Files
puzzles/hat.c
Simon Tatham 2b1167d82a Fix references to the renamed 'auxiliary' directory.
I renamed it in a hurry this morning after the first report of a git
error message on Windows. Now I realise that several source files
referred to the old name, and also need fixing.
2023-03-27 19:31:14 +01:00

1249 lines
36 KiB
C

/*
* Code to generate patches of the aperiodic 'hat' tiling discovered
* in 2023.
*
* auxiliary/doc/hats.html contains an explanation of the basic ideas
* of this algorithm, which can't really be put in a source file
* because it just has too many complicated diagrams. So read that
* first, because the comments in here will refer to it.
*
* Discoverers' website: https://cs.uwaterloo.ca/~csk/hat/
* Preprint of paper: https://arxiv.org/abs/2303.10798
*/
#include <assert.h>
#include <math.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "puzzles.h"
#include "hat.h"
/*
* Coordinate system:
*
* The output of this code lives on the tiling known to grid.c as
* 'Kites', which can be viewed as a tiling of hexagons each of which
* is subdivided into six kites sharing their pointy vertex, or
* (equivalently) a tiling of equilateral triangles each subdivided
* into three kits sharing their blunt vertex.
*
* We express coordinates in this system relative to the basis (1, r)
* where r = (1 + sqrt(3)i) / 2 is a primitive 6th root of unity. This
* gives us a system in which two integer coordinates can address any
* grid point, provided we scale up so that the side length of the
* equilateral triangles in the tiling is 6.
*/
typedef struct Point {
int x, y; /* represents x + yr */
} Point;
static inline Point pointscale(int scale, Point a)
{
Point r = { scale * a.x, scale * a.y };
return r;
}
static inline Point pointadd(Point a, Point b)
{
Point r = { a.x + b.x, a.y + b.y };
return r;
}
/*
* We identify a single kite by the coordinates of its four vertices.
* This allows us to construct the coordinates of an adjacent kite by
* taking affine transformations of the original kite's vertices.
*
* This is a useful way to do it because it means that if you reflect
* the kite (by swapping its left and right vertices) then these
* transformations also perform in a reflected way. This will be
* useful in the code below that outputs the coordinates of each hat,
* because this way it can work by walking around its 8 kites using a
* fixed set of steps, and if the hat is reflected, then we just
* reflect the starting kite before doing that, and everything still
* works.
*/
typedef struct Kite {
Point centre, left, right, outer;
} Kite;
static inline Kite kite_left(Kite k)
{
Kite r;
r.centre = k.centre;
r.right = k.left;
r.outer = pointadd(pointscale(2, k.left), pointscale(-1, k.outer));
r.left = pointadd(pointadd(k.centre, k.left), pointscale(-1, k.right));
return r;
}
static inline Kite kite_right(Kite k)
{
Kite r;
r.centre = k.centre;
r.left = k.right;
r.outer = pointadd(pointscale(2, k.right), pointscale(-1, k.outer));
r.right = pointadd(pointadd(k.centre, k.right), pointscale(-1, k.left));
return r;
}
static inline Kite kite_forward_left(Kite k)
{
Kite r;
r.outer = k.outer;
r.right = k.left;
r.centre = pointadd(pointscale(2, k.left), pointscale(-1, k.centre));
r.left = pointadd(pointadd(k.right, k.left), pointscale(-1, k.centre));
return r;
}
static inline Kite kite_forward_right(Kite k)
{
Kite r;
r.outer = k.outer;
r.left = k.right;
r.centre = pointadd(pointscale(2, k.right), pointscale(-1, k.centre));
r.right = pointadd(pointadd(k.left, k.right), pointscale(-1, k.centre));
return r;
}
typedef enum KiteStep { KS_LEFT, KS_RIGHT, KS_F_LEFT, KS_F_RIGHT } KiteStep;
static inline Kite kite_step(Kite k, KiteStep step)
{
switch (step) {
case KS_LEFT: return kite_left(k);
case KS_RIGHT: return kite_right(k);
case KS_F_LEFT: return kite_forward_left(k);
default /* case KS_F_RIGHT */: return kite_forward_right(k);
}
}
/*
* Function to enumerate the kites in a rectangular region, in a
* serpentine-raster fashion so that every kite delivered shares an
* edge with a recent previous one.
*/
#define KE_NKEEP 3
typedef struct KiteEnum {
/* Fields private to the enumerator */
int state;
int x, y, w, h;
unsigned curr_index;
/* Fields the client can legitimately read out */
Kite *curr;
Kite recent[KE_NKEEP];
unsigned last_index;
KiteStep last_step; /* step that got curr from recent[last_index] */
} KiteEnum;
static void first_kite(KiteEnum *s, int w, int h)
{
Kite start = { {0,0}, {0, 3}, {3, 0}, {2, 2} };
size_t i;
for (i = 0; i < KE_NKEEP; i++)
s->recent[i] = start; /* initialise to *something* */
s->curr_index = 0;
s->curr = &s->recent[s->curr_index];
s->state = 1;
s->w = w;
s->h = h;
s->x = 0;
s->y = 0;
}
static bool next_kite(KiteEnum *s)
{
unsigned lastbut1 = s->last_index;
s->last_index = s->curr_index;
s->curr_index = (s->curr_index + 1) % KE_NKEEP;
s->curr = &s->recent[s->curr_index];
switch (s->state) {
/* States 1,2,3 walk rightwards along the upper side of a
* horizontal grid line with a pointy kite end at the start
* point */
case 1:
s->last_step = KS_F_RIGHT;
s->state = 2;
break;
case 2:
if (s->x+1 >= s->w) {
s->last_step = KS_F_RIGHT;
s->state = 4;
break;
}
s->last_step = KS_RIGHT;
s->state = 3;
s->x++;
break;
case 3:
s->last_step = KS_RIGHT;
s->state = 1;
break;
/* State 4 is special: we've just moved up into a row below a
* grid line, but we can't produce the rightmost tile of that
* row because it's not adjacent any tile so far emitted. So
* instead, emit the second-rightmost tile, and next time,
* we'll emit the rightmost. */
case 4:
s->last_step = KS_LEFT;
s->state = 5;
break;
/* And now we have to emit the third-rightmost tile relative
* to the last but one tile we emitted (the one from state 2,
* not state 4). */
case 5:
s->last_step = KS_RIGHT;
s->last_index = lastbut1;
s->state = 6;
break;
/* Now states 6-8 handle the general case of walking leftwards
* along the lower side of a line, starting from a
* right-angled kite end. */
case 6:
if (s->x <= 0) {
if (s->y+1 >= s->h) {
s->state = 0;
return false;
}
s->last_step = KS_RIGHT;
s->state = 9;
s->y++;
break;
}
s->last_step = KS_F_RIGHT;
s->state = 7;
s->x--;
break;
case 7:
s->last_step = KS_RIGHT;
s->state = 8;
break;
case 8:
s->last_step = KS_RIGHT;
s->state = 6;
break;
/* States 9,10,11 walk rightwards along the upper side of a
* horizontal grid line with a right-angled kite end at the
* start point. This time there's no awkward transition from
* the previous row. */
case 9:
s->last_step = KS_RIGHT;
s->state = 10;
break;
case 10:
s->last_step = KS_RIGHT;
s->state = 11;
break;
case 11:
if (s->x+1 >= s->w) {
/* Another awkward transition to the next row, where we
* have to generate it based on the previous state-9 tile.
* But this time at least we generate the rightmost tile
* of the new row, so the next states will be simple. */
s->last_step = KS_F_RIGHT;
s->last_index = lastbut1;
s->state = 12;
break;
}
s->last_step = KS_F_RIGHT;
s->state = 9;
s->x++;
break;
/* States 12,13,14 walk leftwards along the upper edge of a
* horizontal grid line with a pointy kite end at the start
* point */
case 12:
s->last_step = KS_F_RIGHT;
s->state = 13;
break;
case 13:
if (s->x <= 0) {
if (s->y+1 >= s->h) {
s->state = 0;
return false;
}
s->last_step = KS_LEFT;
s->state = 1;
s->y++;
break;
}
s->last_step = KS_RIGHT;
s->state = 14;
s->x--;
break;
case 14:
s->last_step = KS_RIGHT;
s->state = 12;
break;
default:
return false;
}
*s->curr = kite_step(s->recent[s->last_index], s->last_step);
return true;
}
/*
* Assorted useful definitions.
*/
typedef enum TileType { TT_H, TT_T, TT_P, TT_F, TT_KITE, TT_HAT } TileType;
static const char tilechars[] = "HTPF";
#define HAT_KITES 8 /* number of kites in a hat */
#define MT_MAXEXPAND 13 /* largest number of metatiles in any expansion */
/*
* Definitions for the autogenerated hat-tables.h header file that
* defines all the lookup tables.
*/
typedef struct MetatilePossibleParent {
TileType type;
unsigned index;
} MetatilePossibleParent;
typedef struct KitemapEntry {
int kite, hat, meta; /* all -1 if impossible */
} KitemapEntry;
typedef struct MetamapEntry {
int meta, meta2;
} MetamapEntry;
static inline size_t kitemap_index(KiteStep step, unsigned kite,
unsigned hat, unsigned meta)
{
return step + 4 * (kite + 8 * (hat + 4 * meta));
}
static inline size_t metamap_index(unsigned meta, unsigned meta2)
{
return meta2 * MT_MAXEXPAND + meta;
}
/*
* The actual tables.
*/
#include "hat-tables.h"
/*
* Coordinate system for tracking kites within a randomly selected
* part of the recursively expanded hat tiling.
*
* HatCoords will store an array of HatCoord, in little-endian
* arrangement. So hc->c[0] will always have type TT_KITE and index a
* single kite within a hat; hc->c[1] will have type TT_HAT and index
* a hat within a first-order metatile; hc->c[2] will be the smallest
* metatile containing this hat, and hc->c[3, 4, 5, ...] will be
* higher-order metatiles as needed.
*
* The last coordinate stored, hc->c[hc->nc-1], will have a tile type
* but no index (represented by index==-1). This means "we haven't
* decided yet what this level of metatile needs to be". If we need to
* refer to this level during the step_coords algorithm, we make it up
* at random, based on a table of what metatiles each type can
* possibly be part of, at what index.
*/
typedef struct HatCoord {
int index; /* index within that tile, or -1 if not yet known */
TileType type; /* type of this tile */
} HatCoord;
typedef struct HatCoords {
HatCoord *c;
size_t nc, csize;
} HatCoords;
static HatCoords *hc_new(void)
{
HatCoords *hc = snew(HatCoords);
hc->nc = hc->csize = 0;
hc->c = NULL;
return hc;
}
static void hc_free(HatCoords *hc)
{
if (hc) {
sfree(hc->c);
sfree(hc);
}
}
static void hc_make_space(HatCoords *hc, size_t size)
{
if (hc->csize < size) {
hc->csize = hc->csize * 5 / 4 + 16;
if (hc->csize < size)
hc->csize = size;
hc->c = sresize(hc->c, hc->csize, HatCoord);
}
}
static HatCoords *hc_copy(HatCoords *hc_in)
{
HatCoords *hc_out = hc_new();
hc_make_space(hc_out, hc_in->nc);
memcpy(hc_out->c, hc_in->c, hc_in->nc * sizeof(*hc_out->c));
hc_out->nc = hc_in->nc;
return hc_out;
}
/*
* HatCoordContext is the shared context of a whole run of the
* algorithm. Its 'prototype' HatCoords object represents the
* coordinates of the starting kite, and is extended as necessary; any
* other HatCoord that needs extending will copy the higher-order
* values from ctx->prototype as needed, so that once each choice has
* been made, it remains consistent.
*
* When we're inventing a random piece of tiling in the first place,
* we append to ctx->prototype by choosing a random (but legal)
* higher-level metatile for the current topmost one to turn out to be
* part of. When we're replaying a generation whose parameters are
* already stored, we don't have a random_state, and we make fixed
* decisions if not enough coordinates were provided.
*
* (Of course another approach would be to reject grid descriptions
* that didn't define enough coordinates! But that would involve a
* whole extra iteration over the whole grid region just for
* validation, and that seems like more timewasting than really
* needed. So we tolerate short descriptions, and do something
* deterministic with them.)
*/
typedef struct HatCoordContext {
random_state *rs;
HatCoords *prototype;
} HatCoordContext;
static void init_coords_random(HatCoordContext *ctx, random_state *rs)
{
ctx->rs = rs;
ctx->prototype = hc_new();
hc_make_space(ctx->prototype, 3);
ctx->prototype->c[0].type = TT_KITE;
ctx->prototype->c[1].type = TT_HAT;
ctx->prototype->c[2].type = random_upto(rs, 4);
ctx->prototype->c[2].index = -1;
ctx->prototype->c[1].index = random_upto(
rs, hats_in_metatile[ctx->prototype->c[2].type]);
ctx->prototype->c[0].index = random_upto(rs, HAT_KITES);
ctx->prototype->nc = 3;
}
static inline int metatile_char_to_enum(char metatile)
{
return (metatile == 'H' ? TT_H :
metatile == 'T' ? TT_T :
metatile == 'P' ? TT_P :
metatile == 'F' ? TT_F : -1);
}
static void init_coords_params(HatCoordContext *ctx,
const struct HatPatchParams *hp)
{
size_t i;
ctx->rs = NULL;
ctx->prototype = hc_new();
assert(hp->ncoords >= 3);
hc_make_space(ctx->prototype, hp->ncoords + 1);
ctx->prototype->nc = hp->ncoords + 1;
for (i = 0; i < hp->ncoords; i++)
ctx->prototype->c[i].index = hp->coords[i];
ctx->prototype->c[hp->ncoords].type =
metatile_char_to_enum(hp->final_metatile);
ctx->prototype->c[hp->ncoords].index = -1;
ctx->prototype->c[0].type = TT_KITE;
ctx->prototype->c[1].type = TT_HAT;
for (i = hp->ncoords - 1; i > 1; i--) {
TileType metatile = ctx->prototype->c[i+1].type;
assert(hp->coords[i] < nchildren[metatile]);
ctx->prototype->c[i].type = children[metatile][hp->coords[i]];
}
assert(hp->coords[0] < 8);
}
static HatCoords *initial_coords(HatCoordContext *ctx)
{
return hc_copy(ctx->prototype);
}
/*
* Extend hc until it has at least n coordinates in, by copying from
* ctx->prototype if needed, and extending ctx->prototype if needed in
* order to do that.
*/
static void ensure_coords(HatCoordContext *ctx, HatCoords *hc, size_t n)
{
if (ctx->prototype->nc < n) {
hc_make_space(ctx->prototype, n);
while (ctx->prototype->nc < n) {
TileType type = ctx->prototype->c[ctx->prototype->nc - 1].type;
assert(ctx->prototype->c[ctx->prototype->nc - 1].index == -1);
const MetatilePossibleParent *parents = permitted_parents[type];
size_t parent_index;
if (ctx->rs) {
parent_index = random_upto(ctx->rs, n_permitted_parents[type]);
} else {
parent_index = 0;
}
ctx->prototype->c[ctx->prototype->nc - 1].index =
parents[parent_index].index;
ctx->prototype->c[ctx->prototype->nc].index = -1;
ctx->prototype->c[ctx->prototype->nc].type =
parents[parent_index].type;
ctx->prototype->nc++;
}
}
hc_make_space(hc, n);
while (hc->nc < n) {
assert(hc->c[hc->nc - 1].index == -1);
assert(hc->c[hc->nc - 1].type == ctx->prototype->c[hc->nc - 1].type);
hc->c[hc->nc - 1].index = ctx->prototype->c[hc->nc - 1].index;
hc->c[hc->nc].index = -1;
hc->c[hc->nc].type = ctx->prototype->c[hc->nc].type;
hc->nc++;
}
}
static void cleanup_coords(HatCoordContext *ctx)
{
hc_free(ctx->prototype);
}
#ifdef DEBUG_COORDS
static inline void debug_coords(const char *prefix, HatCoords *hc,
const char *suffix)
{
const char *sep = "";
static const char *const types[] = {"H","T","P","F","kite","hat"};
fputs(prefix, stderr);
for (size_t i = 0; i < hc->nc; i++) {
fprintf(stderr, "%s %s ", sep, types[hc->c[i].type]);
sep = " .";
if (hc->c[i].index == -1)
fputs("?", stderr);
else
fprintf(stderr, "%d", hc->c[i].index);
}
fputs(suffix, stderr);
}
#else
#define debug_coords(p,c,s) ((void)0)
#endif
/*
* The actual system for finding the coordinates of an adjacent kite.
*/
/*
* Kitemap step: ensure we have enough coordinates to know two levels
* of meta-tiling, and use the kite map for the outer layer to move
* around the individual kites. If this fails, return NULL.
*/
static HatCoords *try_step_coords_kitemap(
HatCoordContext *ctx, HatCoords *hc_in, KiteStep step)
{
ensure_coords(ctx, hc_in, 4);
debug_coords(" try kitemap ", hc_in, "\n");
unsigned kite = hc_in->c[0].index;
unsigned hat = hc_in->c[1].index;
unsigned meta = hc_in->c[2].index;
TileType meta2type = hc_in->c[3].type;
const KitemapEntry *ke = &kitemap[meta2type][
kitemap_index(step, kite, hat, meta)];
if (ke->kite >= 0) {
/*
* Success! We've got coordinates for the next kite in this
* direction.
*/
HatCoords *hc_out = hc_copy(hc_in);
hc_out->c[2].index = ke->meta;
hc_out->c[2].type = children[meta2type][ke->meta];
hc_out->c[1].index = ke->hat;
hc_out->c[1].type = TT_HAT;
hc_out->c[0].index = ke->kite;
hc_out->c[0].type = TT_KITE;
debug_coords(" success! ", hc_out, "\n");
return hc_out;
}
return NULL;
}
/*
* Recursive metamap step. Try using the metamap to rewrite the
* coordinates at hc->c[depth] and hc->c[depth+1] (using the metamap
* for the tile type described in hc->c[depth+2]). If successful,
* recurse back down to see if this led to a successful step via the
* kitemap. If even that fails (so that we need to try a higher-order
* metamap rewrite), return NULL.
*/
static HatCoords *try_step_coords_metamap(
HatCoordContext *ctx, HatCoords *hc_in, KiteStep step, size_t depth)
{
HatCoords *hc_tmp = NULL, *hc_out;
ensure_coords(ctx, hc_in, depth+3);
#ifdef DEBUG_COORDS
fprintf(stderr, " try meta %-4d", (int)depth);
debug_coords("", hc_in, "\n");
#endif
unsigned meta_orig = hc_in->c[depth].index;
unsigned meta2_orig = hc_in->c[depth+1].index;
TileType meta3type = hc_in->c[depth+2].type;
unsigned meta = meta_orig, meta2 = meta2_orig;
while (true) {
const MetamapEntry *me;
HatCoords *hc_curr = hc_tmp ? hc_tmp : hc_in;
if (depth > 2)
hc_out = try_step_coords_metamap(ctx, hc_curr, step, depth - 1);
else
hc_out = try_step_coords_kitemap(ctx, hc_curr, step);
if (hc_out) {
hc_free(hc_tmp);
return hc_out;
}
me = &metamap[meta3type][metamap_index(meta, meta2)];
assert(me->meta != -1);
if (me->meta == meta_orig && me->meta2 == meta2_orig) {
hc_free(hc_tmp);
return NULL;
}
meta = me->meta;
meta2 = me->meta2;
/*
* We must do the rewrite in a copy of hc_in. It's not
* _necessarily_ obvious that that's the case (any successful
* rewrite leaves the coordinates still valid and still
* referring to the same kite, right?). But the problem is
* that we might do a rewrite at this level more than once,
* and in between, a metamap rewrite at the next level down
* might have modified _one_ of the two coordinates we're
* messing about with. So it's easiest to let the recursion
* just use a separate copy.
*/
if (!hc_tmp)
hc_tmp = hc_copy(hc_in);
hc_tmp->c[depth+1].index = meta2;
hc_tmp->c[depth+1].type = children[meta3type][meta2];
hc_tmp->c[depth].index = meta;
hc_tmp->c[depth].type = children[hc_tmp->c[depth+1].type][meta];
debug_coords(" rewritten -> ", hc_tmp, "\n");
}
}
/*
* The top-level algorithm for finding the next tile.
*/
static HatCoords *step_coords(HatCoordContext *ctx, HatCoords *hc_in,
KiteStep step)
{
HatCoords *hc_out;
size_t depth;
#ifdef DEBUG_COORDS
static const char *const directions[] = {
" left\n", " right\n", " forward left\n", " forward right\n" };
debug_coords("step start ", hc_in, directions[step]);
#endif
/*
* First, just try a kitemap step immediately. If that succeeds,
* we're done.
*/
if ((hc_out = try_step_coords_kitemap(ctx, hc_in, step)) != NULL)
return hc_out;
/*
* Otherwise, try metamap rewrites at successively higher layers
* until one works. Each one will recurse back down to the
* kitemap, as described above.
*/
for (depth = 2;; depth++) {
if ((hc_out = try_step_coords_metamap(
ctx, hc_in, step, depth)) != NULL)
return hc_out;
}
}
/*
* Generate a random set of parameters for a tiling of a given size.
* To do this, we iterate over the whole tiling via first_kite and
* next_kite, and for each kite, calculate its coordinates. But then
* we throw the coordinates away and don't do anything with them!
*
* But the side effect of _calculating_ all those coordinates is that
* we found out how far ctx->prototype needed to be extended, and did
* so, pulling random choices out of our random_state. So after this
* iteration, ctx->prototype contains everything we need to replicate
* the same piece of tiling next time.
*/
void hat_tiling_randomise(struct HatPatchParams *hp, int w, int h,
random_state *rs)
{
HatCoordContext ctx[1];
HatCoords *coords[KE_NKEEP];
KiteEnum s[1];
size_t i;
init_coords_random(ctx, rs);
for (i = 0; i < lenof(coords); i++)
coords[i] = NULL;
first_kite(s, w, h);
coords[s->curr_index] = initial_coords(ctx);
while (next_kite(s)) {
hc_free(coords[s->curr_index]);
coords[s->curr_index] = step_coords(
ctx, coords[s->last_index], s->last_step);
}
hp->ncoords = ctx->prototype->nc - 1;
hp->coords = snewn(hp->ncoords, unsigned char);
for (i = 0; i < hp->ncoords; i++)
hp->coords[i] = ctx->prototype->c[i].index;
hp->final_metatile = tilechars[ctx->prototype->c[hp->ncoords].type];
cleanup_coords(ctx);
for (i = 0; i < lenof(coords); i++)
hc_free(coords[i]);
}
const char *hat_tiling_params_invalid(const struct HatPatchParams *hp)
{
TileType metatile;
size_t i;
if (hp->ncoords < 3)
return "Grid parameters require at least three coordinates";
if (metatile_char_to_enum(hp->final_metatile) < 0)
return "Grid parameters contain an invalid final metatile";
if (hp->coords[0] >= 8)
return "Grid parameters contain an invalid kite index";
metatile = metatile_char_to_enum(hp->final_metatile);
for (i = hp->ncoords - 1; i > 1; i--) {
if (hp->coords[i] >= nchildren[metatile])
return "Grid parameters contain an invalid metatile index";
metatile = children[metatile][hp->coords[i]];
}
if (hp->coords[1] >= hats_in_metatile[metatile])
return "Grid parameters contain an invalid hat index";
return NULL;
}
/*
* For each kite generated by hat_tiling_generate, potentially
* generate an output hat and give it to our caller.
*
* We do this by starting from kite #0 of each hat, and tracing round
* the boundary. If the whole boundary is within the caller's bounding
* region, we return it; if it goes off the edge, we don't.
*
* (Of course, every hat we _do_ want to return will have all its
* kites inside the rectangle, so its kite #0 will certainly be caught
* by this iteration.)
*/
static void maybe_report_hat(int w, int h, Kite kite, HatCoords *hc,
hat_tile_callback_fn cb, void *cbctx)
{
Point vertices[14];
size_t i, j;
bool reversed = false;
int coords[28];
/* Only iterate from kite #0 of a hat */
if (hc->c[0].index != 0)
return;
/*
* Identify reflected hats: they are always hat #3 of an H
* metatile. If we find one, reflect the starting kite so that the
* kite_step operations below will go in the other direction.
*/
if (hc->c[2].type == TT_H && hc->c[1].index == 3) {
reversed = true;
Point tmp = kite.left;
kite.left = kite.right;
kite.right = tmp;
}
vertices[0] = kite.centre;
vertices[1] = kite.right;
vertices[2] = kite.outer;
vertices[3] = kite.left;
kite = kite_left(kite); /* now on kite #1 */
kite = kite_forward_right(kite); /* now on kite #2 */
vertices[4] = kite.centre;
kite = kite_right(kite); /* now on kite #3 */
vertices[5] = kite.right;
vertices[6] = kite.outer;
kite = kite_forward_left(kite); /* now on kite #4 */
vertices[7] = kite.left;
vertices[8] = kite.centre;
kite = kite_right(kite); /* now on kite #5 */
kite = kite_right(kite); /* now on kite #6 */
kite = kite_right(kite); /* now on kite #7 */
vertices[9] = kite.right;
vertices[10] = kite.outer;
vertices[11] = kite.left;
kite = kite_left(kite); /* now on kite #6 again */
vertices[12] = kite.outer;
vertices[13] = kite.left;
if (reversed) {
/* For a reversed kite, also reverse the vertex order, so that
* we report every polygon in a consistent orientation */
for (i = 0, j = 13; i < j; i++, j--) {
Point tmp = vertices[i];
vertices[i] = vertices[j];
vertices[j] = tmp;
}
}
/*
* Convert from our internal coordinate system into the orthogonal
* one used in this module's external API. In the same loop, we
* might as well do the bounds check.
*/
for (i = 0; i < 14; i++) {
Point v = vertices[i];
int x = (v.x * 2 + v.y) / 3, y = v.y;
if (x < 0 || x > 4*w || y < 0 || y > 6*h)
return; /* a vertex of this kite is out of bounds */
coords[2*i] = x;
coords[2*i+1] = y;
}
cb(cbctx, 14, coords);
}
/*
* Generate a hat tiling from a previously generated set of parameters.
*/
void hat_tiling_generate(const struct HatPatchParams *hp, int w, int h,
hat_tile_callback_fn cb, void *cbctx)
{
HatCoordContext ctx[1];
HatCoords *coords[KE_NKEEP];
KiteEnum s[1];
size_t i;
init_coords_params(ctx, hp);
for (i = 0; i < lenof(coords); i++)
coords[i] = NULL;
first_kite(s, w, h);
coords[s->curr_index] = initial_coords(ctx);
maybe_report_hat(w, h, *s->curr, coords[s->curr_index], cb, cbctx);
while (next_kite(s)) {
hc_free(coords[s->curr_index]);
coords[s->curr_index] = step_coords(
ctx, coords[s->last_index], s->last_step);
maybe_report_hat(w, h, *s->curr, coords[s->curr_index], cb, cbctx);
}
cleanup_coords(ctx);
for (i = 0; i < lenof(coords); i++)
hc_free(coords[i]);
}
#ifdef TEST_HAT
#include <stdarg.h>
static HatCoords *hc_construct_v(TileType type, va_list ap)
{
HatCoords *hc = hc_new();
while (true) {
int index = va_arg(ap, int);
hc_make_space(hc, hc->nc + 1);
hc->c[hc->nc].type = type;
hc->c[hc->nc].index = index;
hc->nc++;
if (index < 0)
return hc;
type = va_arg(ap, TileType);
}
}
static HatCoords *hc_construct(TileType type, ...)
{
HatCoords *hc;
va_list ap;
va_start(ap, type);
hc = hc_construct_v(type, ap);
va_end(ap);
return hc;
}
static bool hc_equal(HatCoords *hc1, HatCoords *hc2)
{
size_t i;
if (hc1->nc != hc2->nc)
return false;
for (i = 0; i < hc1->nc; i++) {
if (hc1->c[i].type != hc2->c[i].type ||
hc1->c[i].index != hc2->c[i].index)
return false;
}
return true;
}
static bool hc_expect(const char *file, int line, HatCoords *hc,
TileType type, ...)
{
bool equal;
va_list ap;
HatCoords *hce;
va_start(ap, type);
hce = hc_construct_v(type, ap);
va_end(ap);
equal = hc_equal(hc, hce);
if (!equal) {
fprintf(stderr, "%s:%d: coordinate mismatch\n", file, line);
debug_coords(" expected: ", hce, "\n");
debug_coords(" actual: ", hc, "\n");
}
hc_free(hce);
return equal;
}
#define EXPECT(hc, ...) do { \
if (!hc_expect(__FILE__, __LINE__, hc, __VA_ARGS__)) \
fails++; \
} while (0)
static bool unit_tests(void)
{
int fails = 0;
HatCoordContext ctx[1];
HatCoords *hc_in, *hc_out;
ctx->rs = NULL;
ctx->prototype = hc_construct(TT_KITE, 0, TT_HAT, 0, TT_H, -1);
/* Simple steps within a hat */
hc_in = hc_construct(TT_KITE, 6, TT_HAT, 2, TT_H, 1, TT_H, -1);
hc_out = step_coords(ctx, hc_in, KS_LEFT);
EXPECT(hc_out, TT_KITE, 5, TT_HAT, 2, TT_H, 1, TT_H, -1);
hc_free(hc_in);
hc_free(hc_out);
hc_in = hc_construct(TT_KITE, 6, TT_HAT, 2, TT_H, 1, TT_H, -1);
hc_out = step_coords(ctx, hc_in, KS_RIGHT);
EXPECT(hc_out, TT_KITE, 7, TT_HAT, 2, TT_H, 1, TT_H, -1);
hc_free(hc_in);
hc_free(hc_out);
hc_in = hc_construct(TT_KITE, 5, TT_HAT, 2, TT_H, 1, TT_H, -1);
hc_out = step_coords(ctx, hc_in, KS_F_LEFT);
EXPECT(hc_out, TT_KITE, 2, TT_HAT, 2, TT_H, 1, TT_H, -1);
hc_free(hc_in);
hc_free(hc_out);
hc_in = hc_construct(TT_KITE, 5, TT_HAT, 2, TT_H, 1, TT_H, -1);
hc_out = step_coords(ctx, hc_in, KS_F_RIGHT);
EXPECT(hc_out, TT_KITE, 1, TT_HAT, 2, TT_H, 1, TT_H, -1);
hc_free(hc_in);
hc_free(hc_out);
/* Step between hats in the same kitemap, which can change the
* metatile type at layer 2 */
hc_in = hc_construct(TT_KITE, 6, TT_HAT, 2, TT_H, 1, TT_H, -1);
hc_out = step_coords(ctx, hc_in, KS_F_LEFT);
EXPECT(hc_out, TT_KITE, 3, TT_HAT, 0, TT_H, 0, TT_H, -1);
hc_free(hc_in);
hc_free(hc_out);
hc_in = hc_construct(TT_KITE, 7, TT_HAT, 2, TT_H, 1, TT_H, -1);
hc_out = step_coords(ctx, hc_in, KS_F_RIGHT);
EXPECT(hc_out, TT_KITE, 4, TT_HAT, 0, TT_T, 3, TT_H, -1);
hc_free(hc_in);
hc_free(hc_out);
/* Step off the edge of one kitemap, necessitating a metamap
* rewrite of layers 2,3 to get into a different kitemap where
* that step can be made */
hc_in = hc_construct(TT_KITE, 6, TT_HAT, 0, TT_P, 2, TT_P, 3, TT_P, -1);
hc_out = step_coords(ctx, hc_in, KS_F_RIGHT);
/* Working:
* kite 6 . hat 0 . P 2 . P 3 . P ?
* -> kite 6 . hat 0 . P 6 . H 0 . P ? (P metamap says 2.3 = 6.0)
*/
EXPECT(hc_out, TT_KITE, 7, TT_HAT, 1, TT_H, 1, TT_H, 0, TT_P, -1);
hc_free(hc_in);
hc_free(hc_out);
cleanup_coords(ctx);
return fails == 0;
}
typedef struct pspoint {
float x, y;
} pspoint;
static inline pspoint pscoords(Point p)
{
pspoint q = { p.x + p.y / 2.0F, p.y * sqrt(0.75) };
return q;
}
typedef struct psbbox {
bool started;
pspoint bl, tr;
} psbbox;
static inline void psbbox_add(psbbox *bbox, pspoint p)
{
if (!bbox->started || bbox->bl.x > p.x)
bbox->bl.x = p.x;
if (!bbox->started || bbox->tr.x < p.x)
bbox->tr.x = p.x;
if (!bbox->started || bbox->bl.y > p.y)
bbox->bl.y = p.y;
if (!bbox->started || bbox->tr.y < p.y)
bbox->tr.y = p.y;
bbox->started = true;
}
static void header(psbbox *bbox)
{
float xext = bbox->tr.x - bbox->bl.x, yext = bbox->tr.y - bbox->bl.y;
float ext = (xext > yext ? xext : yext);
float scale = 500 / ext;
float ox = 287 - scale * (bbox->bl.x + bbox->tr.x) / 2;
float oy = 421 - scale * (bbox->bl.y + bbox->tr.y) / 2;
printf("%%!PS-Adobe-2.0\n%%%%Creator: hat-test from Simon Tatham's "
"Portable Puzzle Collection\n%%%%Pages: 1\n"
"%%%%BoundingBox: %f %f %f %f\n"
"%%%%EndComments\n%%%%Page: 1 1\n",
ox + scale * bbox->bl.x - 20, oy + scale * bbox->bl.y - 20,
ox + scale * bbox->tr.x + 20, oy + scale * bbox->tr.y + 20);
printf("%f %f translate %f dup scale\n", ox, oy, scale);
printf("%f setlinewidth\n", 0.1);
printf("/thick { %f setlinewidth } def\n", 0.7);
printf("0 setgray 1 setlinejoin 1 setlinecap\n");
}
static void bbox_add_kite(Kite k, psbbox *bbox)
{
pspoint p[4];
size_t i;
p[0] = pscoords(k.centre);
p[1] = pscoords(k.left);
p[2] = pscoords(k.outer);
p[3] = pscoords(k.right);
for (i = 0; i < 4; i++)
psbbox_add(bbox, p[i]);
}
static void fill_kite(Kite k, HatCoords *hc)
{
pspoint p[4];
size_t i;
p[0] = pscoords(k.centre);
p[1] = pscoords(k.left);
p[2] = pscoords(k.outer);
p[3] = pscoords(k.right);
printf("newpath");
for (i = 0; i < 4; i++)
printf(" %f %f %s", p[i].x, p[i].y, i ? "lineto" : "moveto");
printf(" closepath gsave");
if (hc) {
const char *colour = "0 setgray";
if (hc->c[2].type == TT_H) {
colour = (hc->c[1].index == 3 ? "0 0.5 0.8 setrgbcolor" :
"0.6 0.8 1 setrgbcolor");
} else if (hc->c[2].type == TT_F) {
colour = "0.7 setgray";
} else {
colour = "1 setgray";
}
printf(" %s fill grestore\n", colour);
}
}
static void stroke_kite(Kite k, HatCoords *hc)
{
pspoint p[4];
size_t i;
p[0] = pscoords(k.centre);
p[1] = pscoords(k.left);
p[2] = pscoords(k.outer);
p[3] = pscoords(k.right);
printf("newpath");
for (i = 0; i < 4; i++)
printf(" %f %f %s", p[i].x, p[i].y, i ? "lineto" : "moveto");
printf(" closepath");
printf(" stroke\n");
if (hc->c[2].type == TT_H && hc->c[1].index == 3) {
pspoint t = p[1]; p[1] = p[3]; p[3] = t;
}
#define LINE(a,b) printf("gsave newpath %f %f moveto %f %f lineto thick " \
"stroke grestore\n", p[a].x, p[a].y, p[b].x, p[b].y)
switch (hc->c[0].index) {
case 0: LINE(1, 2); LINE(2, 3); LINE(3, 0); break;
case 1: LINE(0, 1); break;
case 2: LINE(0, 1); break;
case 3: LINE(2, 3); LINE(3, 0); break;
case 4: LINE(0, 1); LINE(1, 2); break;
case 6: LINE(1, 2); LINE(2, 3); break;
case 7: LINE(1, 2); LINE(2, 3); LINE(3, 0); break;
}
#undef LINE
}
static void trailer(void)
{
printf("showpage\n");
printf("%%%%Trailer\n");
printf("%%%%EOF\n");
}
int main(int argc, char **argv)
{
psbbox bbox[1];
KiteEnum s[1];
HatCoordContext ctx[1];
HatCoords *coords[KE_NKEEP];
random_state *rs = random_new("12345", 5);
int w = 10, h = 10;
size_t i;
if (argc > 1 && !strcmp(argv[1], "--test")) {
return unit_tests() ? 0 : 1;
}
for (i = 0; i < lenof(coords); i++)
coords[i] = NULL;
init_coords_random(ctx, rs);
bbox->started = false;
first_kite(s, w, h);
coords[s->curr_index] = initial_coords(ctx);
bbox_add_kite(*s->curr, bbox);
while (next_kite(s)) {
hc_free(coords[s->curr_index]);
coords[s->curr_index] = step_coords(
ctx, coords[s->last_index], s->last_step);
bbox_add_kite(*s->curr, bbox);
}
for (i = 0; i < lenof(coords); i++) {
hc_free(coords[i]);
coords[i] = NULL;
}
header(bbox);
first_kite(s, w, h);
coords[s->curr_index] = initial_coords(ctx);
fill_kite(*s->curr, coords[s->curr_index]);
while (next_kite(s)) {
hc_free(coords[s->curr_index]);
coords[s->curr_index] = step_coords(
ctx, coords[s->last_index], s->last_step);
fill_kite(*s->curr, coords[s->curr_index]);
}
for (i = 0; i < lenof(coords); i++) {
hc_free(coords[i]);
coords[i] = NULL;
}
first_kite(s, w, h);
coords[s->curr_index] = initial_coords(ctx);
stroke_kite(*s->curr, coords[s->curr_index]);
while (next_kite(s)) {
hc_free(coords[s->curr_index]);
coords[s->curr_index] = step_coords(
ctx, coords[s->last_index], s->last_step);
stroke_kite(*s->curr, coords[s->curr_index]);
}
for (i = 0; i < lenof(coords); i++) {
hc_free(coords[i]);
coords[i] = NULL;
}
trailer();
cleanup_coords(ctx);
return 0;
}
#endif