Files
puzzles/unruly.c
Simon Tatham b34f8b1ee3 Style cleanups from the previous fixes.
Reordered the statements in the fixed Unruly blank_state so that there
doesn't need to be a double if statement (and I think it's more
sensible in any case to put each memset of a freshly allocated array
immediately after the alloc).

In GTK set_window_background, the nest of #ifdefs is now complicated
enough to deserve a few comments on the #else and #endif lines. And
while I was there I switched the gboolean to a bool, on my general
principle that platform-specific boolean types are only worth using
when you're passing them to a platform API function (and perhaps not
even then, if it's not passed by reference).
2022-07-31 09:02:45 +01:00

2164 lines
60 KiB
C

/*
* unruly.c: Implementation for Binary Puzzles.
* (C) 2012 Lennard Sprong
* Created for Simon Tatham's Portable Puzzle Collection
* See LICENCE for licence details
*
* Objective of the game: Fill the grid with zeros and ones, with the
* following rules:
* - There can't be a run of three or more equal numbers.
* - Each row and column contains an equal amount of zeros and ones.
*
* This puzzle type is known under several names, including
* Tohu-Wa-Vohu, One and Two and Binairo.
*
* Some variants include an extra constraint, stating that no two rows or two
* columns may contain the same exact sequence of zeros and ones.
* This rule is rarely used, so it is not enabled in the default presets
* (but it can be selected via the Custom configurer).
*
* More information:
* http://www.janko.at/Raetsel/Tohu-Wa-Vohu/index.htm
*/
/*
* Possible future improvements:
*
* More solver cleverness
*
* - a counting-based deduction in which you find groups of squares
* which must each contain at least one of a given colour, plus
* other squares which are already known to be that colour, and see
* if you have any squares left over when you've worked out where
* they all have to be. This is a generalisation of the current
* check_near_complete: where that only covers rows with three
* unfilled squares, this would handle more, such as
* 0 . . 1 0 1 . . 0 .
* in which each of the two-square gaps must contain a 0, and there
* are three 0s placed, and that means the rightmost square can't
* be a 0.
*
* - an 'Unreasonable' difficulty level, supporting recursion and
* backtracking.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <ctype.h>
#include <math.h>
#include "puzzles.h"
#ifdef STANDALONE_SOLVER
bool solver_verbose = false;
#endif
enum {
COL_BACKGROUND,
COL_GRID,
COL_EMPTY,
/*
* When editing this enum, maintain the invariants
* COL_n_HIGHLIGHT = COL_n + 1
* COL_n_LOWLIGHT = COL_n + 2
*/
COL_0,
COL_0_HIGHLIGHT,
COL_0_LOWLIGHT,
COL_1,
COL_1_HIGHLIGHT,
COL_1_LOWLIGHT,
COL_CURSOR,
COL_ERROR,
NCOLOURS
};
struct game_params {
int w2, h2; /* full grid width and height respectively */
bool unique; /* should row and column patterns be unique? */
int diff;
};
#define DIFFLIST(A) \
A(TRIVIAL,Trivial, t) \
A(EASY,Easy, e) \
A(NORMAL,Normal, n) \
#define ENUM(upper,title,lower) DIFF_ ## upper,
#define TITLE(upper,title,lower) #title,
#define ENCODE(upper,title,lower) #lower
#define CONFIG(upper,title,lower) ":" #title
enum { DIFFLIST(ENUM) DIFFCOUNT };
static char const *const unruly_diffnames[] = { DIFFLIST(TITLE) };
static char const unruly_diffchars[] = DIFFLIST(ENCODE);
#define DIFFCONFIG DIFFLIST(CONFIG)
static const struct game_params unruly_presets[] = {
{ 8, 8, false, DIFF_TRIVIAL},
{ 8, 8, false, DIFF_EASY},
{ 8, 8, false, DIFF_NORMAL},
{10, 10, false, DIFF_EASY},
{10, 10, false, DIFF_NORMAL},
{14, 14, false, DIFF_EASY},
{14, 14, false, DIFF_NORMAL}
};
#define DEFAULT_PRESET 0
enum {
EMPTY,
N_ONE,
N_ZERO,
BOGUS
};
#define FE_HOR_ROW_LEFT 0x0001
#define FE_HOR_ROW_MID 0x0003
#define FE_HOR_ROW_RIGHT 0x0002
#define FE_VER_ROW_TOP 0x0004
#define FE_VER_ROW_MID 0x000C
#define FE_VER_ROW_BOTTOM 0x0008
#define FE_COUNT 0x0010
#define FE_ROW_MATCH 0x0020
#define FE_COL_MATCH 0x0040
#define FF_ONE 0x0080
#define FF_ZERO 0x0100
#define FF_CURSOR 0x0200
#define FF_FLASH1 0x0400
#define FF_FLASH2 0x0800
#define FF_IMMUTABLE 0x1000
typedef struct unruly_common {
int refcount;
bool *immutable;
} unruly_common;
struct game_state {
int w2, h2;
bool unique;
char *grid;
unruly_common *common;
bool completed, cheated;
};
static game_params *default_params(void)
{
game_params *ret = snew(game_params);
*ret = unruly_presets[DEFAULT_PRESET]; /* structure copy */
return ret;
}
static bool game_fetch_preset(int i, char **name, game_params **params)
{
game_params *ret;
char buf[80];
if (i < 0 || i >= lenof(unruly_presets))
return false;
ret = snew(game_params);
*ret = unruly_presets[i]; /* structure copy */
sprintf(buf, "%dx%d %s", ret->w2, ret->h2, unruly_diffnames[ret->diff]);
*name = dupstr(buf);
*params = ret;
return true;
}
static void free_params(game_params *params)
{
sfree(params);
}
static game_params *dup_params(const game_params *params)
{
game_params *ret = snew(game_params);
*ret = *params; /* structure copy */
return ret;
}
static void decode_params(game_params *params, char const *string)
{
char const *p = string;
params->unique = false;
params->w2 = atoi(p);
while (*p && isdigit((unsigned char)*p)) p++;
if (*p == 'x') {
p++;
params->h2 = atoi(p);
while (*p && isdigit((unsigned char)*p)) p++;
} else {
params->h2 = params->w2;
}
if (*p == 'u') {
p++;
params->unique = true;
}
if (*p == 'd') {
int i;
p++;
params->diff = DIFFCOUNT + 1; /* ...which is invalid */
if (*p) {
for (i = 0; i < DIFFCOUNT; i++) {
if (*p == unruly_diffchars[i])
params->diff = i;
}
p++;
}
}
}
static char *encode_params(const game_params *params, bool full)
{
char buf[80];
sprintf(buf, "%dx%d", params->w2, params->h2);
if (params->unique)
strcat(buf, "u");
if (full)
sprintf(buf + strlen(buf), "d%c", unruly_diffchars[params->diff]);
return dupstr(buf);
}
static config_item *game_configure(const game_params *params)
{
config_item *ret;
char buf[80];
ret = snewn(5, config_item);
ret[0].name = "Width";
ret[0].type = C_STRING;
sprintf(buf, "%d", params->w2);
ret[0].u.string.sval = dupstr(buf);
ret[1].name = "Height";
ret[1].type = C_STRING;
sprintf(buf, "%d", params->h2);
ret[1].u.string.sval = dupstr(buf);
ret[2].name = "Unique rows and columns";
ret[2].type = C_BOOLEAN;
ret[2].u.boolean.bval = params->unique;
ret[3].name = "Difficulty";
ret[3].type = C_CHOICES;
ret[3].u.choices.choicenames = DIFFCONFIG;
ret[3].u.choices.selected = params->diff;
ret[4].name = NULL;
ret[4].type = C_END;
return ret;
}
static game_params *custom_params(const config_item *cfg)
{
game_params *ret = snew(game_params);
ret->w2 = atoi(cfg[0].u.string.sval);
ret->h2 = atoi(cfg[1].u.string.sval);
ret->unique = cfg[2].u.boolean.bval;
ret->diff = cfg[3].u.choices.selected;
return ret;
}
static const char *validate_params(const game_params *params, bool full)
{
if ((params->w2 & 1) || (params->h2 & 1))
return "Width and height must both be even";
if (params->w2 < 6 || params->h2 < 6)
return "Width and height must be at least 6";
if (params->unique) {
static const long A177790[] = {
/*
* The nth element of this array gives the number of
* distinct possible Unruly rows of length 2n (that is,
* containing exactly n 1s and n 0s and not containing
* three consecutive elements the same) for as long as
* those numbers fit in a 32-bit signed int.
*
* So in unique-rows mode, if the puzzle width is 2n, then
* the height must be at most (this array)[n], and vice
* versa.
*
* This is sequence A177790 in the Online Encyclopedia of
* Integer Sequences: http://oeis.org/A177790
*/
1L, 2L, 6L, 14L, 34L, 84L, 208L, 518L, 1296L, 3254L,
8196L, 20700L, 52404L, 132942L, 337878L, 860142L,
2192902L, 5598144L, 14308378L, 36610970L, 93770358L,
240390602L, 616787116L, 1583765724L
};
if (params->w2 < 2*lenof(A177790) &&
params->h2 > A177790[params->w2/2]) {
return "Puzzle is too tall for unique-rows mode";
}
if (params->h2 < 2*lenof(A177790) &&
params->w2 > A177790[params->h2/2]) {
return "Puzzle is too long for unique-rows mode";
}
}
if (params->diff >= DIFFCOUNT)
return "Unknown difficulty rating";
return NULL;
}
static const char *validate_desc(const game_params *params, const char *desc)
{
int w2 = params->w2, h2 = params->h2;
int s = w2 * h2;
const char *p = desc;
int pos = 0;
while (*p) {
if (*p >= 'a' && *p < 'z')
pos += 1 + (*p - 'a');
else if (*p >= 'A' && *p < 'Z')
pos += 1 + (*p - 'A');
else if (*p == 'Z' || *p == 'z')
pos += 25;
else
return "Description contains invalid characters";
++p;
}
if (pos < s+1)
return "Description too short";
if (pos > s+1)
return "Description too long";
return NULL;
}
static game_state *blank_state(int w2, int h2, bool unique, bool new_common)
{
game_state *state = snew(game_state);
int s = w2 * h2;
state->w2 = w2;
state->h2 = h2;
state->unique = unique;
state->grid = snewn(s, char);
memset(state->grid, EMPTY, s);
if (new_common) {
state->common = snew(unruly_common);
state->common->refcount = 1;
state->common->immutable = snewn(s, bool);
memset(state->common->immutable, 0, s*sizeof(bool));
}
state->completed = state->cheated = false;
return state;
}
static game_state *new_game(midend *me, const game_params *params,
const char *desc)
{
int w2 = params->w2, h2 = params->h2;
int s = w2 * h2;
game_state *state = blank_state(w2, h2, params->unique, true);
const char *p = desc;
int pos = 0;
while (*p) {
if (*p >= 'a' && *p < 'z') {
pos += (*p - 'a');
if (pos < s) {
state->grid[pos] = N_ZERO;
state->common->immutable[pos] = true;
}
pos++;
} else if (*p >= 'A' && *p < 'Z') {
pos += (*p - 'A');
if (pos < s) {
state->grid[pos] = N_ONE;
state->common->immutable[pos] = true;
}
pos++;
} else if (*p == 'Z' || *p == 'z') {
pos += 25;
} else
assert(!"Description contains invalid characters");
++p;
}
assert(pos == s+1);
return state;
}
static game_state *dup_game(const game_state *state)
{
int w2 = state->w2, h2 = state->h2;
int s = w2 * h2;
game_state *ret = blank_state(w2, h2, state->unique, false);
memcpy(ret->grid, state->grid, s);
ret->common = state->common;
ret->common->refcount++;
ret->completed = state->completed;
ret->cheated = state->cheated;
return ret;
}
static void free_game(game_state *state)
{
sfree(state->grid);
if (--state->common->refcount == 0) {
sfree(state->common->immutable);
sfree(state->common);
}
sfree(state);
}
static bool game_can_format_as_text_now(const game_params *params)
{
return true;
}
static char *game_text_format(const game_state *state)
{
int w2 = state->w2, h2 = state->h2;
int lr = w2*2 + 1;
char *ret = snewn(lr * h2 + 1, char);
char *p = ret;
int x, y;
for (y = 0; y < h2; y++) {
for (x = 0; x < w2; x++) {
/* Place number */
char c = state->grid[y * w2 + x];
*p++ = (c == N_ONE ? '1' : c == N_ZERO ? '0' : '.');
*p++ = ' ';
}
/* End line */
*p++ = '\n';
}
/* End with NUL */
*p++ = '\0';
return ret;
}
/* ****** *
* Solver *
* ****** */
struct unruly_scratch {
int *ones_rows;
int *ones_cols;
int *zeros_rows;
int *zeros_cols;
};
static void unruly_solver_update_remaining(const game_state *state,
struct unruly_scratch *scratch)
{
int w2 = state->w2, h2 = state->h2;
int x, y;
/* Reset all scratch data */
memset(scratch->ones_rows, 0, h2 * sizeof(int));
memset(scratch->ones_cols, 0, w2 * sizeof(int));
memset(scratch->zeros_rows, 0, h2 * sizeof(int));
memset(scratch->zeros_cols, 0, w2 * sizeof(int));
for (x = 0; x < w2; x++)
for (y = 0; y < h2; y++) {
if (state->grid[y * w2 + x] == N_ONE) {
scratch->ones_rows[y]++;
scratch->ones_cols[x]++;
} else if (state->grid[y * w2 + x] == N_ZERO) {
scratch->zeros_rows[y]++;
scratch->zeros_cols[x]++;
}
}
}
static struct unruly_scratch *unruly_new_scratch(const game_state *state)
{
int w2 = state->w2, h2 = state->h2;
struct unruly_scratch *ret = snew(struct unruly_scratch);
ret->ones_rows = snewn(h2, int);
ret->ones_cols = snewn(w2, int);
ret->zeros_rows = snewn(h2, int);
ret->zeros_cols = snewn(w2, int);
unruly_solver_update_remaining(state, ret);
return ret;
}
static void unruly_free_scratch(struct unruly_scratch *scratch)
{
sfree(scratch->ones_rows);
sfree(scratch->ones_cols);
sfree(scratch->zeros_rows);
sfree(scratch->zeros_cols);
sfree(scratch);
}
static int unruly_solver_check_threes(game_state *state, int *rowcount,
int *colcount, bool horizontal,
char check, char block)
{
int w2 = state->w2, h2 = state->h2;
int dx = horizontal ? 1 : 0, dy = 1 - dx;
int sx = dx, sy = dy;
int ex = w2 - dx, ey = h2 - dy;
int x, y;
int ret = 0;
/* Check for any three squares which almost form three in a row */
for (y = sy; y < ey; y++) {
for (x = sx; x < ex; x++) {
int i1 = (y-dy) * w2 + (x-dx);
int i2 = y * w2 + x;
int i3 = (y+dy) * w2 + (x+dx);
if (state->grid[i1] == check && state->grid[i2] == check
&& state->grid[i3] == EMPTY) {
ret++;
#ifdef STANDALONE_SOLVER
if (solver_verbose) {
printf("Solver: %i,%i and %i,%i confirm %c at %i,%i\n",
i1 % w2, i1 / w2, i2 % w2, i2 / w2,
(block == N_ONE ? '1' : '0'), i3 % w2,
i3 / w2);
}
#endif
state->grid[i3] = block;
rowcount[i3 / w2]++;
colcount[i3 % w2]++;
}
if (state->grid[i1] == check && state->grid[i2] == EMPTY
&& state->grid[i3] == check) {
ret++;
#ifdef STANDALONE_SOLVER
if (solver_verbose) {
printf("Solver: %i,%i and %i,%i confirm %c at %i,%i\n",
i1 % w2, i1 / w2, i3 % w2, i3 / w2,
(block == N_ONE ? '1' : '0'), i2 % w2,
i2 / w2);
}
#endif
state->grid[i2] = block;
rowcount[i2 / w2]++;
colcount[i2 % w2]++;
}
if (state->grid[i1] == EMPTY && state->grid[i2] == check
&& state->grid[i3] == check) {
ret++;
#ifdef STANDALONE_SOLVER
if (solver_verbose) {
printf("Solver: %i,%i and %i,%i confirm %c at %i,%i\n",
i2 % w2, i2 / w2, i3 % w2, i3 / w2,
(block == N_ONE ? '1' : '0'), i1 % w2,
i1 / w2);
}
#endif
state->grid[i1] = block;
rowcount[i1 / w2]++;
colcount[i1 % w2]++;
}
}
}
return ret;
}
static int unruly_solver_check_all_threes(game_state *state,
struct unruly_scratch *scratch)
{
int ret = 0;
ret +=
unruly_solver_check_threes(state, scratch->zeros_rows,
scratch->zeros_cols, true, N_ONE, N_ZERO);
ret +=
unruly_solver_check_threes(state, scratch->ones_rows,
scratch->ones_cols, true, N_ZERO, N_ONE);
ret +=
unruly_solver_check_threes(state, scratch->zeros_rows,
scratch->zeros_cols, false, N_ONE,
N_ZERO);
ret +=
unruly_solver_check_threes(state, scratch->ones_rows,
scratch->ones_cols, false, N_ZERO, N_ONE);
return ret;
}
static int unruly_solver_check_uniques(game_state *state, int *rowcount,
bool horizontal, char check, char block,
struct unruly_scratch *scratch)
{
int w2 = state->w2, h2 = state->h2;
int rmult = (horizontal ? w2 : 1);
int cmult = (horizontal ? 1 : w2);
int nr = (horizontal ? h2 : w2);
int nc = (horizontal ? w2 : h2);
int max = nc / 2;
int r, r2, c;
int ret = 0;
/*
* Find each row that has max entries of type 'check', and see if
* all those entries match those in any row with max-1 entries. If
* so, set the last non-matching entry of the latter row to ensure
* that it's different.
*/
for (r = 0; r < nr; r++) {
if (rowcount[r] != max)
continue;
for (r2 = 0; r2 < nr; r2++) {
int nmatch = 0, nonmatch = -1;
if (rowcount[r2] != max-1)
continue;
for (c = 0; c < nc; c++) {
if (state->grid[r*rmult + c*cmult] == check) {
if (state->grid[r2*rmult + c*cmult] == check)
nmatch++;
else
nonmatch = c;
}
}
if (nmatch == max-1) {
int i1 = r2 * rmult + nonmatch * cmult;
assert(nonmatch != -1);
if (state->grid[i1] == block)
continue;
assert(state->grid[i1] == EMPTY);
#ifdef STANDALONE_SOLVER
if (solver_verbose) {
printf("Solver: matching %s %i, %i gives %c at %i,%i\n",
horizontal ? "rows" : "cols",
r, r2, (block == N_ONE ? '1' : '0'), i1 % w2,
i1 / w2);
}
#endif
state->grid[i1] = block;
if (block == N_ONE) {
scratch->ones_rows[i1 / w2]++;
scratch->ones_cols[i1 % w2]++;
} else {
scratch->zeros_rows[i1 / w2]++;
scratch->zeros_cols[i1 % w2]++;
}
ret++;
}
}
}
return ret;
}
static int unruly_solver_check_all_uniques(game_state *state,
struct unruly_scratch *scratch)
{
int ret = 0;
ret += unruly_solver_check_uniques(state, scratch->ones_rows,
true, N_ONE, N_ZERO, scratch);
ret += unruly_solver_check_uniques(state, scratch->zeros_rows,
true, N_ZERO, N_ONE, scratch);
ret += unruly_solver_check_uniques(state, scratch->ones_cols,
false, N_ONE, N_ZERO, scratch);
ret += unruly_solver_check_uniques(state, scratch->zeros_cols,
false, N_ZERO, N_ONE, scratch);
return ret;
}
static int unruly_solver_fill_row(game_state *state, int i, bool horizontal,
int *rowcount, int *colcount, char fill)
{
int ret = 0;
int w2 = state->w2, h2 = state->h2;
int j;
#ifdef STANDALONE_SOLVER
if (solver_verbose) {
printf("Solver: Filling %s %i with %c:",
(horizontal ? "Row" : "Col"), i,
(fill == N_ZERO ? '0' : '1'));
}
#endif
/* Place a number in every empty square in a row/column */
for (j = 0; j < (horizontal ? w2 : h2); j++) {
int p = (horizontal ? i * w2 + j : j * w2 + i);
if (state->grid[p] == EMPTY) {
#ifdef STANDALONE_SOLVER
if (solver_verbose) {
printf(" (%i,%i)", (horizontal ? j : i),
(horizontal ? i : j));
}
#endif
ret++;
state->grid[p] = fill;
rowcount[(horizontal ? i : j)]++;
colcount[(horizontal ? j : i)]++;
}
}
#ifdef STANDALONE_SOLVER
if (solver_verbose) {
printf("\n");
}
#endif
return ret;
}
static int unruly_solver_check_single_gap(game_state *state,
int *complete, bool horizontal,
int *rowcount, int *colcount,
char fill)
{
int w2 = state->w2, h2 = state->h2;
int count = (horizontal ? h2 : w2); /* number of rows to check */
int target = (horizontal ? w2 : h2) / 2; /* target number of 0s/1s */
int *other = (horizontal ? rowcount : colcount);
int ret = 0;
int i;
/* Check for completed rows/cols for one number, then fill in the rest */
for (i = 0; i < count; i++) {
if (complete[i] == target && other[i] == target - 1) {
#ifdef STANDALONE_SOLVER
if (solver_verbose) {
printf("Solver: Row %i has only one square left which must be "
"%c\n", i, (fill == N_ZERO ? '0' : '1'));
}
#endif
ret += unruly_solver_fill_row(state, i, horizontal, rowcount,
colcount, fill);
}
}
return ret;
}
static int unruly_solver_check_all_single_gap(game_state *state,
struct unruly_scratch *scratch)
{
int ret = 0;
ret +=
unruly_solver_check_single_gap(state, scratch->ones_rows, true,
scratch->zeros_rows,
scratch->zeros_cols, N_ZERO);
ret +=
unruly_solver_check_single_gap(state, scratch->ones_cols, false,
scratch->zeros_rows,
scratch->zeros_cols, N_ZERO);
ret +=
unruly_solver_check_single_gap(state, scratch->zeros_rows, true,
scratch->ones_rows,
scratch->ones_cols, N_ONE);
ret +=
unruly_solver_check_single_gap(state, scratch->zeros_cols, false,
scratch->ones_rows,
scratch->ones_cols, N_ONE);
return ret;
}
static int unruly_solver_check_complete_nums(game_state *state,
int *complete, bool horizontal,
int *rowcount, int *colcount,
char fill)
{
int w2 = state->w2, h2 = state->h2;
int count = (horizontal ? h2 : w2); /* number of rows to check */
int target = (horizontal ? w2 : h2) / 2; /* target number of 0s/1s */
int *other = (horizontal ? rowcount : colcount);
int ret = 0;
int i;
/* Check for completed rows/cols for one number, then fill in the rest */
for (i = 0; i < count; i++) {
if (complete[i] == target && other[i] < target) {
#ifdef STANDALONE_SOLVER
if (solver_verbose) {
printf("Solver: Row %i satisfied for %c\n", i,
(fill != N_ZERO ? '0' : '1'));
}
#endif
ret += unruly_solver_fill_row(state, i, horizontal, rowcount,
colcount, fill);
}
}
return ret;
}
static int unruly_solver_check_all_complete_nums(game_state *state,
struct unruly_scratch *scratch)
{
int ret = 0;
ret +=
unruly_solver_check_complete_nums(state, scratch->ones_rows, true,
scratch->zeros_rows,
scratch->zeros_cols, N_ZERO);
ret +=
unruly_solver_check_complete_nums(state, scratch->ones_cols, false,
scratch->zeros_rows,
scratch->zeros_cols, N_ZERO);
ret +=
unruly_solver_check_complete_nums(state, scratch->zeros_rows, true,
scratch->ones_rows,
scratch->ones_cols, N_ONE);
ret +=
unruly_solver_check_complete_nums(state, scratch->zeros_cols, false,
scratch->ones_rows,
scratch->ones_cols, N_ONE);
return ret;
}
static int unruly_solver_check_near_complete(game_state *state,
int *complete, bool horizontal,
int *rowcount, int *colcount,
char fill)
{
int w2 = state->w2, h2 = state->h2;
int w = w2/2, h = h2/2;
int dx = horizontal ? 1 : 0, dy = 1 - dx;
int sx = dx, sy = dy;
int ex = w2 - dx, ey = h2 - dy;
int x, y;
int ret = 0;
/*
* This function checks for a row with one Y remaining, then looks
* for positions that could cause the remaining squares in the row
* to make 3 X's in a row. Example:
*
* Consider the following row:
* 1 1 0 . . .
* If the last 1 was placed in the last square, the remaining
* squares would be 0:
* 1 1 0 0 0 1
* This violates the 3 in a row rule. We now know that the last 1
* shouldn't be in the last cell.
* 1 1 0 . . 0
*/
/* Check for any two blank and one filled square */
for (y = sy; y < ey; y++) {
/* One type must have 1 remaining, the other at least 2 */
if (horizontal && (complete[y] < w - 1 || rowcount[y] > w - 2))
continue;
for (x = sx; x < ex; x++) {
int i, i1, i2, i3;
if (!horizontal
&& (complete[x] < h - 1 || colcount[x] > h - 2))
continue;
i = (horizontal ? y : x);
i1 = (y-dy) * w2 + (x-dx);
i2 = y * w2 + x;
i3 = (y+dy) * w2 + (x+dx);
if (state->grid[i1] == fill && state->grid[i2] == EMPTY
&& state->grid[i3] == EMPTY) {
/*
* Temporarily fill the empty spaces with something else.
* This avoids raising the counts for the row and column
*/
state->grid[i2] = BOGUS;
state->grid[i3] = BOGUS;
#ifdef STANDALONE_SOLVER
if (solver_verbose) {
printf("Solver: Row %i nearly satisfied for %c\n", i,
(fill != N_ZERO ? '0' : '1'));
}
#endif
ret +=
unruly_solver_fill_row(state, i, horizontal, rowcount,
colcount, fill);
state->grid[i2] = EMPTY;
state->grid[i3] = EMPTY;
}
else if (state->grid[i1] == EMPTY && state->grid[i2] == fill
&& state->grid[i3] == EMPTY) {
state->grid[i1] = BOGUS;
state->grid[i3] = BOGUS;
#ifdef STANDALONE_SOLVER
if (solver_verbose) {
printf("Solver: Row %i nearly satisfied for %c\n", i,
(fill != N_ZERO ? '0' : '1'));
}
#endif
ret +=
unruly_solver_fill_row(state, i, horizontal, rowcount,
colcount, fill);
state->grid[i1] = EMPTY;
state->grid[i3] = EMPTY;
}
else if (state->grid[i1] == EMPTY && state->grid[i2] == EMPTY
&& state->grid[i3] == fill) {
state->grid[i1] = BOGUS;
state->grid[i2] = BOGUS;
#ifdef STANDALONE_SOLVER
if (solver_verbose) {
printf("Solver: Row %i nearly satisfied for %c\n", i,
(fill != N_ZERO ? '0' : '1'));
}
#endif
ret +=
unruly_solver_fill_row(state, i, horizontal, rowcount,
colcount, fill);
state->grid[i1] = EMPTY;
state->grid[i2] = EMPTY;
}
else if (state->grid[i1] == EMPTY && state->grid[i2] == EMPTY
&& state->grid[i3] == EMPTY) {
state->grid[i1] = BOGUS;
state->grid[i2] = BOGUS;
state->grid[i3] = BOGUS;
#ifdef STANDALONE_SOLVER
if (solver_verbose) {
printf("Solver: Row %i nearly satisfied for %c\n", i,
(fill != N_ZERO ? '0' : '1'));
}
#endif
ret +=
unruly_solver_fill_row(state, i, horizontal, rowcount,
colcount, fill);
state->grid[i1] = EMPTY;
state->grid[i2] = EMPTY;
state->grid[i3] = EMPTY;
}
}
}
return ret;
}
static int unruly_solver_check_all_near_complete(game_state *state,
struct unruly_scratch *scratch)
{
int ret = 0;
ret +=
unruly_solver_check_near_complete(state, scratch->ones_rows, true,
scratch->zeros_rows,
scratch->zeros_cols, N_ZERO);
ret +=
unruly_solver_check_near_complete(state, scratch->ones_cols, false,
scratch->zeros_rows,
scratch->zeros_cols, N_ZERO);
ret +=
unruly_solver_check_near_complete(state, scratch->zeros_rows, true,
scratch->ones_rows,
scratch->ones_cols, N_ONE);
ret +=
unruly_solver_check_near_complete(state, scratch->zeros_cols, false,
scratch->ones_rows,
scratch->ones_cols, N_ONE);
return ret;
}
static int unruly_validate_rows(const game_state *state, bool horizontal,
char check, int *errors)
{
int w2 = state->w2, h2 = state->h2;
int dx = horizontal ? 1 : 0, dy = 1 - dx;
int sx = dx, sy = dy;
int ex = w2 - dx, ey = h2 - dy;
int x, y;
int ret = 0;
int err1 = (horizontal ? FE_HOR_ROW_LEFT : FE_VER_ROW_TOP);
int err2 = (horizontal ? FE_HOR_ROW_MID : FE_VER_ROW_MID);
int err3 = (horizontal ? FE_HOR_ROW_RIGHT : FE_VER_ROW_BOTTOM);
/* Check for any three in a row, and mark errors accordingly (if
* required) */
for (y = sy; y < ey; y++) {
for (x = sx; x < ex; x++) {
int i1 = (y-dy) * w2 + (x-dx);
int i2 = y * w2 + x;
int i3 = (y+dy) * w2 + (x+dx);
if (state->grid[i1] == check && state->grid[i2] == check
&& state->grid[i3] == check) {
ret++;
if (errors) {
errors[i1] |= err1;
errors[i2] |= err2;
errors[i3] |= err3;
}
}
}
}
return ret;
}
static int unruly_validate_unique(const game_state *state, bool horizontal,
int *errors)
{
int w2 = state->w2, h2 = state->h2;
int rmult = (horizontal ? w2 : 1);
int cmult = (horizontal ? 1 : w2);
int nr = (horizontal ? h2 : w2);
int nc = (horizontal ? w2 : h2);
int err = (horizontal ? FE_ROW_MATCH : FE_COL_MATCH);
int r, r2, c;
int ret = 0;
/* Check for any two full rows matching exactly, and mark errors
* accordingly (if required) */
for (r = 0; r < nr; r++) {
int nfull = 0;
for (c = 0; c < nc; c++)
if (state->grid[r*rmult + c*cmult] != EMPTY)
nfull++;
if (nfull != nc)
continue;
for (r2 = r+1; r2 < nr; r2++) {
bool match = true;
for (c = 0; c < nc; c++)
if (state->grid[r*rmult + c*cmult] !=
state->grid[r2*rmult + c*cmult])
match = false;
if (match) {
if (errors) {
for (c = 0; c < nc; c++) {
errors[r*rmult + c*cmult] |= err;
errors[r2*rmult + c*cmult] |= err;
}
}
ret++;
}
}
}
return ret;
}
static int unruly_validate_all_rows(const game_state *state, int *errors)
{
int errcount = 0;
errcount += unruly_validate_rows(state, true, N_ONE, errors);
errcount += unruly_validate_rows(state, false, N_ONE, errors);
errcount += unruly_validate_rows(state, true, N_ZERO, errors);
errcount += unruly_validate_rows(state, false, N_ZERO, errors);
if (state->unique) {
errcount += unruly_validate_unique(state, true, errors);
errcount += unruly_validate_unique(state, false, errors);
}
if (errcount)
return -1;
return 0;
}
static int unruly_validate_counts(const game_state *state,
struct unruly_scratch *scratch, bool *errors)
{
int w2 = state->w2, h2 = state->h2;
int w = w2/2, h = h2/2;
bool below = false;
bool above = false;
int i;
/* See if all rows/columns are satisfied. If one is exceeded,
* mark it as an error (if required)
*/
bool hasscratch = true;
if (!scratch) {
scratch = unruly_new_scratch(state);
hasscratch = false;
}
for (i = 0; i < w2; i++) {
if (scratch->ones_cols[i] < h)
below = true;
if (scratch->zeros_cols[i] < h)
below = true;
if (scratch->ones_cols[i] > h) {
above = true;
if (errors)
errors[2*h2 + i] = true;
} else if (errors)
errors[2*h2 + i] = false;
if (scratch->zeros_cols[i] > h) {
above = true;
if (errors)
errors[2*h2 + w2 + i] = true;
} else if (errors)
errors[2*h2 + w2 + i] = false;
}
for (i = 0; i < h2; i++) {
if (scratch->ones_rows[i] < w)
below = true;
if (scratch->zeros_rows[i] < w)
below = true;
if (scratch->ones_rows[i] > w) {
above = true;
if (errors)
errors[i] = true;
} else if (errors)
errors[i] = false;
if (scratch->zeros_rows[i] > w) {
above = true;
if (errors)
errors[h2 + i] = true;
} else if (errors)
errors[h2 + i] = false;
}
if (!hasscratch)
unruly_free_scratch(scratch);
return (above ? -1 : below ? 1 : 0);
}
static int unruly_solve_game(game_state *state,
struct unruly_scratch *scratch, int diff)
{
int done, maxdiff = -1;
while (true) {
done = 0;
/* Check for impending 3's */
done += unruly_solver_check_all_threes(state, scratch);
/* Keep using the simpler techniques while they produce results */
if (done) {
if (maxdiff < DIFF_TRIVIAL)
maxdiff = DIFF_TRIVIAL;
continue;
}
/* Check for rows with only one unfilled square */
done += unruly_solver_check_all_single_gap(state, scratch);
if (done) {
if (maxdiff < DIFF_TRIVIAL)
maxdiff = DIFF_TRIVIAL;
continue;
}
/* Easy techniques */
if (diff < DIFF_EASY)
break;
/* Check for completed rows */
done += unruly_solver_check_all_complete_nums(state, scratch);
if (done) {
if (maxdiff < DIFF_EASY)
maxdiff = DIFF_EASY;
continue;
}
/* Check for impending failures of row/column uniqueness, if
* it's enabled in this game mode */
if (state->unique) {
done += unruly_solver_check_all_uniques(state, scratch);
if (done) {
if (maxdiff < DIFF_EASY)
maxdiff = DIFF_EASY;
continue;
}
}
/* Normal techniques */
if (diff < DIFF_NORMAL)
break;
/* Check for nearly completed rows */
done += unruly_solver_check_all_near_complete(state, scratch);
if (done) {
if (maxdiff < DIFF_NORMAL)
maxdiff = DIFF_NORMAL;
continue;
}
break;
}
return maxdiff;
}
static char *solve_game(const game_state *state, const game_state *currstate,
const char *aux, const char **error)
{
game_state *solved = dup_game(state);
struct unruly_scratch *scratch = unruly_new_scratch(solved);
char *ret = NULL;
int result;
unruly_solve_game(solved, scratch, DIFFCOUNT);
result = unruly_validate_counts(solved, scratch, NULL);
if (unruly_validate_all_rows(solved, NULL) == -1)
result = -1;
if (result == 0) {
int w2 = solved->w2, h2 = solved->h2;
int s = w2 * h2;
char *p;
int i;
ret = snewn(s + 2, char);
p = ret;
*p++ = 'S';
for (i = 0; i < s; i++)
*p++ = (solved->grid[i] == N_ONE ? '1' : '0');
*p++ = '\0';
} else if (result == 1)
*error = "No solution found.";
else if (result == -1)
*error = "Puzzle is invalid.";
free_game(solved);
unruly_free_scratch(scratch);
return ret;
}
/* ********* *
* Generator *
* ********* */
static bool unruly_fill_game(game_state *state, struct unruly_scratch *scratch,
random_state *rs)
{
int w2 = state->w2, h2 = state->h2;
int s = w2 * h2;
int i, j;
int *spaces;
#ifdef STANDALONE_SOLVER
if (solver_verbose) {
printf("Generator: Attempt to fill grid\n");
}
#endif
/* Generate random array of spaces */
spaces = snewn(s, int);
for (i = 0; i < s; i++)
spaces[i] = i;
shuffle(spaces, s, sizeof(*spaces), rs);
/*
* Construct a valid filled grid by repeatedly picking an unfilled
* space and fill it, then calling the solver to fill in any
* spaces forced by the change.
*/
for (j = 0; j < s; j++) {
i = spaces[j];
if (state->grid[i] != EMPTY)
continue;
if (random_upto(rs, 2)) {
state->grid[i] = N_ONE;
scratch->ones_rows[i / w2]++;
scratch->ones_cols[i % w2]++;
} else {
state->grid[i] = N_ZERO;
scratch->zeros_rows[i / w2]++;
scratch->zeros_cols[i % w2]++;
}
unruly_solve_game(state, scratch, DIFFCOUNT);
}
sfree(spaces);
if (unruly_validate_all_rows(state, NULL) != 0
|| unruly_validate_counts(state, scratch, NULL) != 0)
return false;
return true;
}
static char *new_game_desc(const game_params *params, random_state *rs,
char **aux, bool interactive)
{
#ifdef STANDALONE_SOLVER
char *debug;
bool temp_verbose = false;
#endif
int w2 = params->w2, h2 = params->h2;
int s = w2 * h2;
int *spaces;
int i, j, run;
char *ret, *p;
game_state *state;
struct unruly_scratch *scratch;
int attempts = 0;
while (1) {
while (true) {
attempts++;
state = blank_state(w2, h2, params->unique, true);
scratch = unruly_new_scratch(state);
if (unruly_fill_game(state, scratch, rs))
break;
free_game(state);
unruly_free_scratch(scratch);
}
#ifdef STANDALONE_SOLVER
if (solver_verbose) {
printf("Puzzle generated in %i attempts\n", attempts);
debug = game_text_format(state);
fputs(debug, stdout);
sfree(debug);
temp_verbose = solver_verbose;
solver_verbose = false;
}
#endif
unruly_free_scratch(scratch);
/* Generate random array of spaces */
spaces = snewn(s, int);
for (i = 0; i < s; i++)
spaces[i] = i;
shuffle(spaces, s, sizeof(*spaces), rs);
/*
* Winnow the clues by starting from our filled grid, repeatedly
* picking a filled space and emptying it, as long as the solver
* reports that the puzzle can still be solved after doing so.
*/
for (j = 0; j < s; j++) {
char c;
game_state *solver;
i = spaces[j];
c = state->grid[i];
state->grid[i] = EMPTY;
solver = dup_game(state);
scratch = unruly_new_scratch(state);
unruly_solve_game(solver, scratch, params->diff);
if (unruly_validate_counts(solver, scratch, NULL) != 0)
state->grid[i] = c;
free_game(solver);
unruly_free_scratch(scratch);
}
sfree(spaces);
#ifdef STANDALONE_SOLVER
if (temp_verbose) {
solver_verbose = true;
printf("Final puzzle:\n");
debug = game_text_format(state);
fputs(debug, stdout);
sfree(debug);
}
#endif
/*
* See if the game has accidentally come out too easy.
*/
if (params->diff > 0) {
bool ok;
game_state *solver;
solver = dup_game(state);
scratch = unruly_new_scratch(state);
unruly_solve_game(solver, scratch, params->diff - 1);
ok = unruly_validate_counts(solver, scratch, NULL) > 0;
free_game(solver);
unruly_free_scratch(scratch);
if (ok)
break;
} else {
/*
* Puzzles of the easiest difficulty can't be too easy.
*/
break;
}
}
/* Encode description */
ret = snewn(s + 1, char);
p = ret;
run = 0;
for (i = 0; i < s+1; i++) {
if (i == s || state->grid[i] == N_ZERO) {
while (run > 24) {
*p++ = 'z';
run -= 25;
}
*p++ = 'a' + run;
run = 0;
} else if (state->grid[i] == N_ONE) {
while (run > 24) {
*p++ = 'Z';
run -= 25;
}
*p++ = 'A' + run;
run = 0;
} else {
run++;
}
}
*p = '\0';
free_game(state);
return ret;
}
/* ************** *
* User Interface *
* ************** */
struct game_ui {
int cx, cy;
bool cursor;
};
static game_ui *new_ui(const game_state *state)
{
game_ui *ret = snew(game_ui);
ret->cx = ret->cy = 0;
ret->cursor = false;
return ret;
}
static void free_ui(game_ui *ui)
{
sfree(ui);
}
static char *encode_ui(const game_ui *ui)
{
return NULL;
}
static void decode_ui(game_ui *ui, const char *encoding)
{
}
static void game_changed_state(game_ui *ui, const game_state *oldstate,
const game_state *newstate)
{
}
struct game_drawstate {
int tilesize;
int w2, h2;
bool started;
int *gridfs;
bool *rowfs;
int *grid;
};
static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state)
{
struct game_drawstate *ds = snew(struct game_drawstate);
int w2 = state->w2, h2 = state->h2;
int s = w2 * h2;
int i;
ds->tilesize = 0;
ds->w2 = w2;
ds->h2 = h2;
ds->started = false;
ds->gridfs = snewn(s, int);
ds->rowfs = snewn(2 * (w2 + h2), bool);
ds->grid = snewn(s, int);
for (i = 0; i < s; i++)
ds->grid[i] = -1;
return ds;
}
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
{
sfree(ds->gridfs);
sfree(ds->rowfs);
sfree(ds->grid);
sfree(ds);
}
#define COORD(x) ( (x) * ds->tilesize + ds->tilesize/2 )
#define FROMCOORD(x) ( ((x)-(ds->tilesize/2)) / ds->tilesize )
static char *interpret_move(const game_state *state, game_ui *ui,
const game_drawstate *ds,
int ox, int oy, int button)
{
int hx = ui->cx;
int hy = ui->cy;
int gx = FROMCOORD(ox);
int gy = FROMCOORD(oy);
int w2 = state->w2, h2 = state->h2;
button &= ~MOD_MASK;
/* Mouse click */
if (button == LEFT_BUTTON || button == RIGHT_BUTTON ||
button == MIDDLE_BUTTON) {
if (ox >= (ds->tilesize / 2) && gx < w2
&& oy >= (ds->tilesize / 2) && gy < h2) {
hx = gx;
hy = gy;
ui->cursor = false;
} else
return NULL;
}
/* Keyboard move */
if (IS_CURSOR_MOVE(button)) {
move_cursor(button, &ui->cx, &ui->cy, w2, h2, false);
ui->cursor = true;
return UI_UPDATE;
}
/* Place one */
if ((ui->cursor && (button == CURSOR_SELECT || button == CURSOR_SELECT2
|| button == '\b' || button == '0' || button == '1'
|| button == '2')) ||
button == LEFT_BUTTON || button == RIGHT_BUTTON ||
button == MIDDLE_BUTTON) {
char buf[80];
char c, i;
if (state->common->immutable[hy * w2 + hx])
return NULL;
c = '-';
i = state->grid[hy * w2 + hx];
if (button == '0' || button == '2')
c = '0';
else if (button == '1')
c = '1';
else if (button == MIDDLE_BUTTON)
c = '-';
/* Cycle through options */
else if (button == CURSOR_SELECT2 || button == RIGHT_BUTTON)
c = (i == EMPTY ? '0' : i == N_ZERO ? '1' : '-');
else if (button == CURSOR_SELECT || button == LEFT_BUTTON)
c = (i == EMPTY ? '1' : i == N_ONE ? '0' : '-');
if (state->grid[hy * w2 + hx] ==
(c == '0' ? N_ZERO : c == '1' ? N_ONE : EMPTY))
return NULL; /* don't put no-ops on the undo chain */
sprintf(buf, "P%c,%d,%d", c, hx, hy);
return dupstr(buf);
}
return NULL;
}
static game_state *execute_move(const game_state *state, const char *move)
{
int w2 = state->w2, h2 = state->h2;
int s = w2 * h2;
int x, y, i;
char c;
game_state *ret;
if (move[0] == 'S') {
const char *p;
ret = dup_game(state);
p = move + 1;
for (i = 0; i < s; i++) {
if (!*p || !(*p == '1' || *p == '0')) {
free_game(ret);
return NULL;
}
ret->grid[i] = (*p == '1' ? N_ONE : N_ZERO);
p++;
}
ret->completed = ret->cheated = true;
return ret;
} else if (move[0] == 'P'
&& sscanf(move + 1, "%c,%d,%d", &c, &x, &y) == 3 && x >= 0
&& x < w2 && y >= 0 && y < h2 && (c == '-' || c == '0'
|| c == '1')) {
ret = dup_game(state);
i = y * w2 + x;
if (state->common->immutable[i]) {
free_game(ret);
return NULL;
}
ret->grid[i] = (c == '1' ? N_ONE : c == '0' ? N_ZERO : EMPTY);
if (!ret->completed && unruly_validate_counts(ret, NULL, NULL) == 0
&& (unruly_validate_all_rows(ret, NULL) == 0))
ret->completed = true;
return ret;
}
return NULL;
}
/* ----------------------------------------------------------------------
* Drawing routines.
*/
static void game_compute_size(const game_params *params, int tilesize,
int *x, int *y)
{
*x = tilesize * (params->w2 + 1);
*y = tilesize * (params->h2 + 1);
}
static void game_set_size(drawing *dr, game_drawstate *ds,
const game_params *params, int tilesize)
{
ds->tilesize = tilesize;
}
static float *game_colours(frontend *fe, int *ncolours)
{
float *ret = snewn(3 * NCOLOURS, float);
int i;
frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
for (i = 0; i < 3; i++) {
ret[COL_1 * 3 + i] = 0.2F;
ret[COL_1_HIGHLIGHT * 3 + i] = 0.4F;
ret[COL_1_LOWLIGHT * 3 + i] = 0.0F;
ret[COL_0 * 3 + i] = 0.95F;
ret[COL_0_HIGHLIGHT * 3 + i] = 1.0F;
ret[COL_0_LOWLIGHT * 3 + i] = 0.9F;
ret[COL_EMPTY * 3 + i] = 0.5F;
ret[COL_GRID * 3 + i] = 0.3F;
}
game_mkhighlight_specific(fe, ret, COL_0, COL_0_HIGHLIGHT, COL_0_LOWLIGHT);
game_mkhighlight_specific(fe, ret, COL_1, COL_1_HIGHLIGHT, COL_1_LOWLIGHT);
ret[COL_ERROR * 3 + 0] = 1.0F;
ret[COL_ERROR * 3 + 1] = 0.0F;
ret[COL_ERROR * 3 + 2] = 0.0F;
ret[COL_CURSOR * 3 + 0] = 0.0F;
ret[COL_CURSOR * 3 + 1] = 0.7F;
ret[COL_CURSOR * 3 + 2] = 0.0F;
*ncolours = NCOLOURS;
return ret;
}
static void unruly_draw_err_rectangle(drawing *dr, int x, int y, int w, int h,
int tilesize)
{
double thick = tilesize / 10;
double margin = tilesize / 20;
draw_rect(dr, x+margin, y+margin, w-2*margin, thick, COL_ERROR);
draw_rect(dr, x+margin, y+margin, thick, h-2*margin, COL_ERROR);
draw_rect(dr, x+margin, y+h-margin-thick, w-2*margin, thick, COL_ERROR);
draw_rect(dr, x+w-margin-thick, y+margin, thick, h-2*margin, COL_ERROR);
}
static void unruly_draw_tile(drawing *dr, int x, int y, int tilesize, int tile)
{
clip(dr, x, y, tilesize, tilesize);
/* Draw the grid edge first, so the tile can overwrite it */
draw_rect(dr, x, y, tilesize, tilesize, COL_GRID);
/* Background of the tile */
{
int val = (tile & FF_ZERO ? 0 : tile & FF_ONE ? 2 : 1);
val = (val == 0 ? COL_0 : val == 2 ? COL_1 : COL_EMPTY);
if ((tile & (FF_FLASH1 | FF_FLASH2)) &&
(val == COL_0 || val == COL_1)) {
val += (tile & FF_FLASH1 ? 1 : 2);
}
draw_rect(dr, x, y, tilesize-1, tilesize-1, val);
if ((val == COL_0 || val == COL_1) && (tile & FF_IMMUTABLE)) {
draw_rect(dr, x + tilesize/6, y + tilesize/6,
tilesize - 2*(tilesize/6) - 2, 1, val + 2);
draw_rect(dr, x + tilesize/6, y + tilesize/6,
1, tilesize - 2*(tilesize/6) - 2, val + 2);
draw_rect(dr, x + tilesize/6 + 1, y + tilesize - tilesize/6 - 2,
tilesize - 2*(tilesize/6) - 2, 1, val + 1);
draw_rect(dr, x + tilesize - tilesize/6 - 2, y + tilesize/6 + 1,
1, tilesize - 2*(tilesize/6) - 2, val + 1);
}
}
/* 3-in-a-row errors */
if (tile & (FE_HOR_ROW_LEFT | FE_HOR_ROW_RIGHT)) {
int left = x, right = x + tilesize - 1;
if ((tile & FE_HOR_ROW_LEFT))
right += tilesize/2;
if ((tile & FE_HOR_ROW_RIGHT))
left -= tilesize/2;
unruly_draw_err_rectangle(dr, left, y, right-left, tilesize-1, tilesize);
}
if (tile & (FE_VER_ROW_TOP | FE_VER_ROW_BOTTOM)) {
int top = y, bottom = y + tilesize - 1;
if ((tile & FE_VER_ROW_TOP))
bottom += tilesize/2;
if ((tile & FE_VER_ROW_BOTTOM))
top -= tilesize/2;
unruly_draw_err_rectangle(dr, x, top, tilesize-1, bottom-top, tilesize);
}
/* Count errors */
if (tile & FE_COUNT) {
draw_text(dr, x + tilesize/2, y + tilesize/2, FONT_VARIABLE,
tilesize/2, ALIGN_HCENTRE | ALIGN_VCENTRE, COL_ERROR, "!");
}
/* Row-match errors */
if (tile & FE_ROW_MATCH) {
draw_rect(dr, x, y+tilesize/2-tilesize/12,
tilesize, 2*(tilesize/12), COL_ERROR);
}
if (tile & FE_COL_MATCH) {
draw_rect(dr, x+tilesize/2-tilesize/12, y,
2*(tilesize/12), tilesize, COL_ERROR);
}
/* Cursor rectangle */
if (tile & FF_CURSOR) {
draw_rect(dr, x, y, tilesize/12, tilesize-1, COL_CURSOR);
draw_rect(dr, x, y, tilesize-1, tilesize/12, COL_CURSOR);
draw_rect(dr, x+tilesize-1-tilesize/12, y, tilesize/12, tilesize-1,
COL_CURSOR);
draw_rect(dr, x, y+tilesize-1-tilesize/12, tilesize-1, tilesize/12,
COL_CURSOR);
}
unclip(dr);
draw_update(dr, x, y, tilesize, tilesize);
}
#define TILE_SIZE (ds->tilesize)
#define DEFAULT_TILE_SIZE 32
#define FLASH_FRAME 0.12F
#define FLASH_TIME (FLASH_FRAME * 3)
static void game_redraw(drawing *dr, game_drawstate *ds,
const game_state *oldstate, const game_state *state,
int dir, const game_ui *ui,
float animtime, float flashtime)
{
int w2 = state->w2, h2 = state->h2;
int s = w2 * h2;
int flash;
int x, y, i;
if (!ds->started) {
/* Outer edge of grid */
draw_rect(dr, COORD(0)-TILE_SIZE/10, COORD(0)-TILE_SIZE/10,
TILE_SIZE*w2 + 2*(TILE_SIZE/10) - 1,
TILE_SIZE*h2 + 2*(TILE_SIZE/10) - 1, COL_GRID);
draw_update(dr, 0, 0, TILE_SIZE * (w2+1), TILE_SIZE * (h2+1));
ds->started = true;
}
flash = 0;
if (flashtime > 0)
flash = (int)(flashtime / FLASH_FRAME) == 1 ? FF_FLASH2 : FF_FLASH1;
for (i = 0; i < s; i++)
ds->gridfs[i] = 0;
unruly_validate_all_rows(state, ds->gridfs);
for (i = 0; i < 2 * (h2 + w2); i++)
ds->rowfs[i] = false;
unruly_validate_counts(state, NULL, ds->rowfs);
for (y = 0; y < h2; y++) {
for (x = 0; x < w2; x++) {
int tile;
i = y * w2 + x;
tile = ds->gridfs[i];
if (state->grid[i] == N_ONE) {
tile |= FF_ONE;
if (ds->rowfs[y] || ds->rowfs[2*h2 + x])
tile |= FE_COUNT;
} else if (state->grid[i] == N_ZERO) {
tile |= FF_ZERO;
if (ds->rowfs[h2 + y] || ds->rowfs[2*h2 + w2 + x])
tile |= FE_COUNT;
}
tile |= flash;
if (state->common->immutable[i])
tile |= FF_IMMUTABLE;
if (ui->cursor && ui->cx == x && ui->cy == y)
tile |= FF_CURSOR;
if (ds->grid[i] != tile) {
ds->grid[i] = tile;
unruly_draw_tile(dr, COORD(x), COORD(y), TILE_SIZE, tile);
}
}
}
}
static float game_anim_length(const game_state *oldstate,
const game_state *newstate, int dir, game_ui *ui)
{
return 0.0F;
}
static float game_flash_length(const game_state *oldstate,
const game_state *newstate, int dir, game_ui *ui)
{
if (!oldstate->completed && newstate->completed &&
!oldstate->cheated && !newstate->cheated)
return FLASH_TIME;
return 0.0F;
}
static void game_get_cursor_location(const game_ui *ui,
const game_drawstate *ds,
const game_state *state,
const game_params *params,
int *x, int *y, int *w, int *h)
{
if(ui->cursor) {
*x = COORD(ui->cx);
*y = COORD(ui->cy);
*w = *h = TILE_SIZE;
}
}
static int game_status(const game_state *state)
{
return state->completed ? +1 : 0;
}
static bool game_timing_state(const game_state *state, game_ui *ui)
{
return true;
}
static void game_print_size(const game_params *params, float *x, float *y)
{
int pw, ph;
/* Using 7mm squares */
game_compute_size(params, 700, &pw, &ph);
*x = pw / 100.0F;
*y = ph / 100.0F;
}
static void game_print(drawing *dr, const game_state *state, int tilesize)
{
int w2 = state->w2, h2 = state->h2;
int x, y;
int ink = print_mono_colour(dr, 0);
for (y = 0; y < h2; y++)
for (x = 0; x < w2; x++) {
int tx = x * tilesize + (tilesize / 2);
int ty = y * tilesize + (tilesize / 2);
/* Draw the border */
int coords[8];
coords[0] = tx;
coords[1] = ty - 1;
coords[2] = tx + tilesize;
coords[3] = ty - 1;
coords[4] = tx + tilesize;
coords[5] = ty + tilesize - 1;
coords[6] = tx;
coords[7] = ty + tilesize - 1;
draw_polygon(dr, coords, 4, -1, ink);
if (state->grid[y * w2 + x] == N_ONE)
draw_rect(dr, tx, ty, tilesize, tilesize, ink);
else if (state->grid[y * w2 + x] == N_ZERO)
draw_circle(dr, tx + tilesize/2, ty + tilesize/2,
tilesize/12, ink, ink);
}
}
#ifdef COMBINED
#define thegame unruly
#endif
const struct game thegame = {
"Unruly", "games.unruly", "unruly",
default_params,
game_fetch_preset, NULL,
decode_params,
encode_params,
free_params,
dup_params,
true, game_configure, custom_params,
validate_params,
new_game_desc,
validate_desc,
new_game,
dup_game,
free_game,
true, solve_game,
true, game_can_format_as_text_now, game_text_format,
new_ui,
free_ui,
encode_ui,
decode_ui,
NULL, /* game_request_keys */
game_changed_state,
interpret_move,
execute_move,
DEFAULT_TILE_SIZE, game_compute_size, game_set_size,
game_colours,
game_new_drawstate,
game_free_drawstate,
game_redraw,
game_anim_length,
game_flash_length,
game_get_cursor_location,
game_status,
true, false, game_print_size, game_print,
false, /* wants_statusbar */
false, game_timing_state,
0, /* flags */
};
/* ***************** *
* Standalone solver *
* ***************** */
#ifdef STANDALONE_SOLVER
#include <time.h>
#include <stdarg.h>
/* Most of the standalone solver code was copied from unequal.c and singles.c */
const char *quis;
static void usage_exit(const char *msg)
{
if (msg)
fprintf(stderr, "%s: %s\n", quis, msg);
fprintf(stderr,
"Usage: %s [-v] [--seed SEED] <params> | [game_id [game_id ...]]\n",
quis);
exit(1);
}
int main(int argc, char *argv[])
{
random_state *rs;
time_t seed = time(NULL);
game_params *params = NULL;
char *id = NULL, *desc = NULL;
const char *err;
quis = argv[0];
while (--argc > 0) {
char *p = *++argv;
if (!strcmp(p, "--seed")) {
if (argc == 0)
usage_exit("--seed needs an argument");
seed = (time_t) atoi(*++argv);
argc--;
} else if (!strcmp(p, "-v"))
solver_verbose = true;
else if (*p == '-')
usage_exit("unrecognised option");
else
id = p;
}
if (id) {
desc = strchr(id, ':');
if (desc)
*desc++ = '\0';
params = default_params();
decode_params(params, id);
err = validate_params(params, true);
if (err) {
fprintf(stderr, "Parameters are invalid\n");
fprintf(stderr, "%s: %s", argv[0], err);
exit(1);
}
}
if (!desc) {
char *desc_gen, *aux;
rs = random_new((void *) &seed, sizeof(time_t));
if (!params)
params = default_params();
printf("Generating puzzle with parameters %s\n",
encode_params(params, true));
desc_gen = new_game_desc(params, rs, &aux, false);
if (!solver_verbose) {
char *fmt = game_text_format(new_game(NULL, params, desc_gen));
fputs(fmt, stdout);
sfree(fmt);
}
printf("Game ID: %s\n", desc_gen);
} else {
game_state *input;
struct unruly_scratch *scratch;
int maxdiff, errcode;
err = validate_desc(params, desc);
if (err) {
fprintf(stderr, "Description is invalid\n");
fprintf(stderr, "%s", err);
exit(1);
}
input = new_game(NULL, params, desc);
scratch = unruly_new_scratch(input);
maxdiff = unruly_solve_game(input, scratch, DIFFCOUNT);
errcode = unruly_validate_counts(input, scratch, NULL);
if (unruly_validate_all_rows(input, NULL) == -1)
errcode = -1;
if (errcode != -1) {
char *fmt = game_text_format(input);
fputs(fmt, stdout);
sfree(fmt);
if (maxdiff < 0)
printf("Difficulty: already solved!\n");
else
printf("Difficulty: %s\n", unruly_diffnames[maxdiff]);
}
if (errcode == 1)
printf("No solution found.\n");
else if (errcode == -1)
printf("Puzzle is invalid.\n");
free_game(input);
unruly_free_scratch(scratch);
}
return 0;
}
#endif