Files
puzzles/galaxies.c
Simon Tatham 20f95e3e22 Galaxies: add some higher Unreasonable presets.
10x10 and 15x15 Unreasonable are now feasible, so why not include them?
2023-03-12 14:26:45 +00:00

4410 lines
134 KiB
C

/*
* galaxies.c: implementation of 'Tentai Show' from Nikoli,
* also sometimes called 'Spiral Galaxies'.
*
* Notes:
*
* Grid is stored as size (2n-1), holding edges as well as spaces
* (and thus vertices too, at edge intersections).
*
* Any dot will thus be positioned at one of our grid points,
* which saves any faffing with half-of-a-square stuff.
*
* Edges have on/off state; obviously the actual edges of the
* board are fixed to on, and everything else starts as off.
*
* Future solver directions:
*
* - Non-local version of the exclave extension? Suppose you have an
* exclave with multiple potential paths back home, but all of them
* go through the same tile somewhere in the middle of the path.
* Then _that_ critical square can be assigned to the home dot,
* even if we don't yet know the details of the path from it to
* either existing region.
*
* - Permit non-simply-connected puzzle instances in sub-Unreasonable
* mode? Even the simplest case 5x3:ubb is graded Unreasonable at
* present, because we have no solution technique short of
* recursion that can handle it.
*
* The reasoning a human uses for that puzzle is to observe that
* the centre left square has to connect to the centre dot, so it
* must have _some_ path back there. It could go round either side
* of the dot in the way. But _whichever_ way it goes, that rules
* out the left dot extending to the squares above and below it,
* because if it did that, that would block _both_ routes back to
* the centre.
*
* But the exclave-extending deduction we have at present is only
* capable of extending an exclave with _one_ liberty. This has
* two, so the only technique we have available is to try them one
* by one via recursion.
*
* My vague plan to fix this would be to re-run the exclave
* extension on a per-dot basis (probably after working out a
* non-local version as described above): instead of trying to find
* all exclaves at once, try it for one exclave at a time, or
* perhaps all exclaves relating to a particular home dot H. The
* point of this is that then you could spot pairs of squares with
* _two_ possible dots, one of which is H, and which are opposite
* to each other with respect to their other dot D (such as the
* squares above/below the left dot in this example). And then you
* merge those into one vertex of the connectivity graph, on the
* grounds that they're either both H or both D - and _then_ you
* have an exclave with only one path back home, and can make
* progress.
*
* Bugs:
*
* Notable puzzle IDs:
*
* Nikoli's example [web site has wrong highlighting]
* (at http://www.nikoli.co.jp/en/puzzles/astronomical_show/):
* 5x5:eBbbMlaBbOEnf
*
* The 'spiral galaxies puzzles are NP-complete' paper
* (at http://www.stetson.edu/~efriedma/papers/spiral.pdf):
* 7x7:chpgdqqqoezdddki
*
* Puzzle competition pdf examples
* (at http://www.puzzleratings.org/Yurekli2006puz.pdf):
* 6x6:EDbaMucCohbrecEi
* 10x10:beFbufEEzowDlxldibMHezBQzCdcFzjlci
* 13x13:dCemIHFFkJajjgDfdbdBzdzEgjccoPOcztHjBczLDjczqktJjmpreivvNcggFi
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <ctype.h>
#include <limits.h>
#include <math.h>
#include "puzzles.h"
#ifdef DEBUGGING
#define solvep debug
#else
static bool solver_show_working;
#define solvep(x) do { if (solver_show_working) { printf x; } } while(0)
#endif
#ifdef STANDALONE_PICTURE_GENERATOR
/*
* Dirty hack to enable the generator to construct a game ID which
* solves to a specified black-and-white bitmap. We define a global
* variable here which gives the desired colour of each square, and
* we arrange that the grid generator never merges squares of
* different colours.
*
* The bitmap as stored here is a simple int array (at these sizes
* it isn't worth doing fiddly bit-packing). picture[y*w+x] is 1
* iff the pixel at (x,y) is intended to be black.
*
* (It might be nice to be able to specify some pixels as
* don't-care, to give the generator more leeway. But that might be
* fiddly.)
*/
static int *picture;
#endif
enum {
COL_BACKGROUND,
COL_WHITEBG,
COL_BLACKBG,
COL_WHITEDOT,
COL_BLACKDOT,
COL_GRID,
COL_EDGE,
COL_ARROW,
COL_CURSOR,
NCOLOURS
};
#define DIFFLIST(A) \
A(NORMAL,Normal,n) \
A(UNREASONABLE,Unreasonable,u)
#define ENUM(upper,title,lower) DIFF_ ## upper,
#define TITLE(upper,title,lower) #title,
#define ENCODE(upper,title,lower) #lower
#define CONFIG(upper,title,lower) ":" #title
enum { DIFFLIST(ENUM)
DIFF_IMPOSSIBLE, DIFF_AMBIGUOUS, DIFF_UNFINISHED, DIFF_MAX };
static char const *const galaxies_diffnames[] = {
DIFFLIST(TITLE) "Impossible", "Ambiguous", "Unfinished" };
static char const galaxies_diffchars[] = DIFFLIST(ENCODE);
#define DIFFCONFIG DIFFLIST(CONFIG)
struct game_params {
/* X and Y is the area of the board as seen by
* the user, not the (2n+1) area the game uses. */
int w, h, diff;
};
enum { s_tile, s_edge, s_vertex };
#define F_DOT 1 /* there's a dot here */
#define F_EDGE_SET 2 /* the edge is set */
#define F_TILE_ASSOC 4 /* this tile is associated with a dot. */
#define F_DOT_BLACK 8 /* (ui only) dot is black. */
#define F_MARK 16 /* scratch flag */
#define F_REACHABLE 32
#define F_SCRATCH 64
#define F_MULTIPLE 128
#define F_DOT_HOLD 256
#define F_GOOD 512
typedef struct space {
int x, y; /* its position */
int type;
unsigned int flags;
int dotx, doty; /* if flags & F_TILE_ASSOC */
int nassoc; /* if flags & F_DOT */
} space;
#define INGRID(s,x,y) ((x) >= 0 && (y) >= 0 && \
(x) < (state)->sx && (y) < (state)->sy)
#define INUI(s,x,y) ((x) > 0 && (y) > 0 && \
(x) < ((state)->sx-1) && (y) < ((state)->sy-1))
#define GRID(s,g,x,y) ((s)->g[((y)*(s)->sx)+(x)])
#define SPACE(s,x,y) GRID(s,grid,x,y)
struct game_state {
int w, h; /* size from params */
int sx, sy; /* allocated size, (2x-1)*(2y-1) */
space *grid;
bool completed, used_solve;
int ndots;
space **dots;
midend *me; /* to call supersede_game_desc */
int cdiff; /* difficulty of current puzzle (for status bar),
or -1 if stale. */
};
static bool check_complete(const game_state *state, int *dsf, int *colours);
static int solver_state_inner(game_state *state, int maxdiff);
static int solver_state(game_state *state, int maxdiff);
static int solver_obvious(game_state *state);
static int solver_obvious_dot(game_state *state, space *dot);
static space *space_opposite_dot(const game_state *state, const space *sp,
const space *dot);
static space *tile_opposite(const game_state *state, const space *sp);
static game_state *execute_move(const game_state *state, const char *move);
/* ----------------------------------------------------------
* Game parameters and presets
*/
/* make up some sensible default sizes */
#define DEFAULT_PRESET 0
static const game_params galaxies_presets[] = {
{ 7, 7, DIFF_NORMAL },
{ 7, 7, DIFF_UNREASONABLE },
{ 10, 10, DIFF_NORMAL },
{ 10, 10, DIFF_UNREASONABLE },
{ 15, 15, DIFF_NORMAL },
{ 15, 15, DIFF_UNREASONABLE },
};
static bool game_fetch_preset(int i, char **name, game_params **params)
{
game_params *ret;
char buf[80];
if (i < 0 || i >= lenof(galaxies_presets))
return false;
ret = snew(game_params);
*ret = galaxies_presets[i]; /* structure copy */
sprintf(buf, "%dx%d %s", ret->w, ret->h,
galaxies_diffnames[ret->diff]);
if (name) *name = dupstr(buf);
*params = ret;
return true;
}
static game_params *default_params(void)
{
game_params *ret;
game_fetch_preset(DEFAULT_PRESET, NULL, &ret);
return ret;
}
static void free_params(game_params *params)
{
sfree(params);
}
static game_params *dup_params(const game_params *params)
{
game_params *ret = snew(game_params);
*ret = *params; /* structure copy */
return ret;
}
static void decode_params(game_params *params, char const *string)
{
params->h = params->w = atoi(string);
params->diff = DIFF_NORMAL;
while (*string && isdigit((unsigned char)*string)) string++;
if (*string == 'x') {
string++;
params->h = atoi(string);
while (*string && isdigit((unsigned char)*string)) string++;
}
if (*string == 'd') {
int i;
string++;
for (i = 0; i <= DIFF_UNREASONABLE; i++)
if (*string == galaxies_diffchars[i])
params->diff = i;
if (*string) string++;
}
}
static char *encode_params(const game_params *params, bool full)
{
char str[80];
sprintf(str, "%dx%d", params->w, params->h);
if (full)
sprintf(str + strlen(str), "d%c", galaxies_diffchars[params->diff]);
return dupstr(str);
}
static config_item *game_configure(const game_params *params)
{
config_item *ret;
char buf[80];
ret = snewn(4, config_item);
ret[0].name = "Width";
ret[0].type = C_STRING;
sprintf(buf, "%d", params->w);
ret[0].u.string.sval = dupstr(buf);
ret[1].name = "Height";
ret[1].type = C_STRING;
sprintf(buf, "%d", params->h);
ret[1].u.string.sval = dupstr(buf);
ret[2].name = "Difficulty";
ret[2].type = C_CHOICES;
ret[2].u.choices.choicenames = DIFFCONFIG;
ret[2].u.choices.selected = params->diff;
ret[3].name = NULL;
ret[3].type = C_END;
return ret;
}
static game_params *custom_params(const config_item *cfg)
{
game_params *ret = snew(game_params);
ret->w = atoi(cfg[0].u.string.sval);
ret->h = atoi(cfg[1].u.string.sval);
ret->diff = cfg[2].u.choices.selected;
return ret;
}
static const char *validate_params(const game_params *params, bool full)
{
if (params->w < 3 || params->h < 3)
return "Width and height must both be at least 3";
if (params->w > INT_MAX / 2 || params->h > INT_MAX / 2 ||
params->w > (INT_MAX - params->w*2 - params->h*2 - 1) / 4 / params->h)
return "Width times height must not be unreasonably large";
/*
* This shouldn't be able to happen at all, since decode_params
* and custom_params will never generate anything that isn't
* within range.
*/
assert(params->diff <= DIFF_UNREASONABLE);
return NULL;
}
/* ----------------------------------------------------------
* Game utility functions.
*/
static void add_dot(space *space) {
assert(!(space->flags & F_DOT));
space->flags |= F_DOT;
space->nassoc = 0;
}
static void remove_dot(space *space) {
assert(space->flags & F_DOT);
space->flags &= ~F_DOT;
}
static void remove_assoc(const game_state *state, space *tile) {
if (tile->flags & F_TILE_ASSOC) {
SPACE(state, tile->dotx, tile->doty).nassoc--;
tile->flags &= ~F_TILE_ASSOC;
tile->dotx = -1;
tile->doty = -1;
}
}
static void remove_assoc_with_opposite(game_state *state, space *tile) {
space *opposite;
if (!(tile->flags & F_TILE_ASSOC)) {
return;
}
opposite = tile_opposite(state, tile);
remove_assoc(state, tile);
if (opposite != NULL && opposite != tile) {
remove_assoc(state, opposite);
}
}
static void add_assoc(const game_state *state, space *tile, space *dot) {
remove_assoc(state, tile);
#ifdef STANDALONE_PICTURE_GENERATOR
if (picture)
assert(!picture[(tile->y/2) * state->w + (tile->x/2)] ==
!(dot->flags & F_DOT_BLACK));
#endif
tile->flags |= F_TILE_ASSOC;
tile->dotx = dot->x;
tile->doty = dot->y;
dot->nassoc++;
/*debug(("add_assoc sp %d %d --> dot %d,%d, new nassoc %d.\n",
tile->x, tile->y, dot->x, dot->y, dot->nassoc));*/
}
static bool ok_to_add_assoc_with_opposite_internal(
const game_state *state, space *tile, space *opposite)
{
int *colors;
bool toret;
if (tile->type != s_tile)
return false;
if (tile->flags & F_DOT)
return false;
if (opposite == NULL)
return false;
if (opposite->flags & F_DOT)
return false;
toret = true;
colors = snewn(state->w * state->h, int);
check_complete(state, NULL, colors);
if (colors[(tile->y - 1)/2 * state->w + (tile->x - 1)/2])
toret = false;
if (colors[(opposite->y - 1)/2 * state->w + (opposite->x - 1)/2])
toret = false;
sfree(colors);
return toret;
}
#ifndef EDITOR
static bool ok_to_add_assoc_with_opposite(
const game_state *state, space *tile, space *dot)
{
space *opposite = space_opposite_dot(state, tile, dot);
return ok_to_add_assoc_with_opposite_internal(state, tile, opposite);
}
#endif
static void add_assoc_with_opposite(game_state *state, space *tile, space *dot) {
space *opposite = space_opposite_dot(state, tile, dot);
if(opposite && ok_to_add_assoc_with_opposite_internal(
state, tile, opposite))
{
remove_assoc_with_opposite(state, tile);
add_assoc(state, tile, dot);
remove_assoc_with_opposite(state, opposite);
add_assoc(state, opposite, dot);
}
}
#ifndef EDITOR
static space *sp2dot(const game_state *state, int x, int y)
{
space *sp = &SPACE(state, x, y);
if (!(sp->flags & F_TILE_ASSOC)) return NULL;
return &SPACE(state, sp->dotx, sp->doty);
}
#endif
#define IS_VERTICAL_EDGE(x) ((x % 2) == 0)
static bool game_can_format_as_text_now(const game_params *params)
{
return true;
}
static char *encode_game(const game_state *state);
static char *game_text_format(const game_state *state)
{
#ifdef EDITOR
game_params par;
char *params, *desc, *ret;
par.w = state->w;
par.h = state->h;
par.diff = DIFF_MAX; /* shouldn't be used */
params = encode_params(&par, false);
desc = encode_game(state);
ret = snewn(strlen(params) + strlen(desc) + 2, char);
sprintf(ret, "%s:%s", params, desc);
sfree(params);
sfree(desc);
return ret;
#else
int maxlen = (state->sx+1)*state->sy, x, y;
char *ret, *p;
space *sp;
ret = snewn(maxlen+1, char);
p = ret;
for (y = 0; y < state->sy; y++) {
for (x = 0; x < state->sx; x++) {
sp = &SPACE(state, x, y);
if (sp->flags & F_DOT)
*p++ = 'o';
#if 0
else if (sp->flags & (F_REACHABLE|F_MULTIPLE|F_MARK))
*p++ = (sp->flags & F_MULTIPLE) ? 'M' :
(sp->flags & F_REACHABLE) ? 'R' : 'X';
#endif
else {
switch (sp->type) {
case s_tile:
if (sp->flags & F_TILE_ASSOC) {
space *dot = sp2dot(state, sp->x, sp->y);
if (dot && dot->flags & F_DOT)
*p++ = (dot->flags & F_DOT_BLACK) ? 'B' : 'W';
else
*p++ = '?'; /* association with not-a-dot. */
} else
*p++ = ' ';
break;
case s_vertex:
*p++ = '+';
break;
case s_edge:
if (sp->flags & F_EDGE_SET)
*p++ = (IS_VERTICAL_EDGE(x)) ? '|' : '-';
else
*p++ = ' ';
break;
default:
assert(!"shouldn't get here!");
}
}
}
*p++ = '\n';
}
assert(p - ret == maxlen);
*p = '\0';
return ret;
#endif
}
static void dbg_state(const game_state *state)
{
#ifdef DEBUGGING
char *temp = game_text_format(state);
debug(("%s\n", temp));
sfree(temp);
#endif
}
/* Space-enumeration callbacks should all return 1 for 'progress made',
* -1 for 'impossible', and 0 otherwise. */
typedef int (*space_cb)(game_state *state, space *sp, void *ctx);
#define IMPOSSIBLE_QUITS 1
static int foreach_sub(game_state *state, space_cb cb, unsigned int f,
void *ctx, int startx, int starty)
{
int x, y, ret;
bool progress = false, impossible = false;
space *sp;
for (y = starty; y < state->sy; y += 2) {
sp = &SPACE(state, startx, y);
for (x = startx; x < state->sx; x += 2) {
ret = cb(state, sp, ctx);
if (ret == -1) {
if (f & IMPOSSIBLE_QUITS) return -1;
impossible = true;
} else if (ret == 1) {
progress = true;
}
sp += 2;
}
}
return impossible ? -1 : progress ? 1 : 0;
}
static int foreach_tile(game_state *state, space_cb cb, unsigned int f,
void *ctx)
{
return foreach_sub(state, cb, f, ctx, 1, 1);
}
static int foreach_edge(game_state *state, space_cb cb, unsigned int f,
void *ctx)
{
int ret1, ret2;
ret1 = foreach_sub(state, cb, f, ctx, 0, 1);
ret2 = foreach_sub(state, cb, f, ctx, 1, 0);
if (ret1 == -1 || ret2 == -1) return -1;
return (ret1 || ret2) ? 1 : 0;
}
#if 0
static int foreach_vertex(game_state *state, space_cb cb, unsigned int f,
void *ctx)
{
return foreach_sub(state, cb, f, ctx, 0, 0);
}
#endif
#if 0
static int is_same_assoc(game_state *state,
int x1, int y1, int x2, int y2)
{
space *s1, *s2;
if (!INGRID(state, x1, y1) || !INGRID(state, x2, y2))
return 0;
s1 = &SPACE(state, x1, y1);
s2 = &SPACE(state, x2, y2);
assert(s1->type == s_tile && s2->type == s_tile);
if ((s1->flags & F_TILE_ASSOC) && (s2->flags & F_TILE_ASSOC) &&
s1->dotx == s2->dotx && s1->doty == s2->doty)
return 1;
return 0; /* 0 if not same or not both associated. */
}
#endif
#if 0
static int edges_into_vertex(game_state *state,
int x, int y)
{
int dx, dy, nx, ny, count = 0;
assert(SPACE(state, x, y).type == s_vertex);
for (dx = -1; dx <= 1; dx++) {
for (dy = -1; dy <= 1; dy++) {
if (dx != 0 && dy != 0) continue;
if (dx == 0 && dy == 0) continue;
nx = x+dx; ny = y+dy;
if (!INGRID(state, nx, ny)) continue;
assert(SPACE(state, nx, ny).type == s_edge);
if (SPACE(state, nx, ny).flags & F_EDGE_SET)
count++;
}
}
return count;
}
#endif
static space *space_opposite_dot(const game_state *state, const space *sp,
const space *dot)
{
int dx, dy, tx, ty;
space *sp2;
dx = sp->x - dot->x;
dy = sp->y - dot->y;
tx = dot->x - dx;
ty = dot->y - dy;
if (!INGRID(state, tx, ty)) return NULL;
sp2 = &SPACE(state, tx, ty);
assert(sp2->type == sp->type);
return sp2;
}
static space *tile_opposite(const game_state *state, const space *sp)
{
space *dot;
assert(sp->flags & F_TILE_ASSOC);
dot = &SPACE(state, sp->dotx, sp->doty);
return space_opposite_dot(state, sp, dot);
}
static bool dotfortile(game_state *state, space *tile, space *dot)
{
space *tile_opp = space_opposite_dot(state, tile, dot);
if (!tile_opp) return false; /* opposite would be off grid */
if (tile_opp->flags & F_TILE_ASSOC &&
(tile_opp->dotx != dot->x || tile_opp->doty != dot->y))
return false; /* opposite already associated with diff. dot */
return true;
}
static void adjacencies(game_state *state, space *sp, space **a1s, space **a2s)
{
int dxs[4] = {-1, 1, 0, 0}, dys[4] = {0, 0, -1, 1};
int n, x, y;
/* this function needs optimising. */
for (n = 0; n < 4; n++) {
x = sp->x+dxs[n];
y = sp->y+dys[n];
if (INGRID(state, x, y)) {
a1s[n] = &SPACE(state, x, y);
x += dxs[n]; y += dys[n];
if (INGRID(state, x, y))
a2s[n] = &SPACE(state, x, y);
else
a2s[n] = NULL;
} else {
a1s[n] = a2s[n] = NULL;
}
}
}
static bool outline_tile_fordot(game_state *state, space *tile, bool mark)
{
space *tadj[4], *eadj[4];
int i;
bool didsth = false, edge, same;
assert(tile->type == s_tile);
adjacencies(state, tile, eadj, tadj);
for (i = 0; i < 4; i++) {
if (!eadj[i]) continue;
edge = eadj[i]->flags & F_EDGE_SET;
if (tadj[i]) {
if (!(tile->flags & F_TILE_ASSOC))
same = !(tadj[i]->flags & F_TILE_ASSOC);
else
same = ((tadj[i]->flags & F_TILE_ASSOC) &&
tile->dotx == tadj[i]->dotx &&
tile->doty == tadj[i]->doty);
} else
same = false;
if (!edge && !same) {
if (mark) eadj[i]->flags |= F_EDGE_SET;
didsth = true;
} else if (edge && same) {
if (mark) eadj[i]->flags &= ~F_EDGE_SET;
didsth = true;
}
}
return didsth;
}
static void tiles_from_edge(game_state *state, space *sp, space **ts)
{
int xs[2], ys[2];
if (IS_VERTICAL_EDGE(sp->x)) {
xs[0] = sp->x-1; ys[0] = sp->y;
xs[1] = sp->x+1; ys[1] = sp->y;
} else {
xs[0] = sp->x; ys[0] = sp->y-1;
xs[1] = sp->x; ys[1] = sp->y+1;
}
ts[0] = INGRID(state, xs[0], ys[0]) ? &SPACE(state, xs[0], ys[0]) : NULL;
ts[1] = INGRID(state, xs[1], ys[1]) ? &SPACE(state, xs[1], ys[1]) : NULL;
}
/* Returns a move string for use by 'solve', including the initial
* 'S' if issolve is true. */
static char *diff_game(const game_state *src, const game_state *dest,
bool issolve, int set_cdiff)
{
int movelen = 0, movesize = 256, x, y, len;
char *move = snewn(movesize, char), buf[80];
const char *sep = "";
char achar = issolve ? 'a' : 'A';
space *sps, *spd;
assert(src->sx == dest->sx && src->sy == dest->sy);
if (issolve) {
move[movelen++] = 'S';
sep = ";";
}
#ifdef EDITOR
if (set_cdiff >= 0) {
switch (set_cdiff) {
case DIFF_IMPOSSIBLE:
movelen += sprintf(move+movelen, "%sII", sep);
break;
case DIFF_AMBIGUOUS:
movelen += sprintf(move+movelen, "%sIA", sep);
break;
case DIFF_UNFINISHED:
movelen += sprintf(move+movelen, "%sIU", sep);
break;
default:
movelen += sprintf(move+movelen, "%si%c",
sep, galaxies_diffchars[set_cdiff]);
break;
}
sep = ";";
}
#endif
move[movelen] = '\0';
for (x = 0; x < src->sx; x++) {
for (y = 0; y < src->sy; y++) {
sps = &SPACE(src, x, y);
spd = &SPACE(dest, x, y);
assert(sps->type == spd->type);
len = 0;
if (sps->type == s_tile) {
if ((sps->flags & F_TILE_ASSOC) &&
(spd->flags & F_TILE_ASSOC)) {
if (sps->dotx != spd->dotx ||
sps->doty != spd->doty)
/* Both associated; change association, if different */
len = sprintf(buf, "%s%c%d,%d,%d,%d", sep,
(int)achar, x, y, spd->dotx, spd->doty);
} else if (sps->flags & F_TILE_ASSOC)
/* Only src associated; remove. */
len = sprintf(buf, "%sU%d,%d", sep, x, y);
else if (spd->flags & F_TILE_ASSOC)
/* Only dest associated; add. */
len = sprintf(buf, "%s%c%d,%d,%d,%d", sep,
(int)achar, x, y, spd->dotx, spd->doty);
} else if (sps->type == s_edge) {
if ((sps->flags & F_EDGE_SET) != (spd->flags & F_EDGE_SET))
/* edge flags are different; flip them. */
len = sprintf(buf, "%sE%d,%d", sep, x, y);
}
if (len) {
if (movelen + len >= movesize) {
movesize = movelen + len + 256;
move = sresize(move, movesize, char);
}
strcpy(move + movelen, buf);
movelen += len;
sep = ";";
}
}
}
debug(("diff_game src then dest:\n"));
dbg_state(src);
dbg_state(dest);
debug(("diff string %s\n", move));
return move;
}
/* Returns true if a dot here would not be too close to any other dots
* (and would avoid other game furniture). */
static bool dot_is_possible(const game_state *state, space *sp,
bool allow_assoc)
{
int bx = 0, by = 0, dx, dy;
space *adj;
#ifdef STANDALONE_PICTURE_GENERATOR
int col = -1;
#endif
switch (sp->type) {
case s_tile:
bx = by = 1; break;
case s_edge:
if (IS_VERTICAL_EDGE(sp->x)) {
bx = 2; by = 1;
} else {
bx = 1; by = 2;
}
break;
case s_vertex:
bx = by = 2; break;
}
for (dx = -bx; dx <= bx; dx++) {
for (dy = -by; dy <= by; dy++) {
if (!INGRID(state, sp->x+dx, sp->y+dy)) continue;
adj = &SPACE(state, sp->x+dx, sp->y+dy);
#ifdef STANDALONE_PICTURE_GENERATOR
/*
* Check that all the squares we're looking at have the
* same colour.
*/
if (picture) {
if (adj->type == s_tile) {
int c = picture[(adj->y / 2) * state->w + (adj->x / 2)];
if (col < 0)
col = c;
if (c != col)
return false; /* colour mismatch */
}
}
#endif
if (!allow_assoc && (adj->flags & F_TILE_ASSOC))
return false;
if (dx != 0 || dy != 0) {
/* Other than our own square, no dots nearby. */
if (adj->flags & (F_DOT))
return false;
}
/* We don't want edges within our rectangle
* (but don't care about edges on the edge) */
if (abs(dx) < bx && abs(dy) < by &&
adj->flags & F_EDGE_SET)
return false;
}
}
return true;
}
/* ----------------------------------------------------------
* Game generation, structure creation, and descriptions.
*/
static game_state *blank_game(int w, int h)
{
game_state *state = snew(game_state);
int x, y;
state->w = w;
state->h = h;
state->sx = (w*2)+1;
state->sy = (h*2)+1;
state->grid = snewn(state->sx * state->sy, space);
state->completed = false;
state->used_solve = false;
for (x = 0; x < state->sx; x++) {
for (y = 0; y < state->sy; y++) {
space *sp = &SPACE(state, x, y);
memset(sp, 0, sizeof(space));
sp->x = x;
sp->y = y;
if ((x % 2) == 0 && (y % 2) == 0)
sp->type = s_vertex;
else if ((x % 2) == 0 || (y % 2) == 0) {
sp->type = s_edge;
if (x == 0 || y == 0 || x == state->sx-1 || y == state->sy-1)
sp->flags |= F_EDGE_SET;
} else
sp->type = s_tile;
}
}
state->ndots = 0;
state->dots = NULL;
state->me = NULL; /* filled in by new_game. */
state->cdiff = -1;
return state;
}
static void game_update_dots(game_state *state)
{
int i, n, sz = state->sx * state->sy;
if (state->dots) sfree(state->dots);
state->ndots = 0;
for (i = 0; i < sz; i++) {
if (state->grid[i].flags & F_DOT) state->ndots++;
}
state->dots = snewn(state->ndots, space *);
n = 0;
for (i = 0; i < sz; i++) {
if (state->grid[i].flags & F_DOT)
state->dots[n++] = &state->grid[i];
}
}
static void clear_game(game_state *state, bool cleardots)
{
int x, y;
/* don't erase edge flags around outline! */
for (x = 1; x < state->sx-1; x++) {
for (y = 1; y < state->sy-1; y++) {
if (cleardots)
SPACE(state, x, y).flags = 0;
else
SPACE(state, x, y).flags &= (F_DOT|F_DOT_BLACK);
}
}
if (cleardots) game_update_dots(state);
}
static game_state *dup_game(const game_state *state)
{
game_state *ret = blank_game(state->w, state->h);
ret->completed = state->completed;
ret->used_solve = state->used_solve;
memcpy(ret->grid, state->grid,
ret->sx*ret->sy*sizeof(space));
game_update_dots(ret);
ret->me = state->me;
ret->cdiff = state->cdiff;
return ret;
}
static void free_game(game_state *state)
{
if (state->dots) sfree(state->dots);
sfree(state->grid);
sfree(state);
}
/* Game description is a sequence of letters representing the number
* of spaces (a = 0, y = 24) before the next dot; a-y for a white dot,
* and A-Y for a black dot. 'z' is 25 spaces (and no dot).
*
* I know it's a bitch to generate by hand, so we provide
* an edit mode.
*/
static char *encode_game(const game_state *state)
{
char *desc, *p;
int run, x, y, area;
unsigned int f;
area = (state->sx-2) * (state->sy-2);
desc = snewn(area, char);
p = desc;
run = 0;
for (y = 1; y < state->sy-1; y++) {
for (x = 1; x < state->sx-1; x++) {
f = SPACE(state, x, y).flags;
/* a/A is 0 spaces between, b/B is 1 space, ...
* y/Y is 24 spaces, za/zA is 25 spaces, ...
* It's easier to count from 0 because we then
* don't have to special-case the top left-hand corner
* (which could be a dot with 0 spaces before it). */
if (!(f & F_DOT))
run++;
else {
while (run > 24) {
*p++ = 'z';
run -= 25;
}
*p++ = ((f & F_DOT_BLACK) ? 'A' : 'a') + run;
run = 0;
}
}
}
assert(p - desc < area);
*p++ = '\0';
desc = sresize(desc, p - desc, char);
return desc;
}
struct movedot {
int op;
space *olddot, *newdot;
};
enum { MD_CHECK, MD_MOVE };
static int movedot_cb(game_state *state, space *tile, void *vctx)
{
struct movedot *md = (struct movedot *)vctx;
space *newopp = NULL;
assert(tile->type == s_tile);
assert(md->olddot && md->newdot);
if (!(tile->flags & F_TILE_ASSOC)) return 0;
if (tile->dotx != md->olddot->x || tile->doty != md->olddot->y)
return 0;
newopp = space_opposite_dot(state, tile, md->newdot);
switch (md->op) {
case MD_CHECK:
/* If the tile is associated with the old dot, check its
* opposite wrt the _new_ dot is empty or same assoc. */
if (!newopp) return -1; /* no new opposite */
if (newopp->flags & F_TILE_ASSOC) {
if (newopp->dotx != md->olddot->x ||
newopp->doty != md->olddot->y)
return -1; /* associated, but wrong dot. */
}
#ifdef STANDALONE_PICTURE_GENERATOR
if (picture) {
/*
* Reject if either tile and the dot don't match in colour.
*/
if (!(picture[(tile->y/2) * state->w + (tile->x/2)]) ^
!(md->newdot->flags & F_DOT_BLACK))
return -1;
if (!(picture[(newopp->y/2) * state->w + (newopp->x/2)]) ^
!(md->newdot->flags & F_DOT_BLACK))
return -1;
}
#endif
break;
case MD_MOVE:
/* Move dot associations: anything that was associated
* with the old dot, and its opposite wrt the new dot,
* become associated with the new dot. */
assert(newopp);
debug(("Associating %d,%d and %d,%d with new dot %d,%d.\n",
tile->x, tile->y, newopp->x, newopp->y,
md->newdot->x, md->newdot->y));
add_assoc(state, tile, md->newdot);
add_assoc(state, newopp, md->newdot);
return 1; /* we did something! */
}
return 0;
}
/* For the given dot, first see if we could expand it into all the given
* extra spaces (by checking for empty spaces on the far side), and then
* see if we can move the dot to shift the CoG to include the new spaces.
*/
static bool dot_expand_or_move(game_state *state, space *dot,
space **toadd, int nadd)
{
space *tileopp;
int i, ret, nnew, cx, cy;
struct movedot md;
debug(("dot_expand_or_move: %d tiles for dot %d,%d\n",
nadd, dot->x, dot->y));
for (i = 0; i < nadd; i++)
debug(("dot_expand_or_move: dot %d,%d\n",
toadd[i]->x, toadd[i]->y));
assert(dot->flags & F_DOT);
#ifdef STANDALONE_PICTURE_GENERATOR
if (picture) {
/*
* Reject the expansion totally if any of the new tiles are
* the wrong colour.
*/
for (i = 0; i < nadd; i++) {
if (!(picture[(toadd[i]->y/2) * state->w + (toadd[i]->x/2)]) ^
!(dot->flags & F_DOT_BLACK))
return false;
}
}
#endif
/* First off, could we just expand the current dot's tile to cover
* the space(s) passed in and their opposites? */
for (i = 0; i < nadd; i++) {
tileopp = space_opposite_dot(state, toadd[i], dot);
if (!tileopp) goto noexpand;
if (tileopp->flags & F_TILE_ASSOC) goto noexpand;
#ifdef STANDALONE_PICTURE_GENERATOR
if (picture) {
/*
* The opposite tiles have to be the right colour as well.
*/
if (!(picture[(tileopp->y/2) * state->w + (tileopp->x/2)]) ^
!(dot->flags & F_DOT_BLACK))
goto noexpand;
}
#endif
}
/* OK, all spaces have valid empty opposites: associate spaces and
* opposites with our dot. */
for (i = 0; i < nadd; i++) {
tileopp = space_opposite_dot(state, toadd[i], dot);
add_assoc(state, toadd[i], dot);
add_assoc(state, tileopp, dot);
debug(("Added associations %d,%d and %d,%d --> %d,%d\n",
toadd[i]->x, toadd[i]->y,
tileopp->x, tileopp->y,
dot->x, dot->y));
dbg_state(state);
}
return true;
noexpand:
/* Otherwise, try to move dot so as to encompass given spaces: */
/* first, calculate the 'centre of gravity' of the new dot. */
nnew = dot->nassoc + nadd; /* number of tiles assoc. with new dot. */
cx = dot->x * dot->nassoc;
cy = dot->y * dot->nassoc;
for (i = 0; i < nadd; i++) {
cx += toadd[i]->x;
cy += toadd[i]->y;
}
/* If the CoG isn't a whole number, it's not possible. */
if ((cx % nnew) != 0 || (cy % nnew) != 0) {
debug(("Unable to move dot %d,%d, CoG not whole number.\n",
dot->x, dot->y));
return false;
}
cx /= nnew; cy /= nnew;
/* Check whether all spaces in the old tile would have a good
* opposite wrt the new dot. */
md.olddot = dot;
md.newdot = &SPACE(state, cx, cy);
md.op = MD_CHECK;
ret = foreach_tile(state, movedot_cb, IMPOSSIBLE_QUITS, &md);
if (ret == -1) {
debug(("Unable to move dot %d,%d, new dot not symmetrical.\n",
dot->x, dot->y));
return false;
}
/* Also check whether all spaces we're adding would have a good
* opposite wrt the new dot. */
for (i = 0; i < nadd; i++) {
tileopp = space_opposite_dot(state, toadd[i], md.newdot);
if (tileopp && (tileopp->flags & F_TILE_ASSOC) &&
(tileopp->dotx != dot->x || tileopp->doty != dot->y)) {
tileopp = NULL;
}
if (!tileopp) {
debug(("Unable to move dot %d,%d, new dot not symmetrical.\n",
dot->x, dot->y));
return false;
}
#ifdef STANDALONE_PICTURE_GENERATOR
if (picture) {
if (!(picture[(tileopp->y/2) * state->w + (tileopp->x/2)]) ^
!(dot->flags & F_DOT_BLACK))
return false;
}
#endif
}
/* If we've got here, we're ok. First, associate all of 'toadd'
* with the _old_ dot (so they'll get fixed up, with their opposites,
* in the next step). */
for (i = 0; i < nadd; i++) {
debug(("Associating to-add %d,%d with old dot %d,%d.\n",
toadd[i]->x, toadd[i]->y, dot->x, dot->y));
add_assoc(state, toadd[i], dot);
}
/* Finally, move the dot and fix up all the old associations. */
debug(("Moving dot at %d,%d to %d,%d\n",
dot->x, dot->y, md.newdot->x, md.newdot->y));
{
#ifdef STANDALONE_PICTURE_GENERATOR
int f = dot->flags & F_DOT_BLACK;
#endif
remove_dot(dot);
add_dot(md.newdot);
#ifdef STANDALONE_PICTURE_GENERATOR
md.newdot->flags |= f;
#endif
}
md.op = MD_MOVE;
ret = foreach_tile(state, movedot_cb, 0, &md);
assert(ret == 1);
dbg_state(state);
return true;
}
/* Hard-code to a max. of 2x2 squares, for speed (less malloc) */
#define MAX_TOADD 4
#define MAX_OUTSIDE 8
#define MAX_TILE_PERC 20
static bool generate_try_block(game_state *state, random_state *rs,
int x1, int y1, int x2, int y2)
{
int x, y, nadd = 0, nout = 0, i, maxsz;
space *sp, *toadd[MAX_TOADD], *outside[MAX_OUTSIDE], *dot;
if (!INGRID(state, x1, y1) || !INGRID(state, x2, y2)) return false;
/* We limit the maximum size of tiles to be ~2*sqrt(area); so,
* a 5x5 grid shouldn't have anything >10 tiles, a 20x20 grid
* nothing >40 tiles. */
maxsz = (int)sqrt((double)(state->w * state->h)) * 2;
debug(("generate_try_block, maxsz %d\n", maxsz));
/* Make a static list of the spaces; if any space is already
* associated then quit immediately. */
for (x = x1; x <= x2; x += 2) {
for (y = y1; y <= y2; y += 2) {
assert(nadd < MAX_TOADD);
sp = &SPACE(state, x, y);
assert(sp->type == s_tile);
if (sp->flags & F_TILE_ASSOC) return false;
toadd[nadd++] = sp;
}
}
/* Make a list of the spaces outside of our block, and shuffle it. */
#define OUTSIDE(x, y) do { \
if (INGRID(state, (x), (y))) { \
assert(nout < MAX_OUTSIDE); \
outside[nout++] = &SPACE(state, (x), (y)); \
} \
} while(0)
for (x = x1; x <= x2; x += 2) {
OUTSIDE(x, y1-2);
OUTSIDE(x, y2+2);
}
for (y = y1; y <= y2; y += 2) {
OUTSIDE(x1-2, y);
OUTSIDE(x2+2, y);
}
shuffle(outside, nout, sizeof(space *), rs);
for (i = 0; i < nout; i++) {
if (!(outside[i]->flags & F_TILE_ASSOC)) continue;
dot = &SPACE(state, outside[i]->dotx, outside[i]->doty);
if (dot->nassoc >= maxsz) {
debug(("Not adding to dot %d,%d, large enough (%d) already.\n",
dot->x, dot->y, dot->nassoc));
continue;
}
if (dot_expand_or_move(state, dot, toadd, nadd)) return true;
}
return false;
}
#ifdef STANDALONE_SOLVER
static bool one_try; /* override for soak testing */
#endif
#define GP_DOTS 1
static void generate_pass(game_state *state, random_state *rs, int *scratch,
int perc, unsigned int flags)
{
int sz = state->sx*state->sy, nspc, i, ret;
shuffle(scratch, sz, sizeof(int), rs);
/* This bug took me a, er, little while to track down. On PalmOS,
* which has 16-bit signed ints, puzzles over about 9x9 started
* failing to generate because the nspc calculation would start
* to overflow, causing the dots not to be filled in properly. */
nspc = (int)(((long)perc * (long)sz) / 100L);
debug(("generate_pass: %d%% (%d of %dx%d) squares, flags 0x%x\n",
perc, nspc, state->sx, state->sy, flags));
for (i = 0; i < nspc; i++) {
space *sp = &state->grid[scratch[i]];
int x1 = sp->x, y1 = sp->y, x2 = sp->x, y2 = sp->y;
if (sp->type == s_edge) {
if (IS_VERTICAL_EDGE(sp->x)) {
x1--; x2++;
} else {
y1--; y2++;
}
}
if (sp->type != s_vertex) {
/* heuristic; expanding from vertices tends to generate lots of
* too-big regions of tiles. */
if (generate_try_block(state, rs, x1, y1, x2, y2))
continue; /* we expanded successfully. */
}
if (!(flags & GP_DOTS)) continue;
if ((sp->type == s_edge) && (i % 2)) {
debug(("Omitting edge %d,%d as half-of.\n", sp->x, sp->y));
continue;
}
/* If we've got here we might want to put a dot down. Check
* if we can, and add one if so. */
if (dot_is_possible(state, sp, false)) {
add_dot(sp);
#ifdef STANDALONE_PICTURE_GENERATOR
if (picture) {
if (picture[(sp->y/2) * state->w + (sp->x/2)])
sp->flags |= F_DOT_BLACK;
}
#endif
ret = solver_obvious_dot(state, sp);
assert(ret != -1);
debug(("Added dot (and obvious associations) at %d,%d\n",
sp->x, sp->y));
dbg_state(state);
}
}
dbg_state(state);
}
static char *new_game_desc(const game_params *params, random_state *rs,
char **aux, bool interactive)
{
game_state *state = blank_game(params->w, params->h), *copy;
char *desc;
int *scratch, sz = state->sx*state->sy, i;
int diff;
bool cc;
/* Random list of squares to try and process, one-by-one. */
scratch = snewn(sz, int);
for (i = 0; i < sz; i++) scratch[i] = i;
generate:
clear_game(state, true);
/* generate_pass(state, rs, scratch, 10, GP_DOTS); */
/* generate_pass(state, rs, scratch, 100, 0); */
generate_pass(state, rs, scratch, 100, GP_DOTS);
game_update_dots(state);
if (state->ndots == 1) goto generate;
#ifdef DEBUGGING
{
char *tmp = encode_game(state);
debug(("new_game_desc state %dx%d:%s\n", params->w, params->h, tmp));
sfree(tmp);
}
#endif
for (i = 0; i < state->sx*state->sy; i++)
if (state->grid[i].type == s_tile)
outline_tile_fordot(state, &state->grid[i], true);
cc = check_complete(state, NULL, NULL);
assert(cc);
copy = dup_game(state);
clear_game(copy, false);
dbg_state(copy);
diff = solver_state(copy, params->diff);
free_game(copy);
assert(diff != DIFF_IMPOSSIBLE);
if (diff != params->diff) {
/*
* If the puzzle was insoluble at this difficulty level (i.e.
* too hard), _or_ soluble at a lower level (too easy), go
* round again.
*
* An exception is in soak-testing mode, where we return the
* first puzzle we got regardless.
*/
#ifdef STANDALONE_SOLVER
if (!one_try)
#endif
goto generate;
}
#ifdef STANDALONE_PICTURE_GENERATOR
/*
* Postprocessing pass to prevent excessive numbers of adjacent
* singletons. Iterate over all edges in random shuffled order;
* for each edge that separates two regions, investigate
* whether removing that edge and merging the regions would
* still yield a valid and soluble puzzle. (The two regions
* must also be the same colour, of course.) If so, do it.
*
* This postprocessing pass is slow (due to repeated solver
* invocations), and seems to be unnecessary during normal
* unconstrained game generation. However, when generating a
* game under colour constraints, excessive singletons seem to
* turn up more often, so it's worth doing this.
*/
{
int *posns, nposns;
int i, j, newdiff;
game_state *copy2;
nposns = params->w * (params->h+1) + params->h * (params->w+1);
posns = snewn(nposns, int);
for (i = j = 0; i < state->sx*state->sy; i++)
if (state->grid[i].type == s_edge)
posns[j++] = i;
assert(j == nposns);
shuffle(posns, nposns, sizeof(*posns), rs);
for (i = 0; i < nposns; i++) {
int x, y, x0, y0, x1, y1, cx, cy, cn, cx0, cy0, cx1, cy1, tx, ty;
space *s0, *s1, *ts, *d0, *d1, *dn;
bool ok;
/* Coordinates of edge space */
x = posns[i] % state->sx;
y = posns[i] / state->sx;
/* Coordinates of square spaces on either side of edge */
x0 = ((x+1) & ~1) - 1; /* round down to next odd number */
y0 = ((y+1) & ~1) - 1;
x1 = 2*x-x0; /* and reflect about x to get x1 */
y1 = 2*y-y0;
if (!INGRID(state, x0, y0) || !INGRID(state, x1, y1))
continue; /* outermost edge of grid */
s0 = &SPACE(state, x0, y0);
s1 = &SPACE(state, x1, y1);
assert(s0->type == s_tile && s1->type == s_tile);
if (s0->dotx == s1->dotx && s0->doty == s1->doty)
continue; /* tiles _already_ owned by same dot */
d0 = &SPACE(state, s0->dotx, s0->doty);
d1 = &SPACE(state, s1->dotx, s1->doty);
if ((d0->flags ^ d1->flags) & F_DOT_BLACK)
continue; /* different colours: cannot merge */
/*
* Work out where the centre of gravity of the new
* region would be.
*/
cx = d0->nassoc * d0->x + d1->nassoc * d1->x;
cy = d0->nassoc * d0->y + d1->nassoc * d1->y;
cn = d0->nassoc + d1->nassoc;
if (cx % cn || cy % cn)
continue; /* CoG not at integer coordinates */
cx /= cn;
cy /= cn;
assert(INUI(state, cx, cy));
/*
* Ensure that the CoG would actually be _in_ the new
* region, by verifying that all its surrounding tiles
* belong to one or other of our two dots.
*/
cx0 = ((cx+1) & ~1) - 1; /* round down to next odd number */
cy0 = ((cy+1) & ~1) - 1;
cx1 = 2*cx-cx0; /* and reflect about cx to get cx1 */
cy1 = 2*cy-cy0;
ok = true;
for (ty = cy0; ty <= cy1; ty += 2)
for (tx = cx0; tx <= cx1; tx += 2) {
ts = &SPACE(state, tx, ty);
assert(ts->type == s_tile);
if ((ts->dotx != d0->x || ts->doty != d0->y) &&
(ts->dotx != d1->x || ts->doty != d1->y))
ok = false;
}
if (!ok)
continue;
/*
* Verify that for every tile in either source region,
* that tile's image in the new CoG is also in one of
* the two source regions.
*/
for (ty = 1; ty < state->sy; ty += 2) {
for (tx = 1; tx < state->sx; tx += 2) {
int tx1, ty1;
ts = &SPACE(state, tx, ty);
assert(ts->type == s_tile);
if ((ts->dotx != d0->x || ts->doty != d0->y) &&
(ts->dotx != d1->x || ts->doty != d1->y))
continue; /* not part of these tiles anyway */
tx1 = 2*cx-tx;
ty1 = 2*cy-ty;
if (!INGRID(state, tx1, ty1)) {
ok = false;
break;
}
ts = &SPACE(state, cx+cx-tx, cy+cy-ty);
if ((ts->dotx != d0->x || ts->doty != d0->y) &&
(ts->dotx != d1->x || ts->doty != d1->y)) {
ok = false;
break;
}
}
if (!ok)
break;
}
if (!ok)
continue;
/*
* Now we're clear to attempt the merge. We take a copy
* of the game state first, so we can revert it easily
* if the resulting puzzle turns out to have become
* insoluble.
*/
copy2 = dup_game(state);
remove_dot(d0);
remove_dot(d1);
dn = &SPACE(state, cx, cy);
add_dot(dn);
dn->flags |= (d0->flags & F_DOT_BLACK);
for (ty = 1; ty < state->sy; ty += 2) {
for (tx = 1; tx < state->sx; tx += 2) {
ts = &SPACE(state, tx, ty);
assert(ts->type == s_tile);
if ((ts->dotx != d0->x || ts->doty != d0->y) &&
(ts->dotx != d1->x || ts->doty != d1->y))
continue; /* not part of these tiles anyway */
add_assoc(state, ts, dn);
}
}
copy = dup_game(state);
clear_game(copy, false);
dbg_state(copy);
newdiff = solver_state(copy, params->diff);
free_game(copy);
if (diff == newdiff) {
/* Still just as soluble. Let the merge stand. */
free_game(copy2);
} else {
/* Became insoluble. Revert. */
free_game(state);
state = copy2;
}
}
sfree(posns);
}
#endif
desc = encode_game(state);
#ifndef STANDALONE_SOLVER
debug(("new_game_desc generated: \n"));
dbg_state(state);
#endif
game_state *blank = blank_game(params->w, params->h);
*aux = diff_game(blank, state, true, -1);
free_game(blank);
free_game(state);
sfree(scratch);
return desc;
}
static bool dots_too_close(game_state *state)
{
/* Quick-and-dirty check, using half the solver:
* solver_obvious will only fail if the dots are
* too close together, so dot-proximity associations
* overlap. */
game_state *tmp = dup_game(state);
int ret = solver_obvious(tmp);
free_game(tmp);
return ret == -1;
}
static game_state *load_game(const game_params *params, const char *desc,
const char **why_r)
{
game_state *state = blank_game(params->w, params->h);
const char *why = NULL;
int i, x, y, n;
unsigned int df;
i = 0;
while (*desc) {
n = *desc++;
if (n == 'z') {
i += 25;
continue;
}
if (n >= 'a' && n <= 'y') {
i += n - 'a';
df = 0;
} else if (n >= 'A' && n <= 'Y') {
i += n - 'A';
df = F_DOT_BLACK;
} else {
why = "Invalid characters in game description"; goto fail;
}
/* if we got here we incremented i and have a dot to add. */
y = (i / (state->sx-2)) + 1;
x = (i % (state->sx-2)) + 1;
if (!INUI(state, x, y)) {
why = "Too much data to fit in grid"; goto fail;
}
add_dot(&SPACE(state, x, y));
SPACE(state, x, y).flags |= df;
i++;
}
game_update_dots(state);
if (dots_too_close(state)) {
why = "Dots too close together"; goto fail;
}
return state;
fail:
free_game(state);
if (why_r) *why_r = why;
return NULL;
}
static const char *validate_desc(const game_params *params, const char *desc)
{
const char *why = NULL;
game_state *dummy = load_game(params, desc, &why);
if (dummy) {
free_game(dummy);
assert(!why);
} else
assert(why);
return why;
}
static game_state *new_game(midend *me, const game_params *params,
const char *desc)
{
game_state *state = load_game(params, desc, NULL);
if (!state) {
assert("Unable to load ?validated game.");
return NULL;
}
#ifdef EDITOR
state->me = me;
#endif
return state;
}
/* ----------------------------------------------------------
* Solver and all its little wizards.
*/
static int solver_recurse_depth;
typedef struct solver_ctx {
game_state *state;
int sz; /* state->sx * state->sy */
space **scratch; /* size sz */
int *dsf; /* size sz */
int *iscratch; /* size sz */
} solver_ctx;
static solver_ctx *new_solver(game_state *state)
{
solver_ctx *sctx = snew(solver_ctx);
sctx->state = state;
sctx->sz = state->sx*state->sy;
sctx->scratch = snewn(sctx->sz, space *);
sctx->dsf = snew_dsf(sctx->sz);
sctx->iscratch = snewn(sctx->sz, int);
return sctx;
}
static void free_solver(solver_ctx *sctx)
{
sfree(sctx->scratch);
sfree(sctx->dsf);
sfree(sctx->iscratch);
sfree(sctx);
}
/* Solver ideas so far:
*
* For any empty space, work out how many dots it could associate
* with:
* it needs line-of-sight
* it needs an empty space on the far side
* any adjacent lines need corresponding line possibilities.
*/
/* The solver_ctx should keep a list of dot positions, for quicker looping.
*
* Solver techniques, in order of difficulty:
* obvious adjacency to dots
* transferring tiles to opposite side
* transferring lines to opposite side
* one possible dot for a given tile based on opposite availability
* tile with 3 definite edges next to an associated tile must associate
with same dot.
*
* one possible dot for a given tile based on line-of-sight
*/
static int solver_add_assoc(game_state *state, space *tile, int dx, int dy,
const char *why)
{
space *dot, *tile_opp;
dot = &SPACE(state, dx, dy);
tile_opp = space_opposite_dot(state, tile, dot);
assert(tile->type == s_tile);
if (tile->flags & F_TILE_ASSOC) {
if ((tile->dotx != dx) || (tile->doty != dy)) {
solvep(("%*sSet %d,%d --> %d,%d (%s) impossible; "
"already --> %d,%d.\n",
solver_recurse_depth*4, "",
tile->x, tile->y, dx, dy, why,
tile->dotx, tile->doty));
return -1;
}
return 0; /* no-op */
}
if (!tile_opp) {
solvep(("%*s%d,%d --> %d,%d impossible, no opposite tile.\n",
solver_recurse_depth*4, "", tile->x, tile->y, dx, dy));
return -1;
}
if (tile_opp->flags & F_TILE_ASSOC &&
(tile_opp->dotx != dx || tile_opp->doty != dy)) {
solvep(("%*sSet %d,%d --> %d,%d (%s) impossible; "
"opposite already --> %d,%d.\n",
solver_recurse_depth*4, "",
tile->x, tile->y, dx, dy, why,
tile_opp->dotx, tile_opp->doty));
return -1;
}
add_assoc(state, tile, dot);
add_assoc(state, tile_opp, dot);
solvep(("%*sSetting %d,%d --> %d,%d (%s).\n",
solver_recurse_depth*4, "",
tile->x, tile->y,dx, dy, why));
solvep(("%*sSetting %d,%d --> %d,%d (%s, opposite).\n",
solver_recurse_depth*4, "",
tile_opp->x, tile_opp->y, dx, dy, why));
return 1;
}
static int solver_obvious_dot(game_state *state, space *dot)
{
int dx, dy, ret, didsth = 0;
space *tile;
debug(("%*ssolver_obvious_dot for %d,%d.\n",
solver_recurse_depth*4, "", dot->x, dot->y));
assert(dot->flags & F_DOT);
for (dx = -1; dx <= 1; dx++) {
for (dy = -1; dy <= 1; dy++) {
if (!INGRID(state, dot->x+dx, dot->y+dy)) continue;
tile = &SPACE(state, dot->x+dx, dot->y+dy);
if (tile->type == s_tile) {
ret = solver_add_assoc(state, tile, dot->x, dot->y,
"next to dot");
if (ret < 0) return -1;
if (ret > 0) didsth = 1;
}
}
}
return didsth;
}
static int solver_obvious(game_state *state)
{
int i, didsth = 0, ret;
debug(("%*ssolver_obvious.\n", solver_recurse_depth*4, ""));
for (i = 0; i < state->ndots; i++) {
ret = solver_obvious_dot(state, state->dots[i]);
if (ret < 0) return -1;
if (ret > 0) didsth = 1;
}
return didsth;
}
static int solver_lines_opposite_cb(game_state *state, space *edge, void *ctx)
{
int didsth = 0, n, dx, dy;
space *tiles[2], *tile_opp, *edge_opp;
assert(edge->type == s_edge);
tiles_from_edge(state, edge, tiles);
/* if tiles[0] && tiles[1] && they're both associated
* and they're both associated with different dots,
* ensure the line is set. */
if (!(edge->flags & F_EDGE_SET) &&
tiles[0] && tiles[1] &&
(tiles[0]->flags & F_TILE_ASSOC) &&
(tiles[1]->flags & F_TILE_ASSOC) &&
(tiles[0]->dotx != tiles[1]->dotx ||
tiles[0]->doty != tiles[1]->doty)) {
/* No edge, but the two adjacent tiles are both
* associated with different dots; add the edge. */
solvep(("%*sSetting edge %d,%d - tiles different dots.\n",
solver_recurse_depth*4, "", edge->x, edge->y));
edge->flags |= F_EDGE_SET;
didsth = 1;
}
if (!(edge->flags & F_EDGE_SET)) return didsth;
for (n = 0; n < 2; n++) {
if (!tiles[n]) continue;
assert(tiles[n]->type == s_tile);
if (!(tiles[n]->flags & F_TILE_ASSOC)) continue;
tile_opp = tile_opposite(state, tiles[n]);
if (!tile_opp) {
solvep(("%*simpossible: edge %d,%d has assoc. tile %d,%d"
" with no opposite.\n",
solver_recurse_depth*4, "",
edge->x, edge->y, tiles[n]->x, tiles[n]->y));
/* edge of tile has no opposite edge (off grid?);
* this is impossible. */
return -1;
}
dx = tiles[n]->x - edge->x;
dy = tiles[n]->y - edge->y;
assert(INGRID(state, tile_opp->x+dx, tile_opp->y+dy));
edge_opp = &SPACE(state, tile_opp->x+dx, tile_opp->y+dy);
if (!(edge_opp->flags & F_EDGE_SET)) {
solvep(("%*sSetting edge %d,%d as opposite %d,%d\n",
solver_recurse_depth*4, "",
tile_opp->x+dx, tile_opp->y+dy, edge->x, edge->y));
edge_opp->flags |= F_EDGE_SET;
didsth = 1;
}
}
return didsth;
}
static int solver_spaces_oneposs_cb(game_state *state, space *tile, void *ctx)
{
int n, eset, ret;
space *edgeadj[4], *tileadj[4];
int dotx, doty;
assert(tile->type == s_tile);
if (tile->flags & F_TILE_ASSOC) return 0;
adjacencies(state, tile, edgeadj, tileadj);
/* Empty tile. If each edge is either set, or associated with
* the same dot, we must also associate with dot. */
eset = 0; dotx = -1; doty = -1;
for (n = 0; n < 4; n++) {
assert(edgeadj[n]);
assert(edgeadj[n]->type == s_edge);
if (edgeadj[n]->flags & F_EDGE_SET) {
eset++;
} else {
assert(tileadj[n]);
assert(tileadj[n]->type == s_tile);
/* If an adjacent tile is empty we can't make any deductions.*/
if (!(tileadj[n]->flags & F_TILE_ASSOC))
return 0;
/* If an adjacent tile is assoc. with a different dot
* we can't make any deductions. */
if (dotx != -1 && doty != -1 &&
(tileadj[n]->dotx != dotx ||
tileadj[n]->doty != doty))
return 0;
dotx = tileadj[n]->dotx;
doty = tileadj[n]->doty;
}
}
if (eset == 4) {
solvep(("%*simpossible: empty tile %d,%d has 4 edges\n",
solver_recurse_depth*4, "",
tile->x, tile->y));
return -1;
}
assert(dotx != -1 && doty != -1);
ret = solver_add_assoc(state, tile, dotx, doty, "rest are edges");
if (ret == -1) return -1;
assert(ret != 0); /* really should have done something. */
return 1;
}
/* Improved algorithm for tracking line-of-sight from dots, and not spaces.
*
* The solver_ctx already stores a list of dots: the algorithm proceeds by
* expanding outwards from each dot in turn, expanding first to the boundary
* of its currently-connected tile and then to all empty tiles that could see
* it. Empty tiles will be flagged with a 'can see dot <x,y>' sticker.
*
* Expansion will happen by (symmetrically opposite) pairs of squares; if
* a square hasn't an opposite number there's no point trying to expand through
* it. Empty tiles will therefore also be tagged in pairs.
*
* If an empty tile already has a 'can see dot <x,y>' tag from a previous dot,
* it (and its partner) gets untagged (or, rather, a 'can see two dots' tag)
* because we're looking for single-dot possibilities.
*
* Once we've gone through all the dots, any which still have a 'can see dot'
* tag get associated with that dot (because it must have been the only one);
* any without any tag (i.e. that could see _no_ dots) cause an impossibility
* marked.
*
* The expansion will happen each time with a stored list of (space *) pairs,
* rather than a mark-and-sweep idea; that's horrifically inefficient.
*
* expansion algorithm:
*
* * allocate list of (space *) the size of s->sx*s->sy.
* * allocate second grid for (flags, dotx, doty) size of sx*sy.
*
* clear second grid (flags = 0, all dotx and doty = 0)
* flags: F_REACHABLE, F_MULTIPLE
*
*
* * for each dot, start with one pair of tiles that are associated with it --
* * vertex --> (dx+1, dy+1), (dx-1, dy-1)
* * edge --> (adj1, adj2)
* * tile --> (tile, tile) ???
* * mark that pair of tiles with F_MARK, clear all other F_MARKs.
* * add two tiles to start of list.
*
* set start = 0, end = next = 2
*
* from (start to end-1, step 2) {
* * we have two tiles (t1, t2), opposites wrt our dot.
* * for each (at1) sensible adjacent tile to t1 (i.e. not past an edge):
* * work out at2 as the opposite to at1
* * assert at1 and at2 have the same F_MARK values.
* * if at1 & F_MARK ignore it (we've been there on a previous sweep)
* * if either are associated with a different dot
* * mark both with F_MARK (so we ignore them later)
* * otherwise (assoc. with our dot, or empty):
* * mark both with F_MARK
* * add their space * values to the end of the list, set next += 2.
* }
*
* if (end == next)
* * we didn't add any new squares; exit the loop.
* else
* * set start = next+1, end = next. go round again
*
* We've finished expanding from the dot. Now, for each square we have
* in our list (--> each square with F_MARK):
* * if the tile is empty:
* * if F_REACHABLE was already set
* * set F_MULTIPLE
* * otherwise
* * set F_REACHABLE, set dotx and doty to our dot.
*
* Then, continue the whole thing for each dot in turn.
*
* Once we've done for each dot, go through the entire grid looking for
* empty tiles: for each empty tile:
* if F_REACHABLE and not F_MULTIPLE, set that dot (and its double)
* if !F_REACHABLE, return as impossible.
*
*/
/* Returns true if this tile is either already associated with this dot,
* or blank. */
static bool solver_expand_checkdot(space *tile, space *dot)
{
if (!(tile->flags & F_TILE_ASSOC)) return true;
if (tile->dotx == dot->x && tile->doty == dot->y) return true;
return false;
}
static void solver_expand_fromdot(game_state *state, space *dot, solver_ctx *sctx)
{
int i, j, x, y, start, end, next;
space *sp;
/* Clear the grid of the (space) flags we'll use. */
/* This is well optimised; analysis showed that:
for (i = 0; i < sctx->sz; i++) state->grid[i].flags &= ~F_MARK;
took up ~85% of the total function time! */
for (y = 1; y < state->sy; y += 2) {
sp = &SPACE(state, 1, y);
for (x = 1; x < state->sx; x += 2, sp += 2)
sp->flags &= ~F_MARK;
}
/* Seed the list of marked squares with two that must be associated
* with our dot (possibly the same space) */
if (dot->type == s_tile) {
sctx->scratch[0] = sctx->scratch[1] = dot;
} else if (dot->type == s_edge) {
tiles_from_edge(state, dot, sctx->scratch);
} else if (dot->type == s_vertex) {
/* pick two of the opposite ones arbitrarily. */
sctx->scratch[0] = &SPACE(state, dot->x-1, dot->y-1);
sctx->scratch[1] = &SPACE(state, dot->x+1, dot->y+1);
}
assert(sctx->scratch[0]->flags & F_TILE_ASSOC);
assert(sctx->scratch[1]->flags & F_TILE_ASSOC);
sctx->scratch[0]->flags |= F_MARK;
sctx->scratch[1]->flags |= F_MARK;
debug(("%*sexpand from dot %d,%d seeded with %d,%d and %d,%d.\n",
solver_recurse_depth*4, "", dot->x, dot->y,
sctx->scratch[0]->x, sctx->scratch[0]->y,
sctx->scratch[1]->x, sctx->scratch[1]->y));
start = 0; end = 2; next = 2;
expand:
debug(("%*sexpand: start %d, end %d, next %d\n",
solver_recurse_depth*4, "", start, end, next));
for (i = start; i < end; i += 2) {
space *t1 = sctx->scratch[i]/*, *t2 = sctx->scratch[i+1]*/;
space *edges[4], *tileadj[4], *tileadj2;
adjacencies(state, t1, edges, tileadj);
for (j = 0; j < 4; j++) {
assert(edges[j]);
if (edges[j]->flags & F_EDGE_SET) continue;
assert(tileadj[j]);
if (tileadj[j]->flags & F_MARK) continue; /* seen before. */
/* We have a tile adjacent to t1; find its opposite. */
tileadj2 = space_opposite_dot(state, tileadj[j], dot);
if (!tileadj2) {
debug(("%*sMarking %d,%d, no opposite.\n",
solver_recurse_depth*4, "",
tileadj[j]->x, tileadj[j]->y));
tileadj[j]->flags |= F_MARK;
continue; /* no opposite, so mark for next time. */
}
/* If the tile had an opposite we should have either seen both of
* these, or neither of these, before. */
assert(!(tileadj2->flags & F_MARK));
if (solver_expand_checkdot(tileadj[j], dot) &&
solver_expand_checkdot(tileadj2, dot)) {
/* Both tiles could associate with this dot; add them to
* our list. */
debug(("%*sAdding %d,%d and %d,%d to possibles list.\n",
solver_recurse_depth*4, "",
tileadj[j]->x, tileadj[j]->y, tileadj2->x, tileadj2->y));
sctx->scratch[next++] = tileadj[j];
sctx->scratch[next++] = tileadj2;
}
/* Either way, we've seen these tiles already so mark them. */
debug(("%*sMarking %d,%d and %d,%d.\n",
solver_recurse_depth*4, "",
tileadj[j]->x, tileadj[j]->y, tileadj2->x, tileadj2->y));
tileadj[j]->flags |= F_MARK;
tileadj2->flags |= F_MARK;
}
}
if (next > end) {
/* We added more squares; go back and try again. */
start = end; end = next; goto expand;
}
/* We've expanded as far as we can go. Now we update the main flags
* on all tiles we've expanded into -- if they were empty, we have
* found possible associations for this dot. */
for (i = 0; i < end; i++) {
if (sctx->scratch[i]->flags & F_TILE_ASSOC) continue;
if (sctx->scratch[i]->flags & F_REACHABLE) {
/* This is (at least) the second dot this tile could
* associate with. */
debug(("%*sempty tile %d,%d could assoc. other dot %d,%d\n",
solver_recurse_depth*4, "",
sctx->scratch[i]->x, sctx->scratch[i]->y, dot->x, dot->y));
sctx->scratch[i]->flags |= F_MULTIPLE;
} else {
/* This is the first (possibly only) dot. */
debug(("%*sempty tile %d,%d could assoc. 1st dot %d,%d\n",
solver_recurse_depth*4, "",
sctx->scratch[i]->x, sctx->scratch[i]->y, dot->x, dot->y));
sctx->scratch[i]->flags |= F_REACHABLE;
sctx->scratch[i]->dotx = dot->x;
sctx->scratch[i]->doty = dot->y;
}
}
dbg_state(state);
}
static int solver_expand_postcb(game_state *state, space *tile, void *ctx)
{
assert(tile->type == s_tile);
if (tile->flags & F_TILE_ASSOC) return 0;
if (!(tile->flags & F_REACHABLE)) {
solvep(("%*simpossible: space (%d,%d) can reach no dots.\n",
solver_recurse_depth*4, "", tile->x, tile->y));
return -1;
}
if (tile->flags & F_MULTIPLE) return 0;
return solver_add_assoc(state, tile, tile->dotx, tile->doty,
"single possible dot after expansion");
}
static int solver_expand_dots(game_state *state, solver_ctx *sctx)
{
int i;
for (i = 0; i < sctx->sz; i++)
state->grid[i].flags &= ~(F_REACHABLE|F_MULTIPLE);
for (i = 0; i < state->ndots; i++)
solver_expand_fromdot(state, state->dots[i], sctx);
return foreach_tile(state, solver_expand_postcb, IMPOSSIBLE_QUITS, sctx);
}
static int solver_extend_exclaves(game_state *state, solver_ctx *sctx)
{
int x, y, done_something = 0;
/*
* Make a dsf by unifying any two adjacent tiles associated with
* the same dot. This will identify separate connected components
* of the tiles belonging to a given dot. Any such component that
* doesn't contain its own dot is an 'exclave', and will need some
* kind of path of tiles to connect it back to the dot.
*/
dsf_init(sctx->dsf, sctx->sz);
for (x = 1; x < state->sx; x += 2) {
for (y = 1; y < state->sy; y += 2) {
int dotx, doty;
space *tile, *othertile;
tile = &SPACE(state, x, y);
if (!(tile->flags & F_TILE_ASSOC))
continue; /* not associated with any dot */
dotx = tile->dotx;
doty = tile->doty;
if (INGRID(state, x+2, y)) {
othertile = &SPACE(state, x+2, y);
if ((othertile->flags & F_TILE_ASSOC) &&
othertile->dotx == dotx && othertile->doty == doty)
dsf_merge(sctx->dsf, y*state->sx+x, y*state->sx+(x+2));
}
if (INGRID(state, x, y+2)) {
othertile = &SPACE(state, x, y+2);
if ((othertile->flags & F_TILE_ASSOC) &&
othertile->dotx == dotx && othertile->doty == doty)
dsf_merge(sctx->dsf, y*state->sx+x, (y+2)*state->sx+x);
}
}
}
/*
* Go through the grid again, and count the 'liberties' of each
* connected component, in the Go sense, i.e. the number of
* currently unassociated squares adjacent to the component. The
* idea is that if an exclave has just one liberty, then that
* square _must_ extend the exclave, or else it will be completely
* cut off from connecting back to its home dot.
*
* We need to count each adjacent square just once, even if it
* borders the component on multiple edges. So we'll go through
* each unassociated square, check all four of its neighbours, and
* de-duplicate them.
*
* We'll store the count of liberties in the entry of iscratch
* corresponding to the square centre (i.e. with odd coordinates).
* Every time we find a liberty, we store its index in the square
* to the left of that, so that when a component has exactly one
* liberty we can remember what it was.
*
* Square centres that are not the canonical dsf element of a
* connected component will get their liberty count set to -1,
* which will allow us to identify them in the later loop (after
* we start making changes and need to spot that an associated
* square _now_ was not associated when the dsf was built).
*/
/* Initialise iscratch */
for (x = 1; x < state->sx; x += 2) {
for (y = 1; y < state->sy; y += 2) {
int index = y * state->sx + x;
if (!(SPACE(state, x, y).flags & F_TILE_ASSOC) ||
dsf_canonify(sctx->dsf, index) != index) {
sctx->iscratch[index] = -1; /* mark as not a component */
} else {
sctx->iscratch[index] = 0; /* zero liberty count */
sctx->iscratch[index-1] = 0; /* initialise neighbour id */
}
}
}
/* Find each unassociated square and see what it's a liberty of */
for (x = 1; x < state->sx; x += 2) {
for (y = 1; y < state->sy; y += 2) {
int dx, dy, ni[4], nn, i;
if ((SPACE(state, x, y).flags & F_TILE_ASSOC))
continue; /* not an unassociated square */
/* Find distinct indices of adjacent components */
nn = 0;
for (dx = -1; dx <= 1; dx++) {
for (dy = -1; dy <= 1; dy++) {
if (dx != 0 && dy != 0) continue;
if (dx == 0 && dy == 0) continue;
if (INGRID(state, x+2*dx, y+2*dy) &&
(SPACE(state, x+2*dx, y+2*dy).flags & F_TILE_ASSOC)) {
/* Find id of the component adjacent to x,y */
int nindex = (y+2*dy) * state->sx + (x+2*dx);
nindex = dsf_canonify(sctx->dsf, nindex);
/* See if we've seen it before in another direction */
for (i = 0; i < nn; i++)
if (ni[i] == nindex)
break;
if (i == nn) {
/* No, it's new. Mark x,y as a liberty of it */
sctx->iscratch[nindex]++;
assert(nindex > 0);
sctx->iscratch[nindex-1] = y * state->sx + x;
/* And record this component as having been seen */
ni[nn++] = nindex;
}
}
}
}
}
}
/*
* Now we have all the data we need to find exclaves with exactly
* one liberty. In each case, associate the unique liberty square
* with the same dot.
*/
for (x = 1; x < state->sx; x += 2) {
for (y = 1; y < state->sy; y += 2) {
int index, dotx, doty, ex, ey, added;
space *tile;
index = y*state->sx+x;
if (sctx->iscratch[index] == -1)
continue; /* wasn't canonical when dsf was built */
tile = &SPACE(state, x, y);
if (!(tile->flags & F_TILE_ASSOC))
continue; /* not associated with any dot */
dotx = tile->dotx;
doty = tile->doty;
if (index == dsf_canonify(
sctx->dsf, (doty | 1) * state->sx + (dotx | 1)))
continue; /* not an exclave - contains its own dot */
if (sctx->iscratch[index] == 0) {
solvep(("%*sExclave at %d,%d has no liberties!\n",
solver_recurse_depth*4, "", x, y));
return -1;
}
if (sctx->iscratch[index] != 1)
continue; /* more than one liberty, can't be sure which */
assert(sctx->iscratch[index-1] != 0);
ex = sctx->iscratch[index-1] % state->sx;
ey = sctx->iscratch[index-1] / state->sx;
tile = &SPACE(state, ex, ey);
if (tile->flags & F_TILE_ASSOC)
continue; /* already done by earlier iteration of this loop */
added = solver_add_assoc(state, tile, dotx, doty,
"to connect exclave");
if (added < 0)
return -1;
if (added > 0)
done_something = 1;
}
}
return done_something;
}
struct recurse_ctx {
space *best;
int bestn;
};
static int solver_recurse_cb(game_state *state, space *tile, void *ctx)
{
struct recurse_ctx *rctx = (struct recurse_ctx *)ctx;
int i, n = 0;
assert(tile->type == s_tile);
if (tile->flags & F_TILE_ASSOC) return 0;
/* We're unassociated: count up all the dots we could associate with. */
for (i = 0; i < state->ndots; i++) {
if (dotfortile(state, tile, state->dots[i]))
n++;
}
if (n > rctx->bestn) {
rctx->bestn = n;
rctx->best = tile;
}
return 0;
}
#define MAXRECURSE 5
static int solver_recurse(game_state *state, int maxdiff)
{
int diff = DIFF_IMPOSSIBLE, ret, n, gsz = state->sx * state->sy;
space *ingrid, *outgrid = NULL, *bestopp;
struct recurse_ctx rctx;
if (solver_recurse_depth >= MAXRECURSE) {
solvep(("Limiting recursion to %d, returning.\n", MAXRECURSE));
return DIFF_UNFINISHED;
}
/* Work out the cell to recurse on; go through all unassociated tiles
* and find which one has the most possible dots it could associate
* with. */
rctx.best = NULL;
rctx.bestn = 0;
foreach_tile(state, solver_recurse_cb, 0, &rctx);
if (rctx.bestn == 0) return DIFF_IMPOSSIBLE; /* or assert? */
assert(rctx.best);
solvep(("%*sRecursing around %d,%d, with %d possible dots.\n",
solver_recurse_depth*4, "",
rctx.best->x, rctx.best->y, rctx.bestn));
solver_recurse_depth++;
ingrid = snewn(gsz, space);
memcpy(ingrid, state->grid, gsz * sizeof(space));
for (n = 0; n < state->ndots; n++) {
memcpy(state->grid, ingrid, gsz * sizeof(space));
if (!dotfortile(state, rctx.best, state->dots[n])) continue;
/* set cell (temporarily) pointing to that dot. */
solver_add_assoc(state, rctx.best,
state->dots[n]->x, state->dots[n]->y,
"Attempting for recursion");
ret = solver_state_inner(state, maxdiff);
if (diff == DIFF_IMPOSSIBLE && ret != DIFF_IMPOSSIBLE) {
/* we found our first solved grid; copy it away. */
assert(!outgrid);
outgrid = snewn(gsz, space);
memcpy(outgrid, state->grid, gsz * sizeof(space));
}
/* reset cell back to unassociated. */
bestopp = tile_opposite(state, rctx.best);
assert(bestopp && bestopp->flags & F_TILE_ASSOC);
remove_assoc(state, rctx.best);
remove_assoc(state, bestopp);
if (ret == DIFF_AMBIGUOUS || ret == DIFF_UNFINISHED)
diff = ret;
else if (ret == DIFF_IMPOSSIBLE)
/* no change */;
else {
/* precisely one solution */
if (diff == DIFF_IMPOSSIBLE)
diff = DIFF_UNREASONABLE;
else
diff = DIFF_AMBIGUOUS;
}
/* if we've found >1 solution, or ran out of recursion,
* give up immediately. */
if (diff == DIFF_AMBIGUOUS || diff == DIFF_UNFINISHED)
break;
}
solver_recurse_depth--;
if (outgrid) {
/* we found (at least one) soln; copy it back to state */
memcpy(state->grid, outgrid, gsz * sizeof(space));
sfree(outgrid);
}
sfree(ingrid);
return diff;
}
static int solver_state_inner(game_state *state, int maxdiff)
{
solver_ctx *sctx = new_solver(state);
int ret, diff = DIFF_NORMAL;
#ifdef STANDALONE_PICTURE_GENERATOR
/* hack, hack: set picture to NULL during solving so that add_assoc
* won't complain when we attempt recursive guessing and guess wrong */
int *savepic = picture;
picture = NULL;
#endif
ret = solver_obvious(state);
if (ret < 0) {
diff = DIFF_IMPOSSIBLE;
goto got_result;
}
#define CHECKRET(d) do { \
if (ret < 0) { diff = DIFF_IMPOSSIBLE; goto got_result; } \
if (ret > 0) { diff = max(diff, (d)); goto cont; } \
} while(0)
while (1) {
cont:
ret = foreach_edge(state, solver_lines_opposite_cb,
IMPOSSIBLE_QUITS, sctx);
CHECKRET(DIFF_NORMAL);
ret = foreach_tile(state, solver_spaces_oneposs_cb,
IMPOSSIBLE_QUITS, sctx);
CHECKRET(DIFF_NORMAL);
ret = solver_expand_dots(state, sctx);
CHECKRET(DIFF_NORMAL);
ret = solver_extend_exclaves(state, sctx);
CHECKRET(DIFF_NORMAL);
if (maxdiff <= DIFF_NORMAL)
break;
/* harder still? */
/* if we reach here, we've made no deductions, so we terminate. */
break;
}
if (check_complete(state, NULL, NULL)) goto got_result;
diff = (maxdiff >= DIFF_UNREASONABLE) ?
solver_recurse(state, maxdiff) : DIFF_UNFINISHED;
got_result:
free_solver(sctx);
#ifndef STANDALONE_SOLVER
debug(("solver_state ends, diff %s:\n", galaxies_diffnames[diff]));
dbg_state(state);
#endif
#ifdef STANDALONE_PICTURE_GENERATOR
picture = savepic;
#endif
return diff;
}
static int solver_state(game_state *state, int maxdiff)
{
solver_recurse_depth = 0;
return solver_state_inner(state, maxdiff);
}
#ifndef EDITOR
static char *solve_game(const game_state *state, const game_state *currstate,
const char *aux, const char **error)
{
game_state *tosolve;
char *ret;
int i;
int diff;
if (aux) {
tosolve = execute_move(state, aux);
goto solved;
} else {
tosolve = dup_game(currstate);
diff = solver_state(tosolve, DIFF_UNREASONABLE);
if (diff != DIFF_UNFINISHED && diff != DIFF_IMPOSSIBLE) {
debug(("solve_game solved with current state.\n"));
goto solved;
}
free_game(tosolve);
tosolve = dup_game(state);
diff = solver_state(tosolve, DIFF_UNREASONABLE);
if (diff != DIFF_UNFINISHED && diff != DIFF_IMPOSSIBLE) {
debug(("solve_game solved with original state.\n"));
goto solved;
}
free_game(tosolve);
}
return NULL;
solved:
/*
* Clear tile associations: the solution will only include the
* edges.
*/
for (i = 0; i < tosolve->sx*tosolve->sy; i++)
tosolve->grid[i].flags &= ~F_TILE_ASSOC;
ret = diff_game(currstate, tosolve, true, -1);
free_game(tosolve);
return ret;
}
#endif
/* ----------------------------------------------------------
* User interface.
*/
struct game_ui {
bool dragging;
int dx, dy; /* pixel coords of drag pos. */
int dotx, doty; /* grid coords of dot we're dragging from. */
int srcx, srcy; /* grid coords of drag start */
int cur_x, cur_y;
bool cur_visible;
};
static game_ui *new_ui(const game_state *state)
{
game_ui *ui = snew(game_ui);
ui->dragging = false;
ui->cur_x = ui->cur_y = 1;
ui->cur_visible = false;
return ui;
}
static void free_ui(game_ui *ui)
{
sfree(ui);
}
static char *encode_ui(const game_ui *ui)
{
return NULL;
}
static void decode_ui(game_ui *ui, const char *encoding)
{
}
static void game_changed_state(game_ui *ui, const game_state *oldstate,
const game_state *newstate)
{
}
#define FLASH_TIME 0.15F
#define PREFERRED_TILE_SIZE 32
#define TILE_SIZE (ds->tilesize)
#define DOT_SIZE (TILE_SIZE / 4)
#define EDGE_THICKNESS (max(TILE_SIZE / 16, 2))
#define BORDER TILE_SIZE
#define COORD(x) ( (x) * TILE_SIZE + BORDER )
#define SCOORD(x) ( ((x) * TILE_SIZE)/2 + BORDER )
#define FROMCOORD(x) ( ((x) - BORDER) / TILE_SIZE )
#define DRAW_WIDTH (BORDER * 2 + ds->w * TILE_SIZE)
#define DRAW_HEIGHT (BORDER * 2 + ds->h * TILE_SIZE)
#define CURSOR_SIZE DOT_SIZE
struct game_drawstate {
bool started;
int w, h;
int tilesize;
unsigned long *grid;
int *dx, *dy;
blitter *bl;
blitter *blmirror;
bool dragging;
int dragx, dragy, oppx, oppy;
int *colour_scratch;
int cx, cy;
bool cur_visible;
blitter *cur_bl;
};
#define CORNER_TOLERANCE 0.15F
#define CENTRE_TOLERANCE 0.15F
/*
* Round FP coordinates to the centre of the nearest edge.
*/
#ifndef EDITOR
static void coord_round_to_edge(float x, float y, int *xr, int *yr)
{
float xs, ys, xv, yv, dx, dy;
/*
* Find the nearest square-centre.
*/
xs = (float)floor(x) + 0.5F;
ys = (float)floor(y) + 0.5F;
/*
* Find the nearest grid vertex.
*/
xv = (float)floor(x + 0.5F);
yv = (float)floor(y + 0.5F);
/*
* Determine whether the horizontal or vertical edge from that
* vertex alongside that square is closer to us, by comparing
* distances from the square cente.
*/
dx = (float)fabs(x - xs);
dy = (float)fabs(y - ys);
if (dx > dy) {
/* Vertical edge: x-coord of corner,
* y-coord of square centre. */
*xr = 2 * (int)xv;
*yr = 1 + 2 * (int)floor(ys);
} else {
/* Horizontal edge: x-coord of square centre,
* y-coord of corner. */
*xr = 1 + 2 * (int)floor(xs);
*yr = 2 * (int)yv;
}
}
#endif
#ifdef EDITOR
static char *interpret_move(const game_state *state, game_ui *ui,
const game_drawstate *ds,
int x, int y, int button)
{
char buf[80];
int px, py;
space *sp;
px = 2*FROMCOORD((float)x) + 0.5F;
py = 2*FROMCOORD((float)y) + 0.5F;
if (button == 'C' || button == 'c') return dupstr("C");
if (button == 'S' || button == 's') {
char *ret;
game_state *tmp = dup_game(state);
int cdiff = solver_state(tmp, DIFF_UNREASONABLE-1);
ret = diff_game(state, tmp, 0, cdiff);
free_game(tmp);
return ret;
}
if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
if (!INUI(state, px, py)) return NULL;
sp = &SPACE(state, px, py);
if (!dot_is_possible(state, sp, 1)) return NULL;
sprintf(buf, "%c%d,%d",
(char)((button == LEFT_BUTTON) ? 'D' : 'd'), px, py);
return dupstr(buf);
}
return NULL;
}
#else
static bool edge_placement_legal(const game_state *state, int x, int y)
{
space *sp = &SPACE(state, x, y);
if (sp->type != s_edge)
return false; /* this is a face-centre or a grid vertex */
/* Check this line doesn't actually intersect a dot */
unsigned int flags = (GRID(state, grid, x, y).flags |
GRID(state, grid, x & ~1U, y & ~1U).flags |
GRID(state, grid, (x+1) & ~1U, (y+1) & ~1U).flags);
if (flags & F_DOT)
return false;
return true;
}
static const char *current_key_label(const game_ui *ui,
const game_state *state, int button)
{
space *sp;
if (IS_CURSOR_SELECT(button) && ui->cur_visible) {
sp = &SPACE(state, ui->cur_x, ui->cur_y);
if (ui->dragging) {
if (ui->cur_x == ui->srcx && ui->cur_y == ui->srcy)
return "Cancel";
if (ok_to_add_assoc_with_opposite(
state, &SPACE(state, ui->cur_x, ui->cur_y),
&SPACE(state, ui->dotx, ui->doty)))
return "Place";
return (ui->srcx == ui->dotx && ui->srcy == ui->doty) ?
"Cancel" : "Remove";
} else if (sp->flags & F_DOT)
return "New arrow";
else if (sp->flags & F_TILE_ASSOC)
return "Move arrow";
else if (sp->type == s_edge &&
edge_placement_legal(state, ui->cur_x, ui->cur_y))
return (sp->flags & F_EDGE_SET) ? "Clear" : "Edge";
}
return "";
}
static char *interpret_move(const game_state *state, game_ui *ui,
const game_drawstate *ds,
int x, int y, int button)
{
/* UI operations (play mode):
*
* Toggle edge (set/unset) (left-click on edge)
* Associate space with dot (left-drag from dot)
* Unassociate space (left-drag from space off grid)
* Autofill lines around shape? (right-click?)
*
* (edit mode; will clear all lines/associations)
*
* Add or remove dot (left-click)
*/
char buf[80];
const char *sep = "";
int px, py;
space *sp, *dot;
buf[0] = '\0';
if (button == 'H' || button == 'h') {
char *ret;
game_state *tmp = dup_game(state);
solver_obvious(tmp);
ret = diff_game(state, tmp, false, -1);
free_game(tmp);
return ret;
}
if (button == LEFT_BUTTON) {
ui->cur_visible = false;
coord_round_to_edge(FROMCOORD((float)x), FROMCOORD((float)y),
&px, &py);
if (!INUI(state, px, py)) return NULL;
if (!edge_placement_legal(state, px, py))
return NULL;
sprintf(buf, "E%d,%d", px, py);
return dupstr(buf);
} else if (button == RIGHT_BUTTON) {
int px1, py1;
ui->cur_visible = false;
px = (int)(2*FROMCOORD((float)x) + 0.5F);
py = (int)(2*FROMCOORD((float)y) + 0.5F);
dot = NULL;
/*
* If there's a dot anywhere nearby, we pick up an arrow
* pointing at that dot.
*/
for (py1 = py-1; py1 <= py+1; py1++)
for (px1 = px-1; px1 <= px+1; px1++) {
if (px1 >= 0 && px1 < state->sx &&
py1 >= 0 && py1 < state->sy &&
x >= SCOORD(px1-1) && x < SCOORD(px1+1) &&
y >= SCOORD(py1-1) && y < SCOORD(py1+1) &&
SPACE(state, px1, py1).flags & F_DOT) {
/*
* Found a dot. Begin a drag from it.
*/
dot = &SPACE(state, px1, py1);
ui->srcx = px1;
ui->srcy = py1;
goto done; /* multi-level break */
}
}
/*
* Otherwise, find the nearest _square_, and pick up the
* same arrow as it's got on it, if any.
*/
if (!dot) {
px = 2*FROMCOORD(x+TILE_SIZE) - 1;
py = 2*FROMCOORD(y+TILE_SIZE) - 1;
if (px >= 0 && px < state->sx && py >= 0 && py < state->sy) {
sp = &SPACE(state, px, py);
if (sp->flags & F_TILE_ASSOC) {
dot = &SPACE(state, sp->dotx, sp->doty);
ui->srcx = px;
ui->srcy = py;
}
}
}
done:
/*
* Now, if we've managed to find a dot, begin a drag.
*/
if (dot) {
ui->dragging = true;
ui->dx = x;
ui->dy = y;
ui->dotx = dot->x;
ui->doty = dot->y;
return UI_UPDATE;
}
} else if (button == RIGHT_DRAG && ui->dragging) {
/* just move the drag coords. */
ui->dx = x;
ui->dy = y;
return UI_UPDATE;
} else if (button == RIGHT_RELEASE && ui->dragging) {
/*
* Drags are always targeted at a single square.
*/
px = 2*FROMCOORD(x+TILE_SIZE) - 1;
py = 2*FROMCOORD(y+TILE_SIZE) - 1;
dropped: /* We arrive here from the end of a keyboard drag. */
ui->dragging = false;
/*
* Dragging an arrow on to the same square it started from
* is a null move; just update the ui and finish.
*/
if (px == ui->srcx && py == ui->srcy)
return UI_UPDATE;
/*
* Otherwise, we remove the arrow from its starting
* square if we didn't start from a dot...
*/
if ((ui->srcx != ui->dotx || ui->srcy != ui->doty) &&
SPACE(state, ui->srcx, ui->srcy).flags & F_TILE_ASSOC) {
sprintf(buf + strlen(buf), "%sU%d,%d", sep, ui->srcx, ui->srcy);
sep = ";";
}
/*
* ... and if the square we're moving it _to_ is valid, we
* add one there instead.
*/
if (INUI(state, px, py)) {
sp = &SPACE(state, px, py);
dot = &SPACE(state, ui->dotx, ui->doty);
/*
* Exception: if it's not actually legal to add an arrow
* and its opposite at this position, we don't try,
* because otherwise we'd append an empty entry to the
* undo chain.
*/
if (ok_to_add_assoc_with_opposite(state, sp, dot))
sprintf(buf + strlen(buf), "%sA%d,%d,%d,%d",
sep, px, py, ui->dotx, ui->doty);
}
if (buf[0])
return dupstr(buf);
else
return UI_UPDATE;
} else if (IS_CURSOR_MOVE(button)) {
move_cursor(button, &ui->cur_x, &ui->cur_y, state->sx-1, state->sy-1, false);
if (ui->cur_x < 1) ui->cur_x = 1;
if (ui->cur_y < 1) ui->cur_y = 1;
ui->cur_visible = true;
if (ui->dragging) {
ui->dx = SCOORD(ui->cur_x);
ui->dy = SCOORD(ui->cur_y);
}
return UI_UPDATE;
} else if (IS_CURSOR_SELECT(button)) {
if (!ui->cur_visible) {
ui->cur_visible = true;
return UI_UPDATE;
}
sp = &SPACE(state, ui->cur_x, ui->cur_y);
if (ui->dragging) {
px = ui->cur_x; py = ui->cur_y;
goto dropped;
} else if (sp->flags & F_DOT) {
ui->dragging = true;
ui->dx = SCOORD(ui->cur_x);
ui->dy = SCOORD(ui->cur_y);
ui->dotx = ui->srcx = ui->cur_x;
ui->doty = ui->srcy = ui->cur_y;
return UI_UPDATE;
} else if (sp->flags & F_TILE_ASSOC) {
assert(sp->type == s_tile);
ui->dragging = true;
ui->dx = SCOORD(ui->cur_x);
ui->dy = SCOORD(ui->cur_y);
ui->dotx = sp->dotx;
ui->doty = sp->doty;
ui->srcx = ui->cur_x;
ui->srcy = ui->cur_y;
return UI_UPDATE;
} else if (sp->type == s_edge &&
edge_placement_legal(state, ui->cur_x, ui->cur_y)) {
sprintf(buf, "E%d,%d", ui->cur_x, ui->cur_y);
return dupstr(buf);
}
}
return NULL;
}
#endif
static bool check_complete(const game_state *state, int *dsf, int *colours)
{
int w = state->w, h = state->h;
int x, y, i;
bool ret;
bool free_dsf;
struct sqdata {
int minx, miny, maxx, maxy;
int cx, cy;
bool valid;
int colour;
} *sqdata;
if (!dsf) {
dsf = snew_dsf(w*h);
free_dsf = true;
} else {
dsf_init(dsf, w*h);
free_dsf = false;
}
/*
* During actual game play, completion checking is done on the
* basis of the edges rather than the square associations. So
* first we must go through the grid figuring out the connected
* components into which the edges divide it.
*/
for (y = 0; y < h; y++)
for (x = 0; x < w; x++) {
if (y+1 < h && !(SPACE(state, 2*x+1, 2*y+2).flags & F_EDGE_SET))
dsf_merge(dsf, y*w+x, (y+1)*w+x);
if (x+1 < w && !(SPACE(state, 2*x+2, 2*y+1).flags & F_EDGE_SET))
dsf_merge(dsf, y*w+x, y*w+(x+1));
}
/*
* That gives us our connected components. Now, for each
* component, decide whether it's _valid_. A valid component is
* one which:
*
* - is 180-degree rotationally symmetric
* - has a dot at its centre of symmetry
* - has no other dots anywhere within it (including on its
* boundary)
* - contains no internal edges (i.e. edges separating two
* squares which are both part of the component).
*/
/*
* First, go through the grid finding the bounding box of each
* component.
*/
sqdata = snewn(w*h, struct sqdata);
for (i = 0; i < w*h; i++) {
sqdata[i].minx = w+1;
sqdata[i].miny = h+1;
sqdata[i].maxx = sqdata[i].maxy = -1;
sqdata[i].valid = false;
}
for (y = 0; y < h; y++)
for (x = 0; x < w; x++) {
i = dsf_canonify(dsf, y*w+x);
if (sqdata[i].minx > x)
sqdata[i].minx = x;
if (sqdata[i].maxx < x)
sqdata[i].maxx = x;
if (sqdata[i].miny > y)
sqdata[i].miny = y;
if (sqdata[i].maxy < y)
sqdata[i].maxy = y;
sqdata[i].valid = true;
}
/*
* Now we're in a position to loop over each actual component
* and figure out where its centre of symmetry has to be if
* it's anywhere.
*/
for (i = 0; i < w*h; i++)
if (sqdata[i].valid) {
int cx, cy;
cx = sqdata[i].cx = sqdata[i].minx + sqdata[i].maxx + 1;
cy = sqdata[i].cy = sqdata[i].miny + sqdata[i].maxy + 1;
if (!(SPACE(state, sqdata[i].cx, sqdata[i].cy).flags & F_DOT))
sqdata[i].valid = false; /* no dot at centre of symmetry */
if (dsf_canonify(dsf, (cy-1)/2*w+(cx-1)/2) != i ||
dsf_canonify(dsf, (cy)/2*w+(cx-1)/2) != i ||
dsf_canonify(dsf, (cy-1)/2*w+(cx)/2) != i ||
dsf_canonify(dsf, (cy)/2*w+(cx)/2) != i)
sqdata[i].valid = false; /* dot at cx,cy isn't ours */
if (SPACE(state, sqdata[i].cx, sqdata[i].cy).flags & F_DOT_BLACK)
sqdata[i].colour = 2;
else
sqdata[i].colour = 1;
}
/*
* Now we loop over the whole grid again, this time finding
* extraneous dots (any dot which wholly or partially overlaps
* a square and is not at the centre of symmetry of that
* square's component disqualifies the component from validity)
* and extraneous edges (any edge separating two squares
* belonging to the same component also disqualifies that
* component).
*/
for (y = 1; y < state->sy-1; y++)
for (x = 1; x < state->sx-1; x++) {
space *sp = &SPACE(state, x, y);
if (sp->flags & F_DOT) {
/*
* There's a dot here. Use it to disqualify any
* component which deserves it.
*/
int cx, cy;
for (cy = (y-1) >> 1; cy <= y >> 1; cy++)
for (cx = (x-1) >> 1; cx <= x >> 1; cx++) {
i = dsf_canonify(dsf, cy*w+cx);
if (x != sqdata[i].cx || y != sqdata[i].cy)
sqdata[i].valid = false;
}
}
if (sp->flags & F_EDGE_SET) {
/*
* There's an edge here. Use it to disqualify a
* component if necessary.
*/
int cx1 = (x-1) >> 1, cx2 = x >> 1;
int cy1 = (y-1) >> 1, cy2 = y >> 1;
assert((cx1==cx2) ^ (cy1==cy2));
i = dsf_canonify(dsf, cy1*w+cx1);
if (i == dsf_canonify(dsf, cy2*w+cx2))
sqdata[i].valid = false;
}
}
/*
* And finally we test rotational symmetry: for each square in
* the grid, find which component it's in, test that that
* component also has a square in the symmetric position, and
* disqualify it if it doesn't.
*/
for (y = 0; y < h; y++)
for (x = 0; x < w; x++) {
int x2, y2;
i = dsf_canonify(dsf, y*w+x);
x2 = sqdata[i].cx - 1 - x;
y2 = sqdata[i].cy - 1 - y;
if (i != dsf_canonify(dsf, y2*w+x2))
sqdata[i].valid = false;
}
/*
* That's it. We now have all the connected components marked
* as valid or not valid. So now we return a `colours' array if
* we were asked for one, and also we return an overall
* true/false value depending on whether _every_ square in the
* grid is part of a valid component.
*/
ret = true;
for (i = 0; i < w*h; i++) {
int ci = dsf_canonify(dsf, i);
bool thisok = sqdata[ci].valid;
if (colours)
colours[i] = thisok ? sqdata[ci].colour : 0;
ret = ret && thisok;
}
sfree(sqdata);
if (free_dsf)
sfree(dsf);
return ret;
}
static game_state *execute_move(const game_state *state, const char *move)
{
int x, y, ax, ay, n, dx, dy;
game_state *ret = dup_game(state);
space *sp, *dot;
bool currently_solving = false;
debug(("%s\n", move));
while (*move) {
char c = *move;
if (c == 'E' || c == 'U' || c == 'M'
#ifdef EDITOR
|| c == 'D' || c == 'd'
#endif
) {
move++;
if (sscanf(move, "%d,%d%n", &x, &y, &n) != 2 ||
!INUI(ret, x, y))
goto badmove;
sp = &SPACE(ret, x, y);
#ifdef EDITOR
if (c == 'D' || c == 'd') {
unsigned int currf, newf, maskf;
if (!dot_is_possible(ret, sp, 1)) goto badmove;
newf = F_DOT | (c == 'd' ? F_DOT_BLACK : 0);
currf = GRID(ret, grid, x, y).flags;
maskf = F_DOT | F_DOT_BLACK;
/* if we clicked 'white dot':
* white --> empty, empty --> white, black --> white.
* if we clicked 'black dot':
* black --> empty, empty --> black, white --> black.
*/
if (currf & maskf) {
sp->flags &= ~maskf;
if ((currf & maskf) != newf)
sp->flags |= newf;
} else
sp->flags |= newf;
sp->nassoc = 0; /* edit-mode disallows associations. */
game_update_dots(ret);
} else
#endif
if (c == 'E') {
if (sp->type != s_edge) goto badmove;
sp->flags ^= F_EDGE_SET;
} else if (c == 'U') {
if (sp->type != s_tile || !(sp->flags & F_TILE_ASSOC))
goto badmove;
/* The solver doesn't assume we'll mirror things */
if (currently_solving)
remove_assoc(ret, sp);
else
remove_assoc_with_opposite(ret, sp);
} else if (c == 'M') {
if (!(sp->flags & F_DOT)) goto badmove;
sp->flags ^= F_DOT_HOLD;
}
move += n;
} else if (c == 'A' || c == 'a') {
move++;
if (sscanf(move, "%d,%d,%d,%d%n", &x, &y, &ax, &ay, &n) != 4 ||
x < 1 || y < 1 || x >= (ret->sx-1) || y >= (ret->sy-1) ||
ax < 1 || ay < 1 || ax >= (ret->sx-1) || ay >= (ret->sy-1))
goto badmove;
dot = &GRID(ret, grid, ax, ay);
if (!(dot->flags & F_DOT))goto badmove;
if (dot->flags & F_DOT_HOLD) goto badmove;
for (dx = -1; dx <= 1; dx++) {
for (dy = -1; dy <= 1; dy++) {
sp = &GRID(ret, grid, x+dx, y+dy);
if (sp->type != s_tile) continue;
if (sp->flags & F_TILE_ASSOC) {
space *dot = &SPACE(ret, sp->dotx, sp->doty);
if (dot->flags & F_DOT_HOLD) continue;
}
/* The solver doesn't assume we'll mirror things */
if (currently_solving)
add_assoc(ret, sp, dot);
else
add_assoc_with_opposite(ret, sp, dot);
}
}
move += n;
#ifdef EDITOR
} else if (c == 'C') {
move++;
clear_game(ret, true);
} else if (c == 'i') {
int diff;
move++;
for (diff = 0; diff <= DIFF_UNREASONABLE; diff++)
if (*move == galaxies_diffchars[diff])
break;
if (diff > DIFF_UNREASONABLE)
goto badmove;
ret->cdiff = diff;
move++;
} else if (c == 'I') {
int diff;
move++;
switch (*move) {
case 'A':
diff = DIFF_AMBIGUOUS;
break;
case 'I':
diff = DIFF_IMPOSSIBLE;
break;
case 'U':
diff = DIFF_UNFINISHED;
break;
default:
goto badmove;
}
ret->cdiff = diff;
move++;
#endif
} else if (c == 'S') {
move++;
ret->used_solve = true;
currently_solving = true;
} else
goto badmove;
if (*move == ';')
move++;
else if (*move)
goto badmove;
}
if (check_complete(ret, NULL, NULL))
ret->completed = true;
return ret;
badmove:
free_game(ret);
return NULL;
}
/* ----------------------------------------------------------------------
* Drawing routines.
*/
/* Lines will be much smaller size than squares; say, 1/8 the size?
*
* Need a 'top-left corner of location XxY' to take this into account;
* alternaticaly, that could give the middle of that location, and the
* drawing code would just know the expected dimensions.
*
* We also need something to take a click and work out what it was
* we were interested in. Clicking on vertices is required because
* we may want to drag from them, for example.
*/
static void game_compute_size(const game_params *params, int sz,
int *x, int *y)
{
struct { int tilesize, w, h; } ads, *ds = &ads;
ds->tilesize = sz;
ds->w = params->w;
ds->h = params->h;
*x = DRAW_WIDTH;
*y = DRAW_HEIGHT;
}
static void game_set_size(drawing *dr, game_drawstate *ds,
const game_params *params, int sz)
{
ds->tilesize = sz;
assert(TILE_SIZE > 0);
assert(!ds->bl);
ds->bl = blitter_new(dr, TILE_SIZE, TILE_SIZE);
assert(!ds->blmirror);
ds->blmirror = blitter_new(dr, TILE_SIZE, TILE_SIZE);
assert(!ds->cur_bl);
ds->cur_bl = blitter_new(dr, TILE_SIZE, TILE_SIZE);
}
static float *game_colours(frontend *fe, int *ncolours)
{
float *ret = snewn(3 * NCOLOURS, float);
int i;
/*
* We call game_mkhighlight to ensure the background colour
* isn't completely white. We don't actually use the high- and
* lowlight colours it generates.
*/
game_mkhighlight(fe, ret, COL_BACKGROUND, COL_WHITEBG, COL_BLACKBG);
for (i = 0; i < 3; i++) {
/*
* Currently, white dots and white-background squares are
* both pure white.
*/
ret[COL_WHITEDOT * 3 + i] = 1.0F;
ret[COL_WHITEBG * 3 + i] = 1.0F;
/*
* But black-background squares are a dark grey, whereas
* black dots are really black.
*/
ret[COL_BLACKDOT * 3 + i] = 0.0F;
ret[COL_BLACKBG * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 0.3F;
/*
* In unfilled squares, we draw a faint gridwork.
*/
ret[COL_GRID * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 0.8F;
/*
* Edges and arrows are filled in in pure black.
*/
ret[COL_EDGE * 3 + i] = 0.0F;
ret[COL_ARROW * 3 + i] = 0.0F;
}
#ifdef EDITOR
/* tinge the edit background to bluey */
ret[COL_BACKGROUND * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 0.8F;
ret[COL_BACKGROUND * 3 + 1] = ret[COL_BACKGROUND * 3 + 0] * 0.8F;
ret[COL_BACKGROUND * 3 + 2] = min(ret[COL_BACKGROUND * 3 + 0] * 1.4F, 1.0F);
#endif
ret[COL_CURSOR * 3 + 0] = min(ret[COL_BACKGROUND * 3 + 0] * 1.4F, 1.0F);
ret[COL_CURSOR * 3 + 1] = ret[COL_BACKGROUND * 3 + 0] * 0.8F;
ret[COL_CURSOR * 3 + 2] = ret[COL_BACKGROUND * 3 + 0] * 0.8F;
*ncolours = NCOLOURS;
return ret;
}
static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state)
{
struct game_drawstate *ds = snew(struct game_drawstate);
int i;
ds->started = false;
ds->w = state->w;
ds->h = state->h;
ds->grid = snewn(ds->w*ds->h, unsigned long);
for (i = 0; i < ds->w*ds->h; i++)
ds->grid[i] = 0xFFFFFFFFUL;
ds->dx = snewn(ds->w*ds->h, int);
ds->dy = snewn(ds->w*ds->h, int);
ds->bl = NULL;
ds->blmirror = NULL;
ds->dragging = false;
ds->dragx = ds->dragy = ds->oppx = ds->oppy = 0;
ds->colour_scratch = snewn(ds->w * ds->h, int);
ds->cur_bl = NULL;
ds->cx = ds->cy = 0;
ds->cur_visible = false;
return ds;
}
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
{
if (ds->cur_bl) blitter_free(dr, ds->cur_bl);
sfree(ds->colour_scratch);
if (ds->blmirror) blitter_free(dr, ds->blmirror);
if (ds->bl) blitter_free(dr, ds->bl);
sfree(ds->dx);
sfree(ds->dy);
sfree(ds->grid);
sfree(ds);
}
#define DRAW_EDGE_L 0x0001
#define DRAW_EDGE_R 0x0002
#define DRAW_EDGE_U 0x0004
#define DRAW_EDGE_D 0x0008
#define DRAW_CORNER_UL 0x0010
#define DRAW_CORNER_UR 0x0020
#define DRAW_CORNER_DL 0x0040
#define DRAW_CORNER_DR 0x0080
#define DRAW_WHITE 0x0100
#define DRAW_BLACK 0x0200
#define DRAW_ARROW 0x0400
#define DRAW_CURSOR 0x0800
#define DOT_SHIFT_C 12
#define DOT_SHIFT_M 2
#define DOT_WHITE 1UL
#define DOT_BLACK 2UL
/*
* Draw an arrow centred on (cx,cy), pointing in the direction
* (ddx,ddy). (I.e. pointing at the point (cx+ddx, cy+ddy).
*/
static void draw_arrow(drawing *dr, game_drawstate *ds,
int cx, int cy, int ddx, int ddy, int col)
{
int sqdist = ddx*ddx+ddy*ddy;
if (sqdist == 0)
return; /* avoid division by zero */
float vlen = (float)sqrt(sqdist);
float xdx = ddx/vlen, xdy = ddy/vlen;
float ydx = -xdy, ydy = xdx;
int e1x = cx + (int)(xdx*TILE_SIZE/3), e1y = cy + (int)(xdy*TILE_SIZE/3);
int e2x = cx - (int)(xdx*TILE_SIZE/3), e2y = cy - (int)(xdy*TILE_SIZE/3);
int adx = (int)((ydx-xdx)*TILE_SIZE/8), ady = (int)((ydy-xdy)*TILE_SIZE/8);
int adx2 = (int)((-ydx-xdx)*TILE_SIZE/8), ady2 = (int)((-ydy-xdy)*TILE_SIZE/8);
draw_line(dr, e1x, e1y, e2x, e2y, col);
draw_line(dr, e1x, e1y, e1x+adx, e1y+ady, col);
draw_line(dr, e1x, e1y, e1x+adx2, e1y+ady2, col);
}
static void draw_square(drawing *dr, game_drawstate *ds, int x, int y,
unsigned long flags, int ddx, int ddy)
{
int lx = COORD(x), ly = COORD(y);
int dx, dy;
int gridcol;
clip(dr, lx, ly, TILE_SIZE, TILE_SIZE);
/*
* Draw the tile background.
*/
draw_rect(dr, lx, ly, TILE_SIZE, TILE_SIZE,
(flags & DRAW_WHITE ? COL_WHITEBG :
flags & DRAW_BLACK ? COL_BLACKBG : COL_BACKGROUND));
/*
* Draw the grid.
*/
gridcol = (flags & DRAW_BLACK ? COL_BLACKDOT : COL_GRID);
draw_rect(dr, lx, ly, 1, TILE_SIZE, gridcol);
draw_rect(dr, lx, ly, TILE_SIZE, 1, gridcol);
/*
* Draw the arrow, if present, or the cursor, if here.
*/
if (flags & DRAW_ARROW)
draw_arrow(dr, ds, lx + TILE_SIZE/2, ly + TILE_SIZE/2, ddx, ddy,
(flags & DRAW_CURSOR) ? COL_CURSOR : COL_ARROW);
else if (flags & DRAW_CURSOR)
draw_rect_outline(dr,
lx + TILE_SIZE/2 - CURSOR_SIZE,
ly + TILE_SIZE/2 - CURSOR_SIZE,
2*CURSOR_SIZE+1, 2*CURSOR_SIZE+1,
COL_CURSOR);
/*
* Draw the edges.
*/
if (flags & DRAW_EDGE_L)
draw_rect(dr, lx, ly, EDGE_THICKNESS, TILE_SIZE, COL_EDGE);
if (flags & DRAW_EDGE_R)
draw_rect(dr, lx + TILE_SIZE - EDGE_THICKNESS + 1, ly,
EDGE_THICKNESS - 1, TILE_SIZE, COL_EDGE);
if (flags & DRAW_EDGE_U)
draw_rect(dr, lx, ly, TILE_SIZE, EDGE_THICKNESS, COL_EDGE);
if (flags & DRAW_EDGE_D)
draw_rect(dr, lx, ly + TILE_SIZE - EDGE_THICKNESS + 1,
TILE_SIZE, EDGE_THICKNESS - 1, COL_EDGE);
if (flags & DRAW_CORNER_UL)
draw_rect(dr, lx, ly, EDGE_THICKNESS, EDGE_THICKNESS, COL_EDGE);
if (flags & DRAW_CORNER_UR)
draw_rect(dr, lx + TILE_SIZE - EDGE_THICKNESS + 1, ly,
EDGE_THICKNESS - 1, EDGE_THICKNESS, COL_EDGE);
if (flags & DRAW_CORNER_DL)
draw_rect(dr, lx, ly + TILE_SIZE - EDGE_THICKNESS + 1,
EDGE_THICKNESS, EDGE_THICKNESS - 1, COL_EDGE);
if (flags & DRAW_CORNER_DR)
draw_rect(dr, lx + TILE_SIZE - EDGE_THICKNESS + 1,
ly + TILE_SIZE - EDGE_THICKNESS + 1,
EDGE_THICKNESS - 1, EDGE_THICKNESS - 1, COL_EDGE);
/*
* Draw the dots.
*/
for (dy = 0; dy < 3; dy++)
for (dx = 0; dx < 3; dx++) {
int dotval = (flags >> (DOT_SHIFT_C + DOT_SHIFT_M*(dy*3+dx)));
dotval &= (1 << DOT_SHIFT_M)-1;
if (dotval)
draw_circle(dr, lx+dx*TILE_SIZE/2, ly+dy*TILE_SIZE/2,
DOT_SIZE,
(dotval == 1 ? COL_WHITEDOT : COL_BLACKDOT),
COL_BLACKDOT);
}
unclip(dr);
draw_update(dr, lx, ly, TILE_SIZE, TILE_SIZE);
}
static void calculate_opposite_point(const game_ui *ui,
const game_drawstate *ds, const int x,
const int y, int *oppositex,
int *oppositey)
{
/* oppositex - dotx = dotx - x <=> oppositex = 2 * dotx - x */
*oppositex = 2 * SCOORD(ui->dotx) - x;
*oppositey = 2 * SCOORD(ui->doty) - y;
}
static void game_redraw(drawing *dr, game_drawstate *ds,
const game_state *oldstate, const game_state *state,
int dir, const game_ui *ui,
float animtime, float flashtime)
{
int w = ds->w, h = ds->h;
int x, y;
bool flashing = false;
if (flashtime > 0) {
int frame = (int)(flashtime / FLASH_TIME);
flashing = (frame % 2 == 0);
}
if (ds->dragging) {
assert(ds->bl);
assert(ds->blmirror);
blitter_load(dr, ds->blmirror, ds->oppx, ds->oppy);
draw_update(dr, ds->oppx, ds->oppy, TILE_SIZE, TILE_SIZE);
blitter_load(dr, ds->bl, ds->dragx, ds->dragy);
draw_update(dr, ds->dragx, ds->dragy, TILE_SIZE, TILE_SIZE);
ds->dragging = false;
}
if (ds->cur_visible) {
assert(ds->cur_bl);
blitter_load(dr, ds->cur_bl, ds->cx, ds->cy);
draw_update(dr, ds->cx, ds->cy, CURSOR_SIZE*2+1, CURSOR_SIZE*2+1);
ds->cur_visible = false;
}
if (!ds->started) {
draw_rect(dr, BORDER - EDGE_THICKNESS + 1, BORDER - EDGE_THICKNESS + 1,
w*TILE_SIZE + EDGE_THICKNESS*2 - 1,
h*TILE_SIZE + EDGE_THICKNESS*2 - 1, COL_EDGE);
draw_update(dr, 0, 0, DRAW_WIDTH, DRAW_HEIGHT);
ds->started = true;
}
check_complete(state, NULL, ds->colour_scratch);
for (y = 0; y < h; y++)
for (x = 0; x < w; x++) {
unsigned long flags = 0;
int ddx = 0, ddy = 0;
space *sp, *opp;
int dx, dy;
/*
* Set up the flags for this square. Firstly, see if we
* have edges.
*/
if (SPACE(state, x*2, y*2+1).flags & F_EDGE_SET)
flags |= DRAW_EDGE_L;
if (SPACE(state, x*2+2, y*2+1).flags & F_EDGE_SET)
flags |= DRAW_EDGE_R;
if (SPACE(state, x*2+1, y*2).flags & F_EDGE_SET)
flags |= DRAW_EDGE_U;
if (SPACE(state, x*2+1, y*2+2).flags & F_EDGE_SET)
flags |= DRAW_EDGE_D;
/*
* Also, mark corners of neighbouring edges.
*/
if ((x > 0 && SPACE(state, x*2-1, y*2).flags & F_EDGE_SET) ||
(y > 0 && SPACE(state, x*2, y*2-1).flags & F_EDGE_SET))
flags |= DRAW_CORNER_UL;
if ((x+1 < w && SPACE(state, x*2+3, y*2).flags & F_EDGE_SET) ||
(y > 0 && SPACE(state, x*2+2, y*2-1).flags & F_EDGE_SET))
flags |= DRAW_CORNER_UR;
if ((x > 0 && SPACE(state, x*2-1, y*2+2).flags & F_EDGE_SET) ||
(y+1 < h && SPACE(state, x*2, y*2+3).flags & F_EDGE_SET))
flags |= DRAW_CORNER_DL;
if ((x+1 < w && SPACE(state, x*2+3, y*2+2).flags & F_EDGE_SET) ||
(y+1 < h && SPACE(state, x*2+2, y*2+3).flags & F_EDGE_SET))
flags |= DRAW_CORNER_DR;
/*
* If this square is part of a valid region, paint it
* that region's colour. Exception: if we're flashing,
* everything goes briefly back to background colour.
*/
sp = &SPACE(state, x*2+1, y*2+1);
if (sp->flags & F_TILE_ASSOC) {
opp = tile_opposite(state, sp);
} else {
opp = NULL;
}
if (ds->colour_scratch[y*w+x] && !flashing) {
flags |= (ds->colour_scratch[y*w+x] == 2 ?
DRAW_BLACK : DRAW_WHITE);
}
/*
* If this square is associated with a dot but it isn't
* part of a valid region, draw an arrow in it pointing
* in the direction of that dot.
*
* Exception: if this is the source point of an active
* drag, we don't draw the arrow.
*/
if ((sp->flags & F_TILE_ASSOC) && !ds->colour_scratch[y*w+x]) {
if (ui->dragging && ui->srcx == x*2+1 && ui->srcy == y*2+1) {
/* tile is the source, don't do it */
} else if (ui->dragging && opp && ui->srcx == opp->x && ui->srcy == opp->y) {
/* opposite tile is the source, don't do it */
} else if (sp->doty != y*2+1 || sp->dotx != x*2+1) {
flags |= DRAW_ARROW;
ddy = sp->doty - (y*2+1);
ddx = sp->dotx - (x*2+1);
}
}
/*
* Now go through the nine possible places we could
* have dots.
*/
for (dy = 0; dy < 3; dy++)
for (dx = 0; dx < 3; dx++) {
sp = &SPACE(state, x*2+dx, y*2+dy);
if (sp->flags & F_DOT) {
unsigned long dotval = (sp->flags & F_DOT_BLACK ?
DOT_BLACK : DOT_WHITE);
flags |= dotval << (DOT_SHIFT_C +
DOT_SHIFT_M*(dy*3+dx));
}
}
/*
* Now work out if we have to draw a cursor for this square;
* cursors-on-lines are taken care of below.
*/
if (ui->cur_visible &&
ui->cur_x == x*2+1 && ui->cur_y == y*2+1 &&
!(SPACE(state, x*2+1, y*2+1).flags & F_DOT))
flags |= DRAW_CURSOR;
/*
* Now we have everything we're going to need. Draw the
* square.
*/
if (ds->grid[y*w+x] != flags ||
ds->dx[y*w+x] != ddx ||
ds->dy[y*w+x] != ddy) {
draw_square(dr, ds, x, y, flags, ddx, ddy);
ds->grid[y*w+x] = flags;
ds->dx[y*w+x] = ddx;
ds->dy[y*w+x] = ddy;
}
}
/*
* Draw a cursor. This secondary blitter is much less invasive than trying
* to fix up all of the rest of the code with sufficient flags to be able to
* display this sensibly.
*/
if (ui->cur_visible) {
space *sp = &SPACE(state, ui->cur_x, ui->cur_y);
ds->cur_visible = true;
ds->cx = SCOORD(ui->cur_x) - CURSOR_SIZE;
ds->cy = SCOORD(ui->cur_y) - CURSOR_SIZE;
blitter_save(dr, ds->cur_bl, ds->cx, ds->cy);
if (sp->flags & F_DOT) {
/* draw a red dot (over the top of whatever would be there already) */
draw_circle(dr, SCOORD(ui->cur_x), SCOORD(ui->cur_y), DOT_SIZE,
COL_CURSOR, COL_BLACKDOT);
} else if (sp->type != s_tile) {
/* draw an edge/vertex square; tile cursors are dealt with above. */
int dx = (ui->cur_x % 2) ? CURSOR_SIZE : CURSOR_SIZE/3;
int dy = (ui->cur_y % 2) ? CURSOR_SIZE : CURSOR_SIZE/3;
int x1 = SCOORD(ui->cur_x)-dx, y1 = SCOORD(ui->cur_y)-dy;
int xs = dx*2+1, ys = dy*2+1;
draw_rect(dr, x1, y1, xs, ys, COL_CURSOR);
}
draw_update(dr, ds->cx, ds->cy, CURSOR_SIZE*2+1, CURSOR_SIZE*2+1);
}
if (ui->dragging) {
int oppx, oppy;
ds->dragging = true;
ds->dragx = ui->dx - TILE_SIZE/2;
ds->dragy = ui->dy - TILE_SIZE/2;
calculate_opposite_point(ui, ds, ui->dx, ui->dy, &oppx, &oppy);
ds->oppx = oppx - TILE_SIZE/2;
ds->oppy = oppy - TILE_SIZE/2;
blitter_save(dr, ds->bl, ds->dragx, ds->dragy);
clip(dr, ds->dragx, ds->dragy, TILE_SIZE, TILE_SIZE);
draw_arrow(dr, ds, ui->dx, ui->dy, SCOORD(ui->dotx) - ui->dx,
SCOORD(ui->doty) - ui->dy, COL_ARROW);
unclip(dr);
draw_update(dr, ds->dragx, ds->dragy, TILE_SIZE, TILE_SIZE);
blitter_save(dr, ds->blmirror, ds->oppx, ds->oppy);
clip(dr, ds->oppx, ds->oppy, TILE_SIZE, TILE_SIZE);
draw_arrow(dr, ds, oppx, oppy, SCOORD(ui->dotx) - oppx,
SCOORD(ui->doty) - oppy, COL_ARROW);
unclip(dr);
draw_update(dr, ds->oppx, ds->oppy, TILE_SIZE, TILE_SIZE);
}
#ifdef EDITOR
{
char buf[256];
if (state->cdiff != -1)
sprintf(buf, "Puzzle is %s.", galaxies_diffnames[state->cdiff]);
else
buf[0] = '\0';
status_bar(dr, buf);
}
#endif
}
static float game_anim_length(const game_state *oldstate,
const game_state *newstate, int dir, game_ui *ui)
{
return 0.0F;
}
static float game_flash_length(const game_state *oldstate,
const game_state *newstate, int dir, game_ui *ui)
{
if ((!oldstate->completed && newstate->completed) &&
!(newstate->used_solve))
return 3 * FLASH_TIME;
else
return 0.0F;
}
static void game_get_cursor_location(const game_ui *ui,
const game_drawstate *ds,
const game_state *state,
const game_params *params,
int *x, int *y, int *w, int *h)
{
if(ui->cur_visible) {
space *sp = &SPACE(state, ui->cur_x, ui->cur_y);
if(sp->flags & F_DOT) {
*x = SCOORD(ui->cur_x) - DOT_SIZE;
*y = SCOORD(ui->cur_y) - DOT_SIZE;
*w = *h = 2 * DOT_SIZE + 1;
} else if(sp->type != s_tile) {
int dx = (ui->cur_x % 2) ? CURSOR_SIZE : CURSOR_SIZE/3;
int dy = (ui->cur_y % 2) ? CURSOR_SIZE : CURSOR_SIZE/3;
int x1 = SCOORD(ui->cur_x)-dx, y1 = SCOORD(ui->cur_y)-dy;
int xs = dx*2+1, ys = dy*2+1;
*x = x1;
*y = y1;
*w = xs;
*h = ys;
} else {
*x = SCOORD(ui->cur_x) - CURSOR_SIZE;
*y = SCOORD(ui->cur_y) - CURSOR_SIZE;
*w = *h = 2 * CURSOR_SIZE + 1;
}
}
}
static int game_status(const game_state *state)
{
return state->completed ? +1 : 0;
}
#ifndef EDITOR
static void game_print_size(const game_params *params, float *x, float *y)
{
int pw, ph;
/*
* 8mm squares by default. (There isn't all that much detail
* that needs to go in each square.)
*/
game_compute_size(params, 800, &pw, &ph);
*x = pw / 100.0F;
*y = ph / 100.0F;
}
static void game_print(drawing *dr, const game_state *state, int sz)
{
int w = state->w, h = state->h;
int white, black, blackish;
int x, y, i, j;
int *colours, *dsf;
int *coords = NULL;
int ncoords = 0, coordsize = 0;
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
game_drawstate ads, *ds = &ads;
ds->tilesize = sz;
white = print_mono_colour(dr, 1);
black = print_mono_colour(dr, 0);
blackish = print_hatched_colour(dr, HATCH_X);
/*
* Get the completion information.
*/
dsf = snewn(w * h, int);
colours = snewn(w * h, int);
check_complete(state, dsf, colours);
/*
* Draw the grid.
*/
print_line_width(dr, TILE_SIZE / 64);
for (x = 1; x < w; x++)
draw_line(dr, COORD(x), COORD(0), COORD(x), COORD(h), black);
for (y = 1; y < h; y++)
draw_line(dr, COORD(0), COORD(y), COORD(w), COORD(y), black);
/*
* Shade the completed regions. Just in case any particular
* printing platform deals badly with adjacent
* similarly-hatched regions, we'll fill each one as a single
* polygon.
*/
for (i = 0; i < w*h; i++) {
j = dsf_canonify(dsf, i);
if (colours[j] != 0) {
int dx, dy, t;
/*
* This is the first square we've run into belonging to
* this polyomino, which means an edge of the polyomino
* is certain to be to our left. (After we finish
* tracing round it, we'll set the colours[] entry to
* zero to prevent accidentally doing it again.)
*/
x = i % w;
y = i / w;
dx = -1;
dy = 0;
ncoords = 0;
while (1) {
/*
* We are currently sitting on square (x,y), which
* we know to be in our polyomino, and we also know
* that (x+dx,y+dy) is not. The way I visualise
* this is that we're standing to the right of a
* boundary line, stretching our left arm out to
* point to the exterior square on the far side.
*/
/*
* First, check if we've gone round the entire
* polyomino.
*/
if (ncoords > 0 &&
(x == i%w && y == i/w && dx == -1 && dy == 0))
break;
/*
* Add to our coordinate list the coordinate
* backwards and to the left of where we are.
*/
if (ncoords + 2 > coordsize) {
coordsize = (ncoords * 3 / 2) + 64;
coords = sresize(coords, coordsize, int);
}
coords[ncoords++] = COORD((2*x+1 + dx + dy) / 2);
coords[ncoords++] = COORD((2*y+1 + dy - dx) / 2);
/*
* Follow the edge round. If the square directly in
* front of us is not part of the polyomino, we
* turn right; if it is and so is the square in
* front of (x+dx,y+dy), we turn left; otherwise we
* go straight on.
*/
if (x-dy < 0 || x-dy >= w || y+dx < 0 || y+dx >= h ||
dsf_canonify(dsf, (y+dx)*w+(x-dy)) != j) {
/* Turn right. */
t = dx;
dx = -dy;
dy = t;
} else if (x+dx-dy >= 0 && x+dx-dy < w &&
y+dy+dx >= 0 && y+dy+dx < h &&
dsf_canonify(dsf, (y+dy+dx)*w+(x+dx-dy)) == j) {
/* Turn left. */
x += dx;
y += dy;
t = dx;
dx = dy;
dy = -t;
x -= dx;
y -= dy;
} else {
/* Straight on. */
x -= dy;
y += dx;
}
}
/*
* Now we have our polygon complete, so fill it.
*/
draw_polygon(dr, coords, ncoords/2,
colours[j] == 2 ? blackish : -1, black);
/*
* And mark this polyomino as done.
*/
colours[j] = 0;
}
}
/*
* Draw the edges.
*/
for (y = 0; y <= h; y++)
for (x = 0; x <= w; x++) {
if (x < w && SPACE(state, x*2+1, y*2).flags & F_EDGE_SET)
draw_rect(dr, COORD(x)-EDGE_THICKNESS, COORD(y)-EDGE_THICKNESS,
EDGE_THICKNESS * 2 + TILE_SIZE, EDGE_THICKNESS * 2,
black);
if (y < h && SPACE(state, x*2, y*2+1).flags & F_EDGE_SET)
draw_rect(dr, COORD(x)-EDGE_THICKNESS, COORD(y)-EDGE_THICKNESS,
EDGE_THICKNESS * 2, EDGE_THICKNESS * 2 + TILE_SIZE,
black);
}
/*
* Draw the dots.
*/
for (y = 0; y <= 2*h; y++)
for (x = 0; x <= 2*w; x++)
if (SPACE(state, x, y).flags & F_DOT) {
draw_circle(dr, (int)COORD(x/2.0), (int)COORD(y/2.0), DOT_SIZE,
(SPACE(state, x, y).flags & F_DOT_BLACK ?
black : white), black);
}
sfree(dsf);
sfree(colours);
sfree(coords);
}
#endif
#ifdef COMBINED
#define thegame galaxies
#endif
const struct game thegame = {
"Galaxies", "games.galaxies", "galaxies",
default_params,
game_fetch_preset, NULL,
decode_params,
encode_params,
free_params,
dup_params,
true, game_configure, custom_params,
validate_params,
new_game_desc,
validate_desc,
new_game,
dup_game,
free_game,
#ifdef EDITOR
false, NULL,
#else
true, solve_game,
#endif
true, game_can_format_as_text_now, game_text_format,
new_ui,
free_ui,
encode_ui,
decode_ui,
NULL, /* game_request_keys */
game_changed_state,
#ifdef EDITOR
NULL,
#else
current_key_label,
#endif
interpret_move,
execute_move,
PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
game_colours,
game_new_drawstate,
game_free_drawstate,
game_redraw,
game_anim_length,
game_flash_length,
game_get_cursor_location,
game_status,
#ifdef EDITOR
false, false, NULL, NULL,
true, /* wants_statusbar */
#else
true, false, game_print_size, game_print,
false, /* wants_statusbar */
#endif
false, NULL, /* timing_state */
REQUIRE_RBUTTON, /* flags */
};
#ifdef STANDALONE_SOLVER
static const char *quis;
#include <time.h>
static void usage_exit(const char *msg)
{
if (msg)
fprintf(stderr, "%s: %s\n", quis, msg);
fprintf(stderr, "Usage: %s [--seed SEED] --soak <params> | [game_id [game_id ...]]\n", quis);
exit(1);
}
static void dump_state(game_state *state)
{
char *temp = game_text_format(state);
printf("%s\n", temp);
sfree(temp);
}
static int gen(game_params *p, random_state *rs, bool debug)
{
char *desc;
int diff;
game_state *state;
#ifndef DEBUGGING
solver_show_working = debug;
#endif
printf("Generating a %dx%d %s puzzle.\n",
p->w, p->h, galaxies_diffnames[p->diff]);
desc = new_game_desc(p, rs, NULL, false);
state = new_game(NULL, p, desc);
dump_state(state);
diff = solver_state(state, DIFF_UNREASONABLE);
printf("Generated %s game %dx%d:%s\n",
galaxies_diffnames[diff], p->w, p->h, desc);
dump_state(state);
free_game(state);
sfree(desc);
return diff;
}
static void soak(game_params *p, random_state *rs)
{
time_t tt_start, tt_now, tt_last;
char *desc;
game_state *st;
int diff, n = 0, i, diffs[DIFF_MAX], ndots = 0, nspaces = 0;
#ifndef DEBUGGING
solver_show_working = false;
#endif
tt_start = tt_now = time(NULL);
for (i = 0; i < DIFF_MAX; i++) diffs[i] = 0;
one_try = true;
printf("Soak-generating a %dx%d grid, max. diff %s.\n",
p->w, p->h, galaxies_diffnames[p->diff]);
printf(" [");
for (i = 0; i < DIFF_MAX; i++)
printf("%s%s", (i == 0) ? "" : ", ", galaxies_diffnames[i]);
printf("]\n");
while (1) {
char *aux;
desc = new_game_desc(p, rs, &aux, false);
sfree(aux);
st = new_game(NULL, p, desc);
diff = solver_state(st, p->diff);
nspaces += st->w*st->h;
for (i = 0; i < st->sx*st->sy; i++)
if (st->grid[i].flags & F_DOT) ndots++;
free_game(st);
sfree(desc);
diffs[diff]++;
n++;
tt_last = time(NULL);
if (tt_last > tt_now) {
tt_now = tt_last;
printf("%d total, %3.1f/s, [",
n, (double)n / ((double)tt_now - tt_start));
for (i = 0; i < DIFF_MAX; i++)
printf("%s%.1f%%", (i == 0) ? "" : ", ",
100.0 * ((double)diffs[i] / (double)n));
printf("], %.1f%% dots\n",
100.0 * ((double)ndots / (double)nspaces));
}
}
}
int main(int argc, char **argv)
{
game_params *p;
char *id = NULL, *desc;
const char *err;
game_state *s;
int diff;
bool do_soak = false, verbose = false;
random_state *rs;
time_t seed = time(NULL);
quis = argv[0];
while (--argc > 0) {
char *p = *++argv;
if (!strcmp(p, "-v")) {
verbose = true;
} else if (!strcmp(p, "--seed")) {
if (argc == 0) usage_exit("--seed needs an argument");
seed = (time_t)atoi(*++argv);
argc--;
} else if (!strcmp(p, "--soak")) {
do_soak = true;
} else if (*p == '-') {
usage_exit("unrecognised option");
} else {
id = p;
}
}
p = default_params();
rs = random_new((void*)&seed, sizeof(time_t));
if (do_soak) {
if (!id) usage_exit("need one argument for --soak");
decode_params(p, *argv);
soak(p, rs);
return 0;
}
if (!id) {
while (1) {
p->w = random_upto(rs, 15) + 3;
p->h = random_upto(rs, 15) + 3;
p->diff = random_upto(rs, DIFF_UNREASONABLE);
diff = gen(p, rs, false);
}
return 0;
}
desc = strchr(id, ':');
if (!desc) {
decode_params(p, id);
gen(p, rs, verbose);
} else {
#ifndef DEBUGGING
solver_show_working = true;
#endif
*desc++ = '\0';
decode_params(p, id);
err = validate_desc(p, desc);
if (err) {
fprintf(stderr, "%s: %s\n", argv[0], err);
exit(1);
}
s = new_game(NULL, p, desc);
diff = solver_state(s, DIFF_UNREASONABLE);
dump_state(s);
printf("Puzzle is %s.\n", galaxies_diffnames[diff]);
free_game(s);
}
free_params(p);
return 0;
}
#endif
#ifdef STANDALONE_PICTURE_GENERATOR
/*
* Main program for the standalone picture generator. To use it,
* simply provide it with an XBM-format bitmap file (note XBM, not
* XPM) on standard input, and it will output a game ID in return.
* For example:
*
* $ ./galaxiespicture < badly-drawn-cat.xbm
* 11x11:eloMBLzFeEzLNMWifhaWYdDbixCymBbBMLoDdewGg
*
* If you want a puzzle with a non-standard difficulty level, pass
* a partial parameters string as a command-line argument (e.g.
* `./galaxiespicture du < foo.xbm', where `du' is the same suffix
* which if it appeared in a random-seed game ID would set the
* difficulty level to Unreasonable). However, be aware that if the
* generator fails to produce an adequately difficult puzzle too
* many times then it will give up and return an easier one (just
* as it does during normal GUI play). To be sure you really have
* the difficulty you asked for, use galaxiessolver to
* double-check.
*
* (Perhaps I ought to include an option to make this standalone
* generator carry on looping until it really does get the right
* difficulty. Hmmm.)
*/
#include <time.h>
int main(int argc, char **argv)
{
game_params *par;
char *params, *desc;
random_state *rs;
time_t seed = time(NULL);
char buf[4096];
int i;
int x, y;
par = default_params();
if (argc > 1)
decode_params(par, argv[1]); /* get difficulty */
par->w = par->h = -1;
/*
* Now read an XBM file from standard input. This is simple and
* hacky and will do very little error detection, so don't feed
* it bogus data.
*/
picture = NULL;
x = y = 0;
while (fgets(buf, sizeof(buf), stdin)) {
buf[strcspn(buf, "\r\n")] = '\0';
if (!strncmp(buf, "#define", 7)) {
/*
* Lines starting `#define' give the width and height.
*/
char *num = buf + strlen(buf);
char *symend;
while (num > buf && isdigit((unsigned char)num[-1]))
num--;
symend = num;
while (symend > buf && isspace((unsigned char)symend[-1]))
symend--;
if (symend-5 >= buf && !strncmp(symend-5, "width", 5))
par->w = atoi(num);
else if (symend-6 >= buf && !strncmp(symend-6, "height", 6))
par->h = atoi(num);
} else {
/*
* Otherwise, break the string up into words and take
* any word of the form `0x' plus hex digits to be a
* byte.
*/
char *p, *wordstart;
if (!picture) {
if (par->w < 0 || par->h < 0) {
printf("failed to read width and height\n");
return 1;
}
picture = snewn(par->w * par->h, int);
for (i = 0; i < par->w * par->h; i++)
picture[i] = -1;
}
p = buf;
while (*p) {
while (*p && (*p == ',' || isspace((unsigned char)*p)))
p++;
wordstart = p;
while (*p && !(*p == ',' || *p == '}' ||
isspace((unsigned char)*p)))
p++;
if (*p)
*p++ = '\0';
if (wordstart[0] == '0' &&
(wordstart[1] == 'x' || wordstart[1] == 'X') &&
!wordstart[2 + strspn(wordstart+2,
"0123456789abcdefABCDEF")]) {
unsigned long byte = strtoul(wordstart+2, NULL, 16);
for (i = 0; i < 8; i++) {
int bit = (byte >> i) & 1;
if (y < par->h && x < par->w)
picture[y * par->w + x] = bit;
x++;
}
if (x >= par->w) {
x = 0;
y++;
}
}
}
}
}
for (i = 0; i < par->w * par->h; i++)
if (picture[i] < 0) {
fprintf(stderr, "failed to read enough bitmap data\n");
return 1;
}
rs = random_new((void*)&seed, sizeof(time_t));
desc = new_game_desc(par, rs, NULL, false);
params = encode_params(par, false);
printf("%s:%s\n", params, desc);
sfree(desc);
sfree(params);
free_params(par);
random_free(rs);
return 0;
}
#endif
/* vim: set shiftwidth=4 tabstop=8: */