mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-21 16:05:44 -07:00
Files
1297 lines
34 KiB
C
1297 lines
34 KiB
C
/*
|
|
* twiddle.c: Puzzle involving rearranging a grid of squares by
|
|
* rotating subsquares. Adapted and generalised from a
|
|
* door-unlocking puzzle in Metroid Prime 2 (the one in the Main
|
|
* Gyro Chamber).
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <ctype.h>
|
|
#include <math.h>
|
|
|
|
#include "puzzles.h"
|
|
|
|
#define PREFERRED_TILE_SIZE 48
|
|
#define TILE_SIZE (ds->tilesize)
|
|
#define BORDER (TILE_SIZE / 2)
|
|
#define HIGHLIGHT_WIDTH (TILE_SIZE / 20)
|
|
#define COORD(x) ( (x) * TILE_SIZE + BORDER )
|
|
#define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 )
|
|
|
|
#define ANIM_PER_RADIUS_UNIT 0.13F
|
|
#define FLASH_FRAME 0.13F
|
|
|
|
enum {
|
|
COL_BACKGROUND,
|
|
COL_TEXT,
|
|
COL_HIGHLIGHT,
|
|
COL_HIGHLIGHT_GENTLE,
|
|
COL_LOWLIGHT,
|
|
COL_LOWLIGHT_GENTLE,
|
|
COL_HIGHCURSOR, COL_LOWCURSOR,
|
|
NCOLOURS
|
|
};
|
|
|
|
struct game_params {
|
|
int w, h, n;
|
|
int rowsonly;
|
|
int orientable;
|
|
int movetarget;
|
|
};
|
|
|
|
struct game_state {
|
|
int w, h, n;
|
|
int orientable;
|
|
int *grid;
|
|
int completed;
|
|
int used_solve; /* used to suppress completion flash */
|
|
int movecount, movetarget;
|
|
int lastx, lasty, lastr; /* coordinates of last rotation */
|
|
};
|
|
|
|
static game_params *default_params(void)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->w = ret->h = 3;
|
|
ret->n = 2;
|
|
ret->rowsonly = ret->orientable = FALSE;
|
|
ret->movetarget = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static void free_params(game_params *params)
|
|
{
|
|
sfree(params);
|
|
}
|
|
|
|
static game_params *dup_params(game_params *params)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
*ret = *params; /* structure copy */
|
|
return ret;
|
|
}
|
|
|
|
static int game_fetch_preset(int i, char **name, game_params **params)
|
|
{
|
|
static struct {
|
|
char *title;
|
|
game_params params;
|
|
} presets[] = {
|
|
{ "3x3 rows only", { 3, 3, 2, TRUE, FALSE } },
|
|
{ "3x3 normal", { 3, 3, 2, FALSE, FALSE } },
|
|
{ "3x3 orientable", { 3, 3, 2, FALSE, TRUE } },
|
|
{ "4x4 normal", { 4, 4, 2, FALSE } },
|
|
{ "4x4 orientable", { 4, 4, 2, FALSE, TRUE } },
|
|
{ "4x4 radius 3", { 4, 4, 3, FALSE } },
|
|
{ "5x5 radius 3", { 5, 5, 3, FALSE } },
|
|
{ "6x6 radius 4", { 6, 6, 4, FALSE } },
|
|
};
|
|
|
|
if (i < 0 || i >= lenof(presets))
|
|
return FALSE;
|
|
|
|
*name = dupstr(presets[i].title);
|
|
*params = dup_params(&presets[i].params);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static void decode_params(game_params *ret, char const *string)
|
|
{
|
|
ret->w = ret->h = atoi(string);
|
|
ret->n = 2;
|
|
ret->rowsonly = ret->orientable = FALSE;
|
|
ret->movetarget = 0;
|
|
while (*string && isdigit((unsigned char)*string)) string++;
|
|
if (*string == 'x') {
|
|
string++;
|
|
ret->h = atoi(string);
|
|
while (*string && isdigit((unsigned char)*string)) string++;
|
|
}
|
|
if (*string == 'n') {
|
|
string++;
|
|
ret->n = atoi(string);
|
|
while (*string && isdigit((unsigned char)*string)) string++;
|
|
}
|
|
while (*string) {
|
|
if (*string == 'r') {
|
|
ret->rowsonly = TRUE;
|
|
} else if (*string == 'o') {
|
|
ret->orientable = TRUE;
|
|
} else if (*string == 'm') {
|
|
string++;
|
|
ret->movetarget = atoi(string);
|
|
while (string[1] && isdigit((unsigned char)string[1])) string++;
|
|
}
|
|
string++;
|
|
}
|
|
}
|
|
|
|
static char *encode_params(game_params *params, int full)
|
|
{
|
|
char buf[256];
|
|
sprintf(buf, "%dx%dn%d%s%s", params->w, params->h, params->n,
|
|
params->rowsonly ? "r" : "",
|
|
params->orientable ? "o" : "");
|
|
/* Shuffle limit is part of the limited parameters, because we have to
|
|
* supply the target move count. */
|
|
if (params->movetarget)
|
|
sprintf(buf + strlen(buf), "m%d", params->movetarget);
|
|
return dupstr(buf);
|
|
}
|
|
|
|
static config_item *game_configure(game_params *params)
|
|
{
|
|
config_item *ret;
|
|
char buf[80];
|
|
|
|
ret = snewn(7, config_item);
|
|
|
|
ret[0].name = "Width";
|
|
ret[0].type = C_STRING;
|
|
sprintf(buf, "%d", params->w);
|
|
ret[0].sval = dupstr(buf);
|
|
ret[0].ival = 0;
|
|
|
|
ret[1].name = "Height";
|
|
ret[1].type = C_STRING;
|
|
sprintf(buf, "%d", params->h);
|
|
ret[1].sval = dupstr(buf);
|
|
ret[1].ival = 0;
|
|
|
|
ret[2].name = "Rotation radius";
|
|
ret[2].type = C_STRING;
|
|
sprintf(buf, "%d", params->n);
|
|
ret[2].sval = dupstr(buf);
|
|
ret[2].ival = 0;
|
|
|
|
ret[3].name = "One number per row";
|
|
ret[3].type = C_BOOLEAN;
|
|
ret[3].sval = NULL;
|
|
ret[3].ival = params->rowsonly;
|
|
|
|
ret[4].name = "Orientation matters";
|
|
ret[4].type = C_BOOLEAN;
|
|
ret[4].sval = NULL;
|
|
ret[4].ival = params->orientable;
|
|
|
|
ret[5].name = "Number of shuffling moves";
|
|
ret[5].type = C_STRING;
|
|
sprintf(buf, "%d", params->movetarget);
|
|
ret[5].sval = dupstr(buf);
|
|
ret[5].ival = 0;
|
|
|
|
ret[6].name = NULL;
|
|
ret[6].type = C_END;
|
|
ret[6].sval = NULL;
|
|
ret[6].ival = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static game_params *custom_params(config_item *cfg)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->w = atoi(cfg[0].sval);
|
|
ret->h = atoi(cfg[1].sval);
|
|
ret->n = atoi(cfg[2].sval);
|
|
ret->rowsonly = cfg[3].ival;
|
|
ret->orientable = cfg[4].ival;
|
|
ret->movetarget = atoi(cfg[5].sval);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static char *validate_params(game_params *params, int full)
|
|
{
|
|
if (params->n < 2)
|
|
return "Rotation radius must be at least two";
|
|
if (params->w < params->n)
|
|
return "Width must be at least the rotation radius";
|
|
if (params->h < params->n)
|
|
return "Height must be at least the rotation radius";
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* This function actually performs a rotation on a grid. The `x'
|
|
* and `y' coordinates passed in are the coordinates of the _top
|
|
* left corner_ of the rotated region. (Using the centre would have
|
|
* involved half-integers and been annoyingly fiddly. Clicking in
|
|
* the centre is good for a user interface, but too inconvenient to
|
|
* use internally.)
|
|
*/
|
|
static void do_rotate(int *grid, int w, int h, int n, int orientable,
|
|
int x, int y, int dir)
|
|
{
|
|
int i, j;
|
|
|
|
assert(x >= 0 && x+n <= w);
|
|
assert(y >= 0 && y+n <= h);
|
|
dir &= 3;
|
|
if (dir == 0)
|
|
return; /* nothing to do */
|
|
|
|
grid += y*w+x; /* translate region to top corner */
|
|
|
|
/*
|
|
* If we were leaving the result of the rotation in a separate
|
|
* grid, the simple thing to do would be to loop over each
|
|
* square within the rotated region and assign it from its
|
|
* source square. However, to do it in place without taking
|
|
* O(n^2) memory, we need to be marginally more clever. What
|
|
* I'm going to do is loop over about one _quarter_ of the
|
|
* rotated region and permute each element within that quarter
|
|
* with its rotational coset.
|
|
*
|
|
* The size of the region I need to loop over is (n+1)/2 by
|
|
* n/2, which is an obvious exact quarter for even n and is a
|
|
* rectangle for odd n. (For odd n, this technique leaves out
|
|
* one element of the square, which is of course the central
|
|
* one that never moves anyway.)
|
|
*/
|
|
for (i = 0; i < (n+1)/2; i++) {
|
|
for (j = 0; j < n/2; j++) {
|
|
int k;
|
|
int g[4];
|
|
int p[4];
|
|
|
|
p[0] = j*w+i;
|
|
p[1] = i*w+(n-j-1);
|
|
p[2] = (n-j-1)*w+(n-i-1);
|
|
p[3] = (n-i-1)*w+j;
|
|
|
|
for (k = 0; k < 4; k++)
|
|
g[k] = grid[p[k]];
|
|
|
|
for (k = 0; k < 4; k++) {
|
|
int v = g[(k+dir) & 3];
|
|
if (orientable)
|
|
v ^= ((v+dir) ^ v) & 3; /* alter orientation */
|
|
grid[p[k]] = v;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Don't forget the orientation on the centre square, if n is
|
|
* odd.
|
|
*/
|
|
if (orientable && (n & 1)) {
|
|
int v = grid[n/2*(w+1)];
|
|
v ^= ((v+dir) ^ v) & 3; /* alter orientation */
|
|
grid[n/2*(w+1)] = v;
|
|
}
|
|
}
|
|
|
|
static int grid_complete(int *grid, int wh, int orientable)
|
|
{
|
|
int ok = TRUE;
|
|
int i;
|
|
for (i = 1; i < wh; i++)
|
|
if (grid[i] < grid[i-1])
|
|
ok = FALSE;
|
|
if (orientable) {
|
|
for (i = 0; i < wh; i++)
|
|
if (grid[i] & 3)
|
|
ok = FALSE;
|
|
}
|
|
return ok;
|
|
}
|
|
|
|
static char *new_game_desc(game_params *params, random_state *rs,
|
|
char **aux, int interactive)
|
|
{
|
|
int *grid;
|
|
int w = params->w, h = params->h, n = params->n, wh = w*h;
|
|
int i;
|
|
char *ret;
|
|
int retlen;
|
|
int total_moves;
|
|
|
|
/*
|
|
* Set up a solved grid.
|
|
*/
|
|
grid = snewn(wh, int);
|
|
for (i = 0; i < wh; i++)
|
|
grid[i] = ((params->rowsonly ? i/w : i) + 1) * 4;
|
|
|
|
/*
|
|
* Shuffle it. This game is complex enough that I don't feel up
|
|
* to analysing its full symmetry properties (particularly at
|
|
* n=4 and above!), so I'm going to do it the pedestrian way
|
|
* and simply shuffle the grid by making a long sequence of
|
|
* randomly chosen moves.
|
|
*/
|
|
total_moves = params->movetarget;
|
|
if (!total_moves)
|
|
/* Add a random move to avoid parity issues. */
|
|
total_moves = w*h*n*n*2 + random_upto(rs, 2);
|
|
|
|
do {
|
|
int *prevmoves;
|
|
int rw, rh; /* w/h of rotation centre space */
|
|
|
|
rw = w - n + 1;
|
|
rh = h - n + 1;
|
|
prevmoves = snewn(rw * rh, int);
|
|
for (i = 0; i < rw * rh; i++)
|
|
prevmoves[i] = 0;
|
|
|
|
for (i = 0; i < total_moves; i++) {
|
|
int x, y, r, oldtotal, newtotal, dx, dy;
|
|
|
|
do {
|
|
x = random_upto(rs, w - n + 1);
|
|
y = random_upto(rs, h - n + 1);
|
|
r = 2 * random_upto(rs, 2) - 1;
|
|
|
|
/*
|
|
* See if any previous rotations has happened at
|
|
* this point which nothing has overlapped since.
|
|
* If so, ensure we haven't either undone a
|
|
* previous move or repeated one so many times that
|
|
* it turns into fewer moves in the inverse
|
|
* direction (i.e. three identical rotations).
|
|
*/
|
|
oldtotal = prevmoves[y*rw+x];
|
|
newtotal = oldtotal + r;
|
|
|
|
/*
|
|
* Special case here for w==h==n, in which case
|
|
* there is actually no way to _avoid_ all moves
|
|
* repeating or undoing previous ones.
|
|
*/
|
|
} while ((w != n || h != n) &&
|
|
(abs(newtotal) < abs(oldtotal) || abs(newtotal) > 2));
|
|
|
|
do_rotate(grid, w, h, n, params->orientable, x, y, r);
|
|
|
|
/*
|
|
* Log the rotation we've just performed at this point,
|
|
* for inversion detection in the next move.
|
|
*
|
|
* Also zero a section of the prevmoves array, because
|
|
* any rotation area which _overlaps_ this one is now
|
|
* entirely safe to perform further moves in.
|
|
*
|
|
* Two rotation areas overlap if their top left
|
|
* coordinates differ by strictly less than n in both
|
|
* directions
|
|
*/
|
|
prevmoves[y*rw+x] += r;
|
|
for (dy = -n+1; dy <= n-1; dy++) {
|
|
if (y + dy < 0 || y + dy >= rh)
|
|
continue;
|
|
for (dx = -n+1; dx <= n-1; dx++) {
|
|
if (x + dx < 0 || x + dx >= rw)
|
|
continue;
|
|
if (dx == 0 && dy == 0)
|
|
continue;
|
|
prevmoves[(y+dy)*rw+(x+dx)] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
sfree(prevmoves);
|
|
|
|
} while (grid_complete(grid, wh, params->orientable));
|
|
|
|
/*
|
|
* Now construct the game description, by describing the grid
|
|
* as a simple sequence of integers. They're comma-separated,
|
|
* unless the puzzle is orientable in which case they're
|
|
* separated by orientation letters `u', `d', `l' and `r'.
|
|
*/
|
|
ret = NULL;
|
|
retlen = 0;
|
|
for (i = 0; i < wh; i++) {
|
|
char buf[80];
|
|
int k;
|
|
|
|
k = sprintf(buf, "%d%c", grid[i] / 4,
|
|
(char)(params->orientable ? "uldr"[grid[i] & 3] : ','));
|
|
|
|
ret = sresize(ret, retlen + k + 1, char);
|
|
strcpy(ret + retlen, buf);
|
|
retlen += k;
|
|
}
|
|
if (!params->orientable)
|
|
ret[retlen-1] = '\0'; /* delete last comma */
|
|
|
|
sfree(grid);
|
|
return ret;
|
|
}
|
|
|
|
static char *validate_desc(game_params *params, char *desc)
|
|
{
|
|
char *p, *err;
|
|
int w = params->w, h = params->h, wh = w*h;
|
|
int i;
|
|
|
|
p = desc;
|
|
err = NULL;
|
|
|
|
for (i = 0; i < wh; i++) {
|
|
if (*p < '0' || *p > '9')
|
|
return "Not enough numbers in string";
|
|
while (*p >= '0' && *p <= '9')
|
|
p++;
|
|
if (!params->orientable && i < wh-1) {
|
|
if (*p != ',')
|
|
return "Expected comma after number";
|
|
} else if (params->orientable && i < wh) {
|
|
if (*p != 'l' && *p != 'r' && *p != 'u' && *p != 'd')
|
|
return "Expected orientation letter after number";
|
|
} else if (i == wh-1 && *p) {
|
|
return "Excess junk at end of string";
|
|
}
|
|
|
|
if (*p) p++; /* eat comma */
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static game_state *new_game(midend *me, game_params *params, char *desc)
|
|
{
|
|
game_state *state = snew(game_state);
|
|
int w = params->w, h = params->h, n = params->n, wh = w*h;
|
|
int i;
|
|
char *p;
|
|
|
|
state->w = w;
|
|
state->h = h;
|
|
state->n = n;
|
|
state->orientable = params->orientable;
|
|
state->completed = 0;
|
|
state->used_solve = FALSE;
|
|
state->movecount = 0;
|
|
state->movetarget = params->movetarget;
|
|
state->lastx = state->lasty = state->lastr = -1;
|
|
|
|
state->grid = snewn(wh, int);
|
|
|
|
p = desc;
|
|
|
|
for (i = 0; i < wh; i++) {
|
|
state->grid[i] = 4 * atoi(p);
|
|
while (*p >= '0' && *p <= '9')
|
|
p++;
|
|
if (*p) {
|
|
if (params->orientable) {
|
|
switch (*p) {
|
|
case 'l': state->grid[i] |= 1; break;
|
|
case 'd': state->grid[i] |= 2; break;
|
|
case 'r': state->grid[i] |= 3; break;
|
|
}
|
|
}
|
|
p++;
|
|
}
|
|
}
|
|
|
|
return state;
|
|
}
|
|
|
|
static game_state *dup_game(game_state *state)
|
|
{
|
|
game_state *ret = snew(game_state);
|
|
|
|
ret->w = state->w;
|
|
ret->h = state->h;
|
|
ret->n = state->n;
|
|
ret->orientable = state->orientable;
|
|
ret->completed = state->completed;
|
|
ret->movecount = state->movecount;
|
|
ret->movetarget = state->movetarget;
|
|
ret->lastx = state->lastx;
|
|
ret->lasty = state->lasty;
|
|
ret->lastr = state->lastr;
|
|
ret->used_solve = state->used_solve;
|
|
|
|
ret->grid = snewn(ret->w * ret->h, int);
|
|
memcpy(ret->grid, state->grid, ret->w * ret->h * sizeof(int));
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void free_game(game_state *state)
|
|
{
|
|
sfree(state->grid);
|
|
sfree(state);
|
|
}
|
|
|
|
static int compare_int(const void *av, const void *bv)
|
|
{
|
|
const int *a = (const int *)av;
|
|
const int *b = (const int *)bv;
|
|
if (*a < *b)
|
|
return -1;
|
|
else if (*a > *b)
|
|
return +1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static char *solve_game(game_state *state, game_state *currstate,
|
|
char *aux, char **error)
|
|
{
|
|
return dupstr("S");
|
|
}
|
|
|
|
static int game_can_format_as_text_now(game_params *params)
|
|
{
|
|
return TRUE;
|
|
}
|
|
|
|
static char *game_text_format(game_state *state)
|
|
{
|
|
char *ret, *p, buf[80];
|
|
int i, x, y, col, o, maxlen;
|
|
|
|
/*
|
|
* First work out how many characters we need to display each
|
|
* number. We're pretty flexible on grid contents here, so we
|
|
* have to scan the entire grid.
|
|
*/
|
|
col = 0;
|
|
for (i = 0; i < state->w * state->h; i++) {
|
|
x = sprintf(buf, "%d", state->grid[i] / 4);
|
|
if (col < x) col = x;
|
|
}
|
|
o = (state->orientable ? 1 : 0);
|
|
|
|
/*
|
|
* Now we know the exact total size of the grid we're going to
|
|
* produce: it's got h rows, each containing w lots of col+o,
|
|
* w-1 spaces and a trailing newline.
|
|
*/
|
|
maxlen = state->h * state->w * (col+o+1);
|
|
|
|
ret = snewn(maxlen+1, char);
|
|
p = ret;
|
|
|
|
for (y = 0; y < state->h; y++) {
|
|
for (x = 0; x < state->w; x++) {
|
|
int v = state->grid[state->w*y+x];
|
|
sprintf(buf, "%*d", col, v/4);
|
|
memcpy(p, buf, col);
|
|
p += col;
|
|
if (o)
|
|
*p++ = "^<v>"[v & 3];
|
|
if (x+1 == state->w)
|
|
*p++ = '\n';
|
|
else
|
|
*p++ = ' ';
|
|
}
|
|
}
|
|
|
|
assert(p - ret == maxlen);
|
|
*p = '\0';
|
|
return ret;
|
|
}
|
|
|
|
struct game_ui {
|
|
int cur_x, cur_y;
|
|
int cur_visible;
|
|
};
|
|
|
|
static game_ui *new_ui(game_state *state)
|
|
{
|
|
game_ui *ui = snew(game_ui);
|
|
|
|
ui->cur_x = 0;
|
|
ui->cur_y = 0;
|
|
ui->cur_visible = FALSE;
|
|
|
|
return ui;
|
|
}
|
|
|
|
static void free_ui(game_ui *ui)
|
|
{
|
|
sfree(ui);
|
|
}
|
|
|
|
static char *encode_ui(game_ui *ui)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static void decode_ui(game_ui *ui, char *encoding)
|
|
{
|
|
}
|
|
|
|
static void game_changed_state(game_ui *ui, game_state *oldstate,
|
|
game_state *newstate)
|
|
{
|
|
}
|
|
|
|
struct game_drawstate {
|
|
int started;
|
|
int w, h, bgcolour;
|
|
int *grid;
|
|
int tilesize;
|
|
int cur_x, cur_y;
|
|
};
|
|
|
|
static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
|
|
int x, int y, int button)
|
|
{
|
|
int w = state->w, h = state->h, n = state->n /* , wh = w*h */;
|
|
char buf[80];
|
|
int dir;
|
|
|
|
button = button & (~MOD_MASK | MOD_NUM_KEYPAD);
|
|
|
|
if (IS_CURSOR_MOVE(button)) {
|
|
if (button == CURSOR_LEFT && ui->cur_x > 0)
|
|
ui->cur_x--;
|
|
if (button == CURSOR_RIGHT && (ui->cur_x+n) < (w))
|
|
ui->cur_x++;
|
|
if (button == CURSOR_UP && ui->cur_y > 0)
|
|
ui->cur_y--;
|
|
if (button == CURSOR_DOWN && (ui->cur_y+n) < (h))
|
|
ui->cur_y++;
|
|
ui->cur_visible = 1;
|
|
return "";
|
|
}
|
|
|
|
if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
|
|
/*
|
|
* Determine the coordinates of the click. We offset by n-1
|
|
* half-blocks so that the user must click at the centre of
|
|
* a rotation region rather than at the corner.
|
|
*/
|
|
x -= (n-1) * TILE_SIZE / 2;
|
|
y -= (n-1) * TILE_SIZE / 2;
|
|
x = FROMCOORD(x);
|
|
y = FROMCOORD(y);
|
|
dir = (button == LEFT_BUTTON ? 1 : -1);
|
|
if (x < 0 || x > w-n || y < 0 || y > h-n)
|
|
return NULL;
|
|
ui->cur_visible = 0;
|
|
} else if (IS_CURSOR_SELECT(button)) {
|
|
if (ui->cur_visible) {
|
|
x = ui->cur_x;
|
|
y = ui->cur_y;
|
|
dir = (button == CURSOR_SELECT2) ? -1 : +1;
|
|
} else {
|
|
ui->cur_visible = 1;
|
|
return "";
|
|
}
|
|
} else if (button == 'a' || button == 'A' || button==MOD_NUM_KEYPAD+'7') {
|
|
x = y = 0;
|
|
dir = (button == 'A' ? -1 : +1);
|
|
} else if (button == 'b' || button == 'B' || button==MOD_NUM_KEYPAD+'9') {
|
|
x = w-n;
|
|
y = 0;
|
|
dir = (button == 'B' ? -1 : +1);
|
|
} else if (button == 'c' || button == 'C' || button==MOD_NUM_KEYPAD+'1') {
|
|
x = 0;
|
|
y = h-n;
|
|
dir = (button == 'C' ? -1 : +1);
|
|
} else if (button == 'd' || button == 'D' || button==MOD_NUM_KEYPAD+'3') {
|
|
x = w-n;
|
|
y = h-n;
|
|
dir = (button == 'D' ? -1 : +1);
|
|
} else if (button==MOD_NUM_KEYPAD+'8' && (w-n) % 2 == 0) {
|
|
x = (w-n) / 2;
|
|
y = 0;
|
|
dir = +1;
|
|
} else if (button==MOD_NUM_KEYPAD+'2' && (w-n) % 2 == 0) {
|
|
x = (w-n) / 2;
|
|
y = h-n;
|
|
dir = +1;
|
|
} else if (button==MOD_NUM_KEYPAD+'4' && (h-n) % 2 == 0) {
|
|
x = 0;
|
|
y = (h-n) / 2;
|
|
dir = +1;
|
|
} else if (button==MOD_NUM_KEYPAD+'6' && (h-n) % 2 == 0) {
|
|
x = w-n;
|
|
y = (h-n) / 2;
|
|
dir = +1;
|
|
} else if (button==MOD_NUM_KEYPAD+'5' && (w-n) % 2 == 0 && (h-n) % 2 == 0){
|
|
x = (w-n) / 2;
|
|
y = (h-n) / 2;
|
|
dir = +1;
|
|
} else {
|
|
return NULL; /* no move to be made */
|
|
}
|
|
|
|
/*
|
|
* If we reach here, we have a valid move.
|
|
*/
|
|
sprintf(buf, "M%d,%d,%d", x, y, dir);
|
|
return dupstr(buf);
|
|
}
|
|
|
|
static game_state *execute_move(game_state *from, char *move)
|
|
{
|
|
game_state *ret;
|
|
int w = from->w, h = from->h, n = from->n, wh = w*h;
|
|
int x, y, dir;
|
|
|
|
if (!strcmp(move, "S")) {
|
|
int i;
|
|
ret = dup_game(from);
|
|
|
|
/*
|
|
* Simply replace the grid with a solved one. For this game,
|
|
* this isn't a useful operation for actually telling the user
|
|
* what they should have done, but it is useful for
|
|
* conveniently being able to get hold of a clean state from
|
|
* which to practise manoeuvres.
|
|
*/
|
|
qsort(ret->grid, ret->w*ret->h, sizeof(int), compare_int);
|
|
for (i = 0; i < ret->w*ret->h; i++)
|
|
ret->grid[i] &= ~3;
|
|
ret->used_solve = TRUE;
|
|
ret->completed = ret->movecount = 1;
|
|
|
|
return ret;
|
|
}
|
|
|
|
if (move[0] != 'M' ||
|
|
sscanf(move+1, "%d,%d,%d", &x, &y, &dir) != 3 ||
|
|
x < 0 || y < 0 || x > from->w - n || y > from->h - n)
|
|
return NULL; /* can't parse this move string */
|
|
|
|
ret = dup_game(from);
|
|
ret->movecount++;
|
|
do_rotate(ret->grid, w, h, n, ret->orientable, x, y, dir);
|
|
ret->lastx = x;
|
|
ret->lasty = y;
|
|
ret->lastr = dir;
|
|
|
|
/*
|
|
* See if the game has been completed. To do this we simply
|
|
* test that the grid contents are in increasing order.
|
|
*/
|
|
if (!ret->completed && grid_complete(ret->grid, wh, ret->orientable))
|
|
ret->completed = ret->movecount;
|
|
return ret;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Drawing routines.
|
|
*/
|
|
|
|
static void game_compute_size(game_params *params, int tilesize,
|
|
int *x, int *y)
|
|
{
|
|
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
|
|
struct { int tilesize; } ads, *ds = &ads;
|
|
ads.tilesize = tilesize;
|
|
|
|
*x = TILE_SIZE * params->w + 2 * BORDER;
|
|
*y = TILE_SIZE * params->h + 2 * BORDER;
|
|
}
|
|
|
|
static void game_set_size(drawing *dr, game_drawstate *ds,
|
|
game_params *params, int tilesize)
|
|
{
|
|
ds->tilesize = tilesize;
|
|
}
|
|
|
|
static float *game_colours(frontend *fe, int *ncolours)
|
|
{
|
|
float *ret = snewn(3 * NCOLOURS, float);
|
|
int i;
|
|
|
|
game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT);
|
|
|
|
/* cursor is light-background with a red tinge. */
|
|
ret[COL_HIGHCURSOR * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 1.0F;
|
|
ret[COL_HIGHCURSOR * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.5F;
|
|
ret[COL_HIGHCURSOR * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 0.5F;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
ret[COL_HIGHLIGHT_GENTLE * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 1.1F;
|
|
ret[COL_LOWLIGHT_GENTLE * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 0.9F;
|
|
ret[COL_TEXT * 3 + i] = 0.0;
|
|
ret[COL_LOWCURSOR * 3 + i] = ret[COL_HIGHCURSOR * 3 + i] * 0.6F;
|
|
}
|
|
|
|
*ncolours = NCOLOURS;
|
|
return ret;
|
|
}
|
|
|
|
static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
|
|
{
|
|
struct game_drawstate *ds = snew(struct game_drawstate);
|
|
int i;
|
|
|
|
ds->started = FALSE;
|
|
ds->w = state->w;
|
|
ds->h = state->h;
|
|
ds->bgcolour = COL_BACKGROUND;
|
|
ds->grid = snewn(ds->w*ds->h, int);
|
|
ds->tilesize = 0; /* haven't decided yet */
|
|
for (i = 0; i < ds->w*ds->h; i++)
|
|
ds->grid[i] = -1;
|
|
ds->cur_x = ds->cur_y = -state->n;
|
|
|
|
return ds;
|
|
}
|
|
|
|
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
|
|
{
|
|
sfree(ds->grid);
|
|
sfree(ds);
|
|
}
|
|
|
|
struct rotation {
|
|
int cx, cy, cw, ch; /* clip region */
|
|
int ox, oy; /* rotation origin */
|
|
float c, s; /* cos and sin of rotation angle */
|
|
int lc, rc, tc, bc; /* colours of tile edges */
|
|
};
|
|
|
|
static void rotate(int *xy, struct rotation *rot)
|
|
{
|
|
if (rot) {
|
|
float xf = (float)xy[0] - rot->ox, yf = (float)xy[1] - rot->oy;
|
|
float xf2, yf2;
|
|
|
|
xf2 = rot->c * xf + rot->s * yf;
|
|
yf2 = - rot->s * xf + rot->c * yf;
|
|
|
|
xy[0] = (int)(xf2 + rot->ox + 0.5); /* round to nearest */
|
|
xy[1] = (int)(yf2 + rot->oy + 0.5); /* round to nearest */
|
|
}
|
|
}
|
|
|
|
#define CUR_TOP 1
|
|
#define CUR_RIGHT 2
|
|
#define CUR_BOTTOM 4
|
|
#define CUR_LEFT 8
|
|
|
|
static void draw_tile(drawing *dr, game_drawstate *ds, game_state *state,
|
|
int x, int y, int tile, int flash_colour,
|
|
struct rotation *rot, unsigned cedges)
|
|
{
|
|
int coords[8];
|
|
char str[40];
|
|
|
|
/*
|
|
* If we've been passed a rotation region but we're drawing a
|
|
* tile which is outside it, we must draw it normally. This can
|
|
* occur if we're cleaning up after a completion flash while a
|
|
* new move is also being made.
|
|
*/
|
|
if (rot && (x < rot->cx || y < rot->cy ||
|
|
x >= rot->cx+rot->cw || y >= rot->cy+rot->ch))
|
|
rot = NULL;
|
|
|
|
if (rot)
|
|
clip(dr, rot->cx, rot->cy, rot->cw, rot->ch);
|
|
|
|
/*
|
|
* We must draw each side of the tile's highlight separately,
|
|
* because in some cases (during rotation) they will all need
|
|
* to be different colours.
|
|
*/
|
|
|
|
/* The centre point is common to all sides. */
|
|
coords[4] = x + TILE_SIZE / 2;
|
|
coords[5] = y + TILE_SIZE / 2;
|
|
rotate(coords+4, rot);
|
|
|
|
/* Right side. */
|
|
coords[0] = x + TILE_SIZE - 1;
|
|
coords[1] = y + TILE_SIZE - 1;
|
|
rotate(coords+0, rot);
|
|
coords[2] = x + TILE_SIZE - 1;
|
|
coords[3] = y;
|
|
rotate(coords+2, rot);
|
|
draw_polygon(dr, coords, 3, rot ? rot->rc : COL_LOWLIGHT,
|
|
rot ? rot->rc : (cedges & CUR_RIGHT) ? COL_LOWCURSOR : COL_LOWLIGHT);
|
|
|
|
/* Bottom side. */
|
|
coords[2] = x;
|
|
coords[3] = y + TILE_SIZE - 1;
|
|
rotate(coords+2, rot);
|
|
draw_polygon(dr, coords, 3, rot ? rot->bc : COL_LOWLIGHT,
|
|
rot ? rot->bc : (cedges & CUR_BOTTOM) ? COL_LOWCURSOR : COL_LOWLIGHT);
|
|
|
|
/* Left side. */
|
|
coords[0] = x;
|
|
coords[1] = y;
|
|
rotate(coords+0, rot);
|
|
draw_polygon(dr, coords, 3, rot ? rot->lc : COL_HIGHLIGHT,
|
|
rot ? rot->lc : (cedges & CUR_LEFT) ? COL_HIGHCURSOR : COL_HIGHLIGHT);
|
|
|
|
/* Top side. */
|
|
coords[2] = x + TILE_SIZE - 1;
|
|
coords[3] = y;
|
|
rotate(coords+2, rot);
|
|
draw_polygon(dr, coords, 3, rot ? rot->tc : COL_HIGHLIGHT,
|
|
rot ? rot->tc : (cedges & CUR_TOP) ? COL_HIGHCURSOR : COL_HIGHLIGHT);
|
|
|
|
/*
|
|
* Now the main blank area in the centre of the tile.
|
|
*/
|
|
if (rot) {
|
|
coords[0] = x + HIGHLIGHT_WIDTH;
|
|
coords[1] = y + HIGHLIGHT_WIDTH;
|
|
rotate(coords+0, rot);
|
|
coords[2] = x + HIGHLIGHT_WIDTH;
|
|
coords[3] = y + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
|
|
rotate(coords+2, rot);
|
|
coords[4] = x + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
|
|
coords[5] = y + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
|
|
rotate(coords+4, rot);
|
|
coords[6] = x + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
|
|
coords[7] = y + HIGHLIGHT_WIDTH;
|
|
rotate(coords+6, rot);
|
|
draw_polygon(dr, coords, 4, flash_colour, flash_colour);
|
|
} else {
|
|
draw_rect(dr, x + HIGHLIGHT_WIDTH, y + HIGHLIGHT_WIDTH,
|
|
TILE_SIZE - 2*HIGHLIGHT_WIDTH, TILE_SIZE - 2*HIGHLIGHT_WIDTH,
|
|
flash_colour);
|
|
}
|
|
|
|
/*
|
|
* Next, the triangles for orientation.
|
|
*/
|
|
if (state->orientable) {
|
|
int xdx, xdy, ydx, ydy;
|
|
int cx, cy, displ, displ2;
|
|
switch (tile & 3) {
|
|
case 0:
|
|
xdx = 1, xdy = 0;
|
|
ydx = 0, ydy = 1;
|
|
break;
|
|
case 1:
|
|
xdx = 0, xdy = -1;
|
|
ydx = 1, ydy = 0;
|
|
break;
|
|
case 2:
|
|
xdx = -1, xdy = 0;
|
|
ydx = 0, ydy = -1;
|
|
break;
|
|
default /* case 3 */:
|
|
xdx = 0, xdy = 1;
|
|
ydx = -1, ydy = 0;
|
|
break;
|
|
}
|
|
|
|
cx = x + TILE_SIZE / 2;
|
|
cy = y + TILE_SIZE / 2;
|
|
displ = TILE_SIZE / 2 - HIGHLIGHT_WIDTH - 2;
|
|
displ2 = TILE_SIZE / 3 - HIGHLIGHT_WIDTH;
|
|
|
|
coords[0] = cx - displ * xdx + displ2 * ydx;
|
|
coords[1] = cy - displ * xdy + displ2 * ydy;
|
|
rotate(coords+0, rot);
|
|
coords[2] = cx + displ * xdx + displ2 * ydx;
|
|
coords[3] = cy + displ * xdy + displ2 * ydy;
|
|
rotate(coords+2, rot);
|
|
coords[4] = cx - displ * ydx;
|
|
coords[5] = cy - displ * ydy;
|
|
rotate(coords+4, rot);
|
|
draw_polygon(dr, coords, 3, COL_LOWLIGHT_GENTLE, COL_LOWLIGHT_GENTLE);
|
|
}
|
|
|
|
coords[0] = x + TILE_SIZE/2;
|
|
coords[1] = y + TILE_SIZE/2;
|
|
rotate(coords+0, rot);
|
|
sprintf(str, "%d", tile / 4);
|
|
draw_text(dr, coords[0], coords[1],
|
|
FONT_VARIABLE, TILE_SIZE/3, ALIGN_VCENTRE | ALIGN_HCENTRE,
|
|
COL_TEXT, str);
|
|
|
|
if (rot)
|
|
unclip(dr);
|
|
|
|
draw_update(dr, x, y, TILE_SIZE, TILE_SIZE);
|
|
}
|
|
|
|
static int highlight_colour(float angle)
|
|
{
|
|
int colours[32] = {
|
|
COL_LOWLIGHT,
|
|
COL_LOWLIGHT_GENTLE,
|
|
COL_LOWLIGHT_GENTLE,
|
|
COL_LOWLIGHT_GENTLE,
|
|
COL_HIGHLIGHT_GENTLE,
|
|
COL_HIGHLIGHT_GENTLE,
|
|
COL_HIGHLIGHT_GENTLE,
|
|
COL_HIGHLIGHT,
|
|
COL_HIGHLIGHT,
|
|
COL_HIGHLIGHT,
|
|
COL_HIGHLIGHT,
|
|
COL_HIGHLIGHT,
|
|
COL_HIGHLIGHT,
|
|
COL_HIGHLIGHT,
|
|
COL_HIGHLIGHT,
|
|
COL_HIGHLIGHT,
|
|
COL_HIGHLIGHT,
|
|
COL_HIGHLIGHT_GENTLE,
|
|
COL_HIGHLIGHT_GENTLE,
|
|
COL_HIGHLIGHT_GENTLE,
|
|
COL_LOWLIGHT_GENTLE,
|
|
COL_LOWLIGHT_GENTLE,
|
|
COL_LOWLIGHT_GENTLE,
|
|
COL_LOWLIGHT,
|
|
COL_LOWLIGHT,
|
|
COL_LOWLIGHT,
|
|
COL_LOWLIGHT,
|
|
COL_LOWLIGHT,
|
|
COL_LOWLIGHT,
|
|
COL_LOWLIGHT,
|
|
COL_LOWLIGHT,
|
|
COL_LOWLIGHT,
|
|
};
|
|
|
|
return colours[(int)((angle + 2*PI) / (PI/16)) & 31];
|
|
}
|
|
|
|
static float game_anim_length(game_state *oldstate, game_state *newstate,
|
|
int dir, game_ui *ui)
|
|
{
|
|
return (float)(ANIM_PER_RADIUS_UNIT * sqrt(newstate->n-1));
|
|
}
|
|
|
|
static float game_flash_length(game_state *oldstate, game_state *newstate,
|
|
int dir, game_ui *ui)
|
|
{
|
|
if (!oldstate->completed && newstate->completed &&
|
|
!oldstate->used_solve && !newstate->used_solve)
|
|
return 2 * FLASH_FRAME;
|
|
else
|
|
return 0.0F;
|
|
}
|
|
|
|
static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
|
|
game_state *state, int dir, game_ui *ui,
|
|
float animtime, float flashtime)
|
|
{
|
|
int i, bgcolour;
|
|
struct rotation srot, *rot;
|
|
int lastx = -1, lasty = -1, lastr = -1;
|
|
int cx, cy, cmoved = 0, n = state->n;
|
|
|
|
cx = ui->cur_visible ? ui->cur_x : -state->n;
|
|
cy = ui->cur_visible ? ui->cur_y : -state->n;
|
|
if (cx != ds->cur_x || cy != ds->cur_y)
|
|
cmoved = 1;
|
|
|
|
if (flashtime > 0) {
|
|
int frame = (int)(flashtime / FLASH_FRAME);
|
|
bgcolour = (frame % 2 ? COL_LOWLIGHT : COL_HIGHLIGHT);
|
|
} else
|
|
bgcolour = COL_BACKGROUND;
|
|
|
|
if (!ds->started) {
|
|
int coords[10];
|
|
|
|
draw_rect(dr, 0, 0,
|
|
TILE_SIZE * state->w + 2 * BORDER,
|
|
TILE_SIZE * state->h + 2 * BORDER, COL_BACKGROUND);
|
|
draw_update(dr, 0, 0,
|
|
TILE_SIZE * state->w + 2 * BORDER,
|
|
TILE_SIZE * state->h + 2 * BORDER);
|
|
|
|
/*
|
|
* Recessed area containing the whole puzzle.
|
|
*/
|
|
coords[0] = COORD(state->w) + HIGHLIGHT_WIDTH - 1;
|
|
coords[1] = COORD(state->h) + HIGHLIGHT_WIDTH - 1;
|
|
coords[2] = COORD(state->w) + HIGHLIGHT_WIDTH - 1;
|
|
coords[3] = COORD(0) - HIGHLIGHT_WIDTH;
|
|
coords[4] = coords[2] - TILE_SIZE;
|
|
coords[5] = coords[3] + TILE_SIZE;
|
|
coords[8] = COORD(0) - HIGHLIGHT_WIDTH;
|
|
coords[9] = COORD(state->h) + HIGHLIGHT_WIDTH - 1;
|
|
coords[6] = coords[8] + TILE_SIZE;
|
|
coords[7] = coords[9] - TILE_SIZE;
|
|
draw_polygon(dr, coords, 5, COL_HIGHLIGHT, COL_HIGHLIGHT);
|
|
|
|
coords[1] = COORD(0) - HIGHLIGHT_WIDTH;
|
|
coords[0] = COORD(0) - HIGHLIGHT_WIDTH;
|
|
draw_polygon(dr, coords, 5, COL_LOWLIGHT, COL_LOWLIGHT);
|
|
|
|
ds->started = TRUE;
|
|
}
|
|
|
|
/*
|
|
* If we're drawing any rotated tiles, sort out the rotation
|
|
* parameters, and also zap the rotation region to the
|
|
* background colour before doing anything else.
|
|
*/
|
|
if (oldstate) {
|
|
float angle;
|
|
float anim_max = game_anim_length(oldstate, state, dir, ui);
|
|
|
|
if (dir > 0) {
|
|
lastx = state->lastx;
|
|
lasty = state->lasty;
|
|
lastr = state->lastr;
|
|
} else {
|
|
lastx = oldstate->lastx;
|
|
lasty = oldstate->lasty;
|
|
lastr = -oldstate->lastr;
|
|
}
|
|
|
|
rot = &srot;
|
|
rot->cx = COORD(lastx);
|
|
rot->cy = COORD(lasty);
|
|
rot->cw = rot->ch = TILE_SIZE * state->n;
|
|
rot->ox = rot->cx + rot->cw/2;
|
|
rot->oy = rot->cy + rot->ch/2;
|
|
angle = (float)((-PI/2 * lastr) * (1.0 - animtime / anim_max));
|
|
rot->c = (float)cos(angle);
|
|
rot->s = (float)sin(angle);
|
|
|
|
/*
|
|
* Sort out the colours of the various sides of the tile.
|
|
*/
|
|
rot->lc = highlight_colour((float)PI + angle);
|
|
rot->rc = highlight_colour(angle);
|
|
rot->tc = highlight_colour((float)(PI/2.0) + angle);
|
|
rot->bc = highlight_colour((float)(-PI/2.0) + angle);
|
|
|
|
draw_rect(dr, rot->cx, rot->cy, rot->cw, rot->ch, bgcolour);
|
|
} else
|
|
rot = NULL;
|
|
|
|
/*
|
|
* Now draw each tile.
|
|
*/
|
|
for (i = 0; i < state->w * state->h; i++) {
|
|
int t, cc = 0;
|
|
int tx = i % state->w, ty = i / state->w;
|
|
|
|
/*
|
|
* Figure out what should be displayed at this location.
|
|
* Usually it will be state->grid[i], unless we're in the
|
|
* middle of animating an actual rotation and this cell is
|
|
* within the rotation region, in which case we set -1
|
|
* (always display).
|
|
*/
|
|
if (oldstate && lastx >= 0 && lasty >= 0 &&
|
|
tx >= lastx && tx < lastx + state->n &&
|
|
ty >= lasty && ty < lasty + state->n)
|
|
t = -1;
|
|
else
|
|
t = state->grid[i];
|
|
|
|
if (cmoved) {
|
|
/* cursor has moved (or changed visibility)... */
|
|
if (tx == cx || tx == cx+n-1 || ty == cy || ty == cy+n-1)
|
|
cc = 1; /* ...we're on new cursor, redraw */
|
|
if (tx == ds->cur_x || tx == ds->cur_x+n-1 ||
|
|
ty == ds->cur_y || ty == ds->cur_y+n-1)
|
|
cc = 1; /* ...we were on old cursor, redraw */
|
|
}
|
|
|
|
if (ds->bgcolour != bgcolour || /* always redraw when flashing */
|
|
ds->grid[i] != t || ds->grid[i] == -1 || t == -1 || cc) {
|
|
int x = COORD(tx), y = COORD(ty);
|
|
unsigned cedges = 0;
|
|
|
|
if (tx == cx && ty >= cy && ty <= cy+n-1) cedges |= CUR_LEFT;
|
|
if (ty == cy && tx >= cx && tx <= cx+n-1) cedges |= CUR_TOP;
|
|
if (tx == cx+n-1 && ty >= cy && ty <= cy+n-1) cedges |= CUR_RIGHT;
|
|
if (ty == cy+n-1 && tx >= cx && tx <= cx+n-1) cedges |= CUR_BOTTOM;
|
|
|
|
draw_tile(dr, ds, state, x, y, state->grid[i], bgcolour, rot, cedges);
|
|
ds->grid[i] = t;
|
|
}
|
|
}
|
|
ds->bgcolour = bgcolour;
|
|
ds->cur_x = cx; ds->cur_y = cy;
|
|
|
|
/*
|
|
* Update the status bar.
|
|
*/
|
|
{
|
|
char statusbuf[256];
|
|
|
|
/*
|
|
* Don't show the new status until we're also showing the
|
|
* new _state_ - after the game animation is complete.
|
|
*/
|
|
if (oldstate)
|
|
state = oldstate;
|
|
|
|
if (state->used_solve)
|
|
sprintf(statusbuf, "Moves since auto-solve: %d",
|
|
state->movecount - state->completed);
|
|
else {
|
|
sprintf(statusbuf, "%sMoves: %d",
|
|
(state->completed ? "COMPLETED! " : ""),
|
|
(state->completed ? state->completed : state->movecount));
|
|
if (state->movetarget)
|
|
sprintf(statusbuf+strlen(statusbuf), " (target %d)",
|
|
state->movetarget);
|
|
}
|
|
|
|
status_bar(dr, statusbuf);
|
|
}
|
|
}
|
|
|
|
static int game_timing_state(game_state *state, game_ui *ui)
|
|
{
|
|
return TRUE;
|
|
}
|
|
|
|
static void game_print_size(game_params *params, float *x, float *y)
|
|
{
|
|
}
|
|
|
|
static void game_print(drawing *dr, game_state *state, int tilesize)
|
|
{
|
|
}
|
|
|
|
#ifdef COMBINED
|
|
#define thegame twiddle
|
|
#endif
|
|
|
|
const struct game thegame = {
|
|
"Twiddle", "games.twiddle", "twiddle",
|
|
default_params,
|
|
game_fetch_preset,
|
|
decode_params,
|
|
encode_params,
|
|
free_params,
|
|
dup_params,
|
|
TRUE, game_configure, custom_params,
|
|
validate_params,
|
|
new_game_desc,
|
|
validate_desc,
|
|
new_game,
|
|
dup_game,
|
|
free_game,
|
|
TRUE, solve_game,
|
|
TRUE, game_can_format_as_text_now, game_text_format,
|
|
new_ui,
|
|
free_ui,
|
|
encode_ui,
|
|
decode_ui,
|
|
game_changed_state,
|
|
interpret_move,
|
|
execute_move,
|
|
PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
|
|
game_colours,
|
|
game_new_drawstate,
|
|
game_free_drawstate,
|
|
game_redraw,
|
|
game_anim_length,
|
|
game_flash_length,
|
|
FALSE, FALSE, game_print_size, game_print,
|
|
TRUE, /* wants_statusbar */
|
|
FALSE, game_timing_state,
|
|
0, /* flags */
|
|
};
|
|
|
|
/* vim: set shiftwidth=4 tabstop=8: */
|