UP && ui->cur_y > 0)
|
|
ui->cur_y--;
|
|
else if (button == CURSOR_DOWN && ui->cur_y < state->height-1)
|
|
ui->cur_y++;
|
|
else if (button == CURSOR_LEFT && ui->cur_x > 0)
|
|
ui->cur_x--;
|
|
else if (button == CURSOR_RIGHT && ui->cur_x < state->width-1)
|
|
ui->cur_x++;
|
|
else
|
|
return nullret; /* no cursor movement */
|
|
ui->cur_visible = TRUE;
|
|
return state; /* UI activity has occurred */
|
|
} else if (button == 'a' || button == 's' || button == 'd' ||
|
|
button == 'A' || button == 'S' || button == 'D') {
|
|
tx = ui->cur_x;
|
|
ty = ui->cur_y;
|
|
if (button == 'a' || button == 'A')
|
|
button = LEFT_BUTTON;
|
|
else if (button == 's' || button == 'S')
|
|
button = MIDDLE_BUTTON;
|
|
else if (button == 'd' || button == 'D')
|
|
button = RIGHT_BUTTON;
|
|
ui->cur_visible = TRUE;
|
|
} else if (button == 'j' || button == 'J') {
|
|
/* XXX should we have some mouse control for this? */
|
|
button = 'J'; /* canonify */
|
|
tx = ty = -1; /* shut gcc up :( */
|
|
} else
|
|
return nullret;
|
|
|
|
/*
|
|
* The middle button locks or unlocks a tile. (A locked tile
|
|
* cannot be turned, and is visually marked as being locked.
|
|
* This is a convenience for the player, so that once they are
|
|
* sure which way round a tile goes, they can lock it and thus
|
|
* avoid forgetting later on that they'd already done that one;
|
|
* and the locking also prevents them turning the tile by
|
|
* accident. If they change their mind, another middle click
|
|
* unlocks it.)
|
|
*/
|
|
if (button == MIDDLE_BUTTON) {
|
|
|
|
ret = dup_game(state);
|
|
ret->just_used_solve = FALSE;
|
|
tile(ret, tx, ty) ^= LOCKED;
|
|
ret->last_rotate_dir = 0;
|
|
return ret;
|
|
|
|
} else if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
|
|
|
|
/*
|
|
* The left and right buttons have no effect if clicked on a
|
|
* locked tile.
|
|
*/
|
|
if (tile(state, tx, ty) & LOCKED)
|
|
return nullret;
|
|
|
|
/*
|
|
* Otherwise, turn the tile one way or the other. Left button
|
|
* turns anticlockwise; right button turns clockwise.
|
|
*/
|
|
ret = dup_game(state);
|
|
ret->just_used_solve = FALSE;
|
|
orig = tile(ret, tx, ty);
|
|
if (button == LEFT_BUTTON) {
|
|
tile(ret, tx, ty) = A(orig);
|
|
ret->last_rotate_dir = +1;
|
|
} else {
|
|
tile(ret, tx, ty) = C(orig);
|
|
ret->last_rotate_dir = -1;
|
|
}
|
|
|
|
} else if (button == 'J') {
|
|
|
|
/*
|
|
* Jumble all unlocked tiles to random orientations.
|
|
*/
|
|
int jx, jy;
|
|
ret = dup_game(state);
|
|
ret->just_used_solve = FALSE;
|
|
for (jy = 0; jy < ret->height; jy++) {
|
|
for (jx = 0; jx < ret->width; jx++) {
|
|
if (!(tile(ret, jx, jy) & LOCKED)) {
|
|
int rot = random_upto(ui->rs, 4);
|
|
orig = tile(ret, jx, jy);
|
|
tile(ret, jx, jy) = ROT(orig, rot);
|
|
}
|
|
}
|
|
}
|
|
ret->last_rotate_dir = 0; /* suppress animation */
|
|
|
|
} else assert(0);
|
|
|
|
/*
|
|
* Check whether the game has been completed.
|
|
*/
|
|
{
|
|
unsigned char *active = compute_active(ret);
|
|
int x1, y1;
|
|
int complete = TRUE;
|
|
|
|
for (x1 = 0; x1 < ret->width; x1++)
|
|
for (y1 = 0; y1 < ret->height; y1++)
|
|
if (!index(ret, active, x1, y1)) {
|
|
complete = FALSE;
|
|
goto break_label; /* break out of two loops at once */
|
|
}
|
|
break_label:
|
|
|
|
sfree(active);
|
|
|
|
if (complete)
|
|
ret->completed = TRUE;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Routines for drawing the game position on the screen.
|
|
*/
|
|
|
|
struct game_drawstate {
|
|
int started;
|
|
int width, height;
|
|
unsigned char *visible;
|
|
};
|
|
|
|
static game_drawstate *game_new_drawstate(game_state *state)
|
|
{
|
|
game_drawstate *ds = snew(game_drawstate);
|
|
|
|
ds->started = FALSE;
|
|
ds->width = state->width;
|
|
ds->height = state->height;
|
|
ds->visible = snewn(state->width * state->height, unsigned char);
|
|
memset(ds->visible, 0xFF, state->width * state->height);
|
|
|
|
return ds;
|
|
}
|
|
|
|
static void game_free_drawstate(game_drawstate *ds)
|
|
{
|
|
sfree(ds->visible);
|
|
sfree(ds);
|
|
}
|
|
|
|
static void game_size(game_params *params, int *x, int *y)
|
|
{
|
|
*x = WINDOW_OFFSET * 2 + TILE_SIZE * params->width + TILE_BORDER;
|
|
*y = WINDOW_OFFSET * 2 + TILE_SIZE * params->height + TILE_BORDER;
|
|
}
|
|
|
|
static float *game_colours(frontend *fe, game_state *state, int *ncolours)
|
|
{
|
|
float *ret;
|
|
|
|
ret = snewn(NCOLOURS * 3, float);
|
|
*ncolours = NCOLOURS;
|
|
|
|
/*
|
|
* Basic background colour is whatever the front end thinks is
|
|
* a sensible default.
|
|
*/
|
|
frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
|
|
|
|
/*
|
|
* Wires are black.
|
|
*/
|
|
ret[COL_WIRE * 3 + 0] = 0.0F;
|
|
ret[COL_WIRE * 3 + 1] = 0.0F;
|
|
ret[COL_WIRE * 3 + 2] = 0.0F;
|
|
|
|
/*
|
|
* Powered wires and powered endpoints are cyan.
|
|
*/
|
|
ret[COL_POWERED * 3 + 0] = 0.0F;
|
|
ret[COL_POWERED * 3 + 1] = 1.0F;
|
|
ret[COL_POWERED * 3 + 2] = 1.0F;
|
|
|
|
/*
|
|
* Barriers are red.
|
|
*/
|
|
ret[COL_BARRIER * 3 + 0] = 1.0F;
|
|
ret[COL_BARRIER * 3 + 1] = 0.0F;
|
|
ret[COL_BARRIER * 3 + 2] = 0.0F;
|
|
|
|
/*
|
|
* Unpowered endpoints are blue.
|
|
*/
|
|
ret[COL_ENDPOINT * 3 + 0] = 0.0F;
|
|
ret[COL_ENDPOINT * 3 + 1] = 0.0F;
|
|
ret[COL_ENDPOINT * 3 + 2] = 1.0F;
|
|
|
|
/*
|
|
* Tile borders are a darker grey than the background.
|
|
*/
|
|
ret[COL_BORDER * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
|
|
ret[COL_BORDER * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
|
|
ret[COL_BORDER * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2];
|
|
|
|
/*
|
|
* Locked tiles are a grey in between those two.
|
|
*/
|
|
ret[COL_LOCKED * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0];
|
|
ret[COL_LOCKED * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1];
|
|
ret[COL_LOCKED * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2];
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void draw_thick_line(frontend *fe, int x1, int y1, int x2, int y2,
|
|
int colour)
|
|
{
|
|
draw_line(fe, x1-1, y1, x2-1, y2, COL_WIRE);
|
|
draw_line(fe, x1+1, y1, x2+1, y2, COL_WIRE);
|
|
draw_line(fe, x1, y1-1, x2, y2-1, COL_WIRE);
|
|
draw_line(fe, x1, y1+1, x2, y2+1, COL_WIRE);
|
|
draw_line(fe, x1, y1, x2, y2, colour);
|
|
}
|
|
|
|
static void draw_rect_coords(frontend *fe, int x1, int y1, int x2, int y2,
|
|
int colour)
|
|
{
|
|
int mx = (x1 < x2 ? x1 : x2);
|
|
int my = (y1 < y2 ? y1 : y2);
|
|
int dx = (x2 + x1 - 2*mx + 1);
|
|
int dy = (y2 + y1 - 2*my + 1);
|
|
|
|
draw_rect(fe, mx, my, dx, dy, colour);
|
|
}
|
|
|
|
static void draw_barrier_corner(frontend *fe, int x, int y, int dir, int phase)
|
|
{
|
|
int bx = WINDOW_OFFSET + TILE_SIZE * x;
|
|
int by = WINDOW_OFFSET + TILE_SIZE * y;
|
|
int x1, y1, dx, dy, dir2;
|
|
|
|
dir >>= 4;
|
|
|
|
dir2 = A(dir);
|
|
dx = X(dir) + X(dir2);
|
|
dy = Y(dir) + Y(dir2);
|
|
x1 = (dx > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
|
|
y1 = (dy > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
|
|
|
|
if (phase == 0) {
|
|
draw_rect_coords(fe, bx+x1, by+y1,
|
|
bx+x1-TILE_BORDER*dx, by+y1-(TILE_BORDER-1)*dy,
|
|
COL_WIRE);
|
|
draw_rect_coords(fe, bx+x1, by+y1,
|
|
bx+x1-(TILE_BORDER-1)*dx, by+y1-TILE_BORDER*dy,
|
|
COL_WIRE);
|
|
} else {
|
|
draw_rect_coords(fe, bx+x1, by+y1,
|
|
bx+x1-(TILE_BORDER-1)*dx, by+y1-(TILE_BORDER-1)*dy,
|
|
COL_BARRIER);
|
|
}
|
|
}
|
|
|
|
static void draw_barrier(frontend *fe, int x, int y, int dir, int phase)
|
|
{
|
|
int bx = WINDOW_OFFSET + TILE_SIZE * x;
|
|
int by = WINDOW_OFFSET + TILE_SIZE * y;
|
|
int x1, y1, w, h;
|
|
|
|
x1 = (X(dir) > 0 ? TILE_SIZE : X(dir) == 0 ? TILE_BORDER : 0);
|
|
y1 = (Y(dir) > 0 ? TILE_SIZE : Y(dir) == 0 ? TILE_BORDER : 0);
|
|
w = (X(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
|
|
h = (Y(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
|
|
|
|
if (phase == 0) {
|
|
draw_rect(fe, bx+x1-X(dir), by+y1-Y(dir), w, h, COL_WIRE);
|
|
} else {
|
|
draw_rect(fe, bx+x1, by+y1, w, h, COL_BARRIER);
|
|
}
|
|
}
|
|
|
|
static void draw_tile(frontend *fe, game_state *state, int x, int y, int tile,
|
|
float angle, int cursor)
|
|
{
|
|
int bx = WINDOW_OFFSET + TILE_SIZE * x;
|
|
int by = WINDOW_OFFSET + TILE_SIZE * y;
|
|
float matrix[4];
|
|
float cx, cy, ex, ey, tx, ty;
|
|
int dir, col, phase;
|
|
|
|
/*
|
|
* When we draw a single tile, we must draw everything up to
|
|
* and including the borders around the tile. This means that
|
|
* if the neighbouring tiles have connections to those borders,
|
|
* we must draw those connections on the borders themselves.
|
|
*
|
|
* This would be terribly fiddly if we ever had to draw a tile
|
|
* while its neighbour was in mid-rotate, because we'd have to
|
|
* arrange to _know_ that the neighbour was being rotated and
|
|
* hence had an anomalous effect on the redraw of this tile.
|
|
* Fortunately, the drawing algorithm avoids ever calling us in
|
|
* this circumstance: we're either drawing lots of straight
|
|
* tiles at game start or after a move is complete, or we're
|
|
* repeatedly drawing only the rotating tile. So no problem.
|
|
*/
|
|
|
|
/*
|
|
* So. First blank the tile out completely: draw a big
|
|
* rectangle in border colour, and a smaller rectangle in
|
|
* background colour to fill it in.
|
|
*/
|
|
draw_rect(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER,
|
|
COL_BORDER);
|
|
draw_rect(fe, bx+TILE_BORDER, by+TILE_BORDER,
|
|
TILE_SIZE-TILE_BORDER, TILE_SIZE-TILE_BORDER,
|
|
tile & LOCKED ? COL_LOCKED : COL_BACKGROUND);
|
|
|
|
/*
|
|
* Draw an inset outline rectangle as a cursor, in whichever of
|
|
* COL_LOCKED and COL_BACKGROUND we aren't currently drawing
|
|
* in.
|
|
*/
|
|
if (cursor) {
|
|
draw_line(fe, bx+TILE_SIZE/8, by+TILE_SIZE/8,
|
|
bx+TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
|
|
tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
|
|
draw_line(fe, bx+TILE_SIZE/8, by+TILE_SIZE/8,
|
|
bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE/8,
|
|
tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
|
|
draw_line(fe, bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE/8,
|
|
bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
|
|
tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
|
|
draw_line(fe, bx+TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
|
|
bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8,
|
|
tile & LOCKED ? COL_BACKGROUND : COL_LOCKED);
|
|
}
|
|
|
|
/*
|
|
* Set up the rotation matrix.
|
|
*/
|
|
matrix[0] = (float)cos(angle * PI / 180.0);
|
|
matrix[1] = (float)-sin(angle * PI / 180.0);
|
|
matrix[2] = (float)sin(angle * PI / 180.0);
|
|
matrix[3] = (float)cos(angle * PI / 180.0);
|
|
|
|
/*
|
|
* Draw the wires.
|
|
*/
|
|
cx = cy = TILE_BORDER + (TILE_SIZE-TILE_BORDER) / 2.0F - 0.5F;
|
|
col = (tile & ACTIVE ? COL_POWERED : COL_WIRE);
|
|
for (dir = 1; dir < 0x10; dir <<= 1) {
|
|
if (tile & dir) {
|
|
ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
|
|
ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
|
|
MATMUL(tx, ty, matrix, ex, ey);
|
|
draw_thick_line(fe, bx+(int)cx, by+(int)cy,
|
|
bx+(int)(cx+tx), by+(int)(cy+ty),
|
|
COL_WIRE);
|
|
}
|
|
}
|
|
for (dir = 1; dir < 0x10; dir <<= 1) {
|
|
if (tile & dir) {
|
|
ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
|
|
ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
|
|
MATMUL(tx, ty, matrix, ex, ey);
|
|
draw_line(fe, bx+(int)cx, by+(int)cy,
|
|
bx+(int)(cx+tx), by+(int)(cy+ty), col);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Draw the box in the middle. We do this in blue if the tile
|
|
* is an unpowered endpoint, in cyan if the tile is a powered
|
|
* endpoint, in black if the tile is the centrepiece, and
|
|
* otherwise not at all.
|
|
*/
|
|
col = -1;
|
|
if (x == state->cx && y == state->cy)
|
|
col = COL_WIRE;
|
|
else if (COUNT(tile) == 1) {
|
|
col = (tile & ACTIVE ? COL_POWERED : COL_ENDPOINT);
|
|
}
|
|
if (col >= 0) {
|
|
int i, points[8];
|
|
|
|
points[0] = +1; points[1] = +1;
|
|
points[2] = +1; points[3] = -1;
|
|
points[4] = -1; points[5] = -1;
|
|
points[6] = -1; points[7] = +1;
|
|
|
|
for (i = 0; i < 8; i += 2) {
|
|
ex = (TILE_SIZE * 0.24F) * points[i];
|
|
ey = (TILE_SIZE * 0.24F) * points[i+1];
|
|
MATMUL(tx, ty, matrix, ex, ey);
|
|
points[i] = bx+(int)(cx+tx);
|
|
points[i+1] = by+(int)(cy+ty);
|
|
}
|
|
|
|
draw_polygon(fe, points, 4, TRUE, col);
|
|
draw_polygon(fe, points, 4, FALSE, COL_WIRE);
|
|
}
|
|
|
|
/*
|
|
* Draw the points on the border if other tiles are connected
|
|
* to us.
|
|
*/
|
|
for (dir = 1; dir < 0x10; dir <<= 1) {
|
|
int dx, dy, px, py, lx, ly, vx, vy, ox, oy;
|
|
|
|
dx = X(dir);
|
|
dy = Y(dir);
|
|
|
|
ox = x + dx;
|
|
oy = y + dy;
|
|
|
|
if (ox < 0 || ox >= state->width || oy < 0 || oy >= state->height)
|
|
continue;
|
|
|
|
if (!(tile(state, ox, oy) & F(dir)))
|
|
continue;
|
|
|
|
px = bx + (int)(dx>0 ? TILE_SIZE + TILE_BORDER - 1 : dx<0 ? 0 : cx);
|
|
py = by + (int)(dy>0 ? TILE_SIZE + TILE_BORDER - 1 : dy<0 ? 0 : cy);
|
|
lx = dx * (TILE_BORDER-1);
|
|
ly = dy * (TILE_BORDER-1);
|
|
vx = (dy ? 1 : 0);
|
|
vy = (dx ? 1 : 0);
|
|
|
|
if (angle == 0.0 && (tile & dir)) {
|
|
/*
|
|
* If we are fully connected to the other tile, we must
|
|
* draw right across the tile border. (We can use our
|
|
* own ACTIVE state to determine what colour to do this
|
|
* in: if we are fully connected to the other tile then
|
|
* the two ACTIVE states will be the same.)
|
|
*/
|
|
draw_rect_coords(fe, px-vx, py-vy, px+lx+vx, py+ly+vy, COL_WIRE);
|
|
draw_rect_coords(fe, px, py, px+lx, py+ly,
|
|
(tile & ACTIVE) ? COL_POWERED : COL_WIRE);
|
|
} else {
|
|
/*
|
|
* The other tile extends into our border, but isn't
|
|
* actually connected to us. Just draw a single black
|
|
* dot.
|
|
*/
|
|
draw_rect_coords(fe, px, py, px, py, COL_WIRE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Draw barrier corners, and then barriers.
|
|
*/
|
|
for (phase = 0; phase < 2; phase++) {
|
|
for (dir = 1; dir < 0x10; dir <<= 1)
|
|
if (barrier(state, x, y) & (dir << 4))
|
|
draw_barrier_corner(fe, x, y, dir << 4, phase);
|
|
for (dir = 1; dir < 0x10; dir <<= 1)
|
|
if (barrier(state, x, y) & dir)
|
|
draw_barrier(fe, x, y, dir, phase);
|
|
}
|
|
|
|
draw_update(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
|
|
}
|
|
|
|
static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
|
|
game_state *state, int dir, game_ui *ui, float t, float ft)
|
|
{
|
|
int x, y, tx, ty, frame, last_rotate_dir;
|
|
unsigned char *active;
|
|
float angle = 0.0;
|
|
|
|
/*
|
|
* Clear the screen and draw the exterior barrier lines if this
|
|
* is our first call.
|
|
*/
|
|
if (!ds->started) {
|
|
int phase;
|
|
|
|
ds->started = TRUE;
|
|
|
|
draw_rect(fe, 0, 0,
|
|
WINDOW_OFFSET * 2 + TILE_SIZE * state->width + TILE_BORDER,
|
|
WINDOW_OFFSET * 2 + TILE_SIZE * state->height + TILE_BORDER,
|
|
COL_BACKGROUND);
|
|
draw_update(fe, 0, 0,
|
|
WINDOW_OFFSET*2 + TILE_SIZE*state->width + TILE_BORDER,
|
|
WINDOW_OFFSET*2 + TILE_SIZE*state->height + TILE_BORDER);
|
|
|
|
for (phase = 0; phase < 2; phase++) {
|
|
|
|
for (x = 0; x < ds->width; x++) {
|
|
if (barrier(state, x, 0) & UL)
|
|
draw_barrier_corner(fe, x, -1, LD, phase);
|
|
if (barrier(state, x, 0) & RU)
|
|
draw_barrier_corner(fe, x, -1, DR, phase);
|
|
if (barrier(state, x, 0) & U)
|
|
draw_barrier(fe, x, -1, D, phase);
|
|
if (barrier(state, x, ds->height-1) & DR)
|
|
draw_barrier_corner(fe, x, ds->height, RU, phase);
|
|
if (barrier(state, x, ds->height-1) & LD)
|
|
draw_barrier_corner(fe, x, ds->height, UL, phase);
|
|
if (barrier(state, x, ds->height-1) & D)
|
|
draw_barrier(fe, x, ds->height, U, phase);
|
|
}
|
|
|
|
for (y = 0; y < ds->height; y++) {
|
|
if (barrier(state, 0, y) & UL)
|
|
draw_barrier_corner(fe, -1, y, RU, phase);
|
|
if (barrier(state, 0, y) & LD)
|
|
draw_barrier_corner(fe, -1, y, DR, phase);
|
|
if (barrier(state, 0, y) & L)
|
|
draw_barrier(fe, -1, y, R, phase);
|
|
if (barrier(state, ds->width-1, y) & RU)
|
|
draw_barrier_corner(fe, ds->width, y, UL, phase);
|
|
if (barrier(state, ds->width-1, y) & DR)
|
|
draw_barrier_corner(fe, ds->width, y, LD, phase);
|
|
if (barrier(state, ds->width-1, y) & R)
|
|
draw_barrier(fe, ds->width, y, L, phase);
|
|
}
|
|
}
|
|
}
|
|
|
|
tx = ty = -1;
|
|
last_rotate_dir = dir==-1 ? oldstate->last_rotate_dir :
|
|
state->last_rotate_dir;
|
|
if (oldstate && (t < ROTATE_TIME) && last_rotate_dir) {
|
|
/*
|
|
* We're animating a single tile rotation. Find the turning tile,
|
|
* if any.
|
|
*/
|
|
for (x = 0; x < oldstate->width; x++)
|
|
for (y = 0; y < oldstate->height; y++)
|
|
if ((tile(oldstate, x, y) ^ tile(state, x, y)) & 0xF) {
|
|
tx = x, ty = y;
|
|
goto break_label; /* leave both loops at once */
|
|
}
|
|
break_label:
|
|
|
|
if (tx >= 0) {
|
|
angle = last_rotate_dir * dir * 90.0F * (t / ROTATE_TIME);
|
|
state = oldstate;
|
|
}
|
|
}
|
|
|
|
frame = -1;
|
|
if (ft > 0) {
|
|
/*
|
|
* We're animating a completion flash. Find which frame
|
|
* we're at.
|
|
*/
|
|
frame = (int)(ft / FLASH_FRAME);
|
|
}
|
|
|
|
/*
|
|
* Draw any tile which differs from the way it was last drawn.
|
|
*/
|
|
active = compute_active(state);
|
|
|
|
for (x = 0; x < ds->width; x++)
|
|
for (y = 0; y < ds->height; y++) {
|
|
unsigned char c = tile(state, x, y) | index(state, active, x, y);
|
|
|
|
/*
|
|
* In a completion flash, we adjust the LOCKED bit
|
|
* depending on our distance from the centre point and
|
|
* the frame number.
|
|
*/
|
|
if (frame >= 0) {
|
|
int xdist, ydist, dist;
|
|
xdist = (x < state->cx ? state->cx - x : x - state->cx);
|
|
ydist = (y < state->cy ? state->cy - y : y - state->cy);
|
|
dist = (xdist > ydist ? xdist : ydist);
|
|
|
|
if (frame >= dist && frame < dist+4) {
|
|
int lock = (frame - dist) & 1;
|
|
lock = lock ? LOCKED : 0;
|
|
c = (c &~ LOCKED) | lock;
|
|
}
|
|
}
|
|
|
|
if (index(state, ds->visible, x, y) != c ||
|
|
index(state, ds->visible, x, y) == 0xFF ||
|
|
(x == tx && y == ty) ||
|
|
(ui->cur_visible && x == ui->cur_x && y == ui->cur_y)) {
|
|
draw_tile(fe, state, x, y, c,
|
|
(x == tx && y == ty ? angle : 0.0F),
|
|
(ui->cur_visible && x == ui->cur_x && y == ui->cur_y));
|
|
if ((x == tx && y == ty) ||
|
|
(ui->cur_visible && x == ui->cur_x && y == ui->cur_y))
|
|
index(state, ds->visible, x, y) = 0xFF;
|
|
else
|
|
index(state, ds->visible, x, y) = c;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Update the status bar.
|
|
*/
|
|
{
|
|
char statusbuf[256];
|
|
int i, n, a;
|
|
|
|
n = state->width * state->height;
|
|
for (i = a = 0; i < n; i++)
|
|
if (active[i])
|
|
a++;
|
|
|
|
sprintf(statusbuf, "%sActive: %d/%d",
|
|
(state->used_solve ? "Auto-solved. " :
|
|
state->completed ? "COMPLETED! " : ""), a, n);
|
|
|
|
status_bar(fe, statusbuf);
|
|
}
|
|
|
|
sfree(active);
|
|
}
|
|
|
|
static float game_anim_length(game_state *oldstate,
|
|
game_state *newstate, int dir)
|
|
{
|
|
int x, y, last_rotate_dir;
|
|
|
|
/*
|
|
* Don't animate an auto-solve move.
|
|
*/
|
|
if ((dir > 0 && newstate->just_used_solve) ||
|
|
(dir < 0 && oldstate->just_used_solve))
|
|
return 0.0F;
|
|
|
|
/*
|
|
* Don't animate if last_rotate_dir is zero.
|
|
*/
|
|
last_rotate_dir = dir==-1 ? oldstate->last_rotate_dir :
|
|
newstate->last_rotate_dir;
|
|
if (last_rotate_dir) {
|
|
|
|
/*
|
|
* If there's a tile which has been rotated, allow time to
|
|
* animate its rotation.
|
|
*/
|
|
for (x = 0; x < oldstate->width; x++)
|
|
for (y = 0; y < oldstate->height; y++)
|
|
if ((tile(oldstate, x, y) ^ tile(newstate, x, y)) & 0xF) {
|
|
return ROTATE_TIME;
|
|
}
|
|
|
|
}
|
|
|
|
return 0.0F;
|
|
}
|
|
|
|
static float game_flash_length(game_state *oldstate,
|
|
game_state *newstate, int dir)
|
|
{
|
|
/*
|
|
* If the game has just been completed, we display a completion
|
|
* flash.
|
|
*/
|
|
if (!oldstate->completed && newstate->completed &&
|
|
!oldstate->used_solve && !newstate->used_solve) {
|
|
int size;
|
|
size = 0;
|
|
if (size < newstate->cx+1)
|
|
size = newstate->cx+1;
|
|
if (size < newstate->cy+1)
|
|
size = newstate->cy+1;
|
|
if (size < newstate->width - newstate->cx)
|
|
size = newstate->width - newstate->cx;
|
|
if (size < newstate->height - newstate->cy)
|
|
size = newstate->height - newstate->cy;
|
|
return FLASH_FRAME * (size+4);
|
|
}
|
|
|
|
return 0.0F;
|
|
}
|
|
|
|
static int game_wants_statusbar(void)
|
|
{
|
|
return TRUE;
|
|
}
|
|
|
|
#ifdef COMBINED
|
|
#define thegame net
|
|
#endif
|
|
|
|
const struct game thegame = {
|
|
"Net", "games.net",
|
|
default_params,
|
|
game_fetch_preset,
|
|
decode_params,
|
|
encode_params,
|
|
free_params,
|
|
dup_params,
|
|
TRUE, game_configure, custom_params,
|
|
validate_params,
|
|
new_game_seed,
|
|
game_free_aux_info,
|
|
validate_seed,
|
|
new_game,
|
|
dup_game,
|
|
free_game,
|
|
TRUE, solve_game,
|
|
FALSE, game_text_format,
|
|
new_ui,
|
|
free_ui,
|
|
make_move,
|
|
game_size,
|
|
game_colours,
|
|
game_new_drawstate,
|
|
game_free_drawstate,
|
|
game_redraw,
|
|
game_anim_length,
|
|
game_flash_length,
|
|
game_wants_statusbar,
|
|
};
|