mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-20 23:51:29 -07:00
Files

This is a reasonably simple local deduction I've been using myself for ages, and feel comfortable adding to the existing Basic difficulty level.
2200 lines
63 KiB
C
2200 lines
63 KiB
C
/*
|
|
* dominosa.c: Domino jigsaw puzzle. Aim to place one of every
|
|
* possible domino within a rectangle in such a way that the number
|
|
* on each square matches the provided clue.
|
|
*/
|
|
|
|
/*
|
|
* TODO:
|
|
*
|
|
* - improve solver so as to use more interesting forms of
|
|
* deduction
|
|
*
|
|
* * rule out a domino placement if it would divide an unfilled
|
|
* region such that at least one resulting region had an odd
|
|
* area
|
|
* + Tarjan's bridge-finding algorithm would be a way to find
|
|
* domino placements that split a connected region in two:
|
|
* form the graph whose vertices are unpaired squares and
|
|
* whose edges are potential (not placed but also not ruled
|
|
* out) dominoes covering two of them, and any bridge in that
|
|
* graph is a candidate.
|
|
* + Then, finding any old spanning forest of the unfilled
|
|
* squares should be sufficient to determine the area parity
|
|
* of the region that any such placement would cut off.
|
|
*
|
|
* * set analysis
|
|
* + look at all unclaimed squares containing a given number
|
|
* + for each one, find the set of possible numbers that it
|
|
* can connect to (i.e. each neighbouring tile such that
|
|
* the placement between it and that neighbour has not yet
|
|
* been ruled out)
|
|
* + now proceed similarly to Solo set analysis: try to find
|
|
* a subset of the squares such that the union of their
|
|
* possible numbers is the same size as the subset. If so,
|
|
* rule out those possible numbers for all other squares.
|
|
* * important wrinkle: the double dominoes complicate
|
|
* matters. Connecting a number to itself uses up _two_
|
|
* of the unclaimed squares containing a number. Thus,
|
|
* when finding the initial subset we must never
|
|
* include two adjacent squares; and also, when ruling
|
|
* things out after finding the subset, we must be
|
|
* careful that we don't rule out precisely the domino
|
|
* placement that was _included_ in our set!
|
|
*
|
|
* * identify 'forcing chains', in the sense of any path of cells
|
|
* each of which has only two possible dominoes to be part of,
|
|
* and each of those rules out one of the choices for the next
|
|
* cell. Such a chain has the property that either all the odd
|
|
* dominoes are placed, or all the even ones are placed; so if
|
|
* either set of those introduces a conflict (e.g. a dupe within
|
|
* the chain, or using up all of some other square's choices),
|
|
* then the whole set can be ruled out, and the other set played
|
|
* immediately.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <ctype.h>
|
|
#include <math.h>
|
|
|
|
#include "puzzles.h"
|
|
|
|
/* nth triangular number */
|
|
#define TRI(n) ( (n) * ((n) + 1) / 2 )
|
|
/* number of dominoes for value n */
|
|
#define DCOUNT(n) TRI((n)+1)
|
|
/* map a pair of numbers to a unique domino index from 0 upwards. */
|
|
#define DINDEX(n1,n2) ( TRI(max(n1,n2)) + min(n1,n2) )
|
|
|
|
#define FLASH_TIME 0.13F
|
|
|
|
/*
|
|
* Difficulty levels. I do some macro ickery here to ensure that my
|
|
* enum and the various forms of my name list always match up.
|
|
*/
|
|
#define DIFFLIST(X) \
|
|
X(TRIVIAL,Trivial,t) \
|
|
X(BASIC,Basic,b) \
|
|
X(AMBIGUOUS,Ambiguous,a) \
|
|
/* end of list */
|
|
#define ENUM(upper,title,lower) DIFF_ ## upper,
|
|
#define TITLE(upper,title,lower) #title,
|
|
#define ENCODE(upper,title,lower) #lower
|
|
#define CONFIG(upper,title,lower) ":" #title
|
|
enum { DIFFLIST(ENUM) DIFFCOUNT };
|
|
static char const *const dominosa_diffnames[] = { DIFFLIST(TITLE) };
|
|
static char const dominosa_diffchars[] = DIFFLIST(ENCODE);
|
|
#define DIFFCONFIG DIFFLIST(CONFIG)
|
|
|
|
enum {
|
|
COL_BACKGROUND,
|
|
COL_TEXT,
|
|
COL_DOMINO,
|
|
COL_DOMINOCLASH,
|
|
COL_DOMINOTEXT,
|
|
COL_EDGE,
|
|
COL_HIGHLIGHT_1,
|
|
COL_HIGHLIGHT_2,
|
|
NCOLOURS
|
|
};
|
|
|
|
struct game_params {
|
|
int n;
|
|
int diff;
|
|
};
|
|
|
|
struct game_numbers {
|
|
int refcount;
|
|
int *numbers; /* h x w */
|
|
};
|
|
|
|
#define EDGE_L 0x100
|
|
#define EDGE_R 0x200
|
|
#define EDGE_T 0x400
|
|
#define EDGE_B 0x800
|
|
|
|
struct game_state {
|
|
game_params params;
|
|
int w, h;
|
|
struct game_numbers *numbers;
|
|
int *grid;
|
|
unsigned short *edges; /* h x w */
|
|
bool completed, cheated;
|
|
};
|
|
|
|
static game_params *default_params(void)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->n = 6;
|
|
ret->diff = DIFF_BASIC;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct game_params dominosa_presets[] = {
|
|
{ 3, DIFF_TRIVIAL },
|
|
{ 4, DIFF_TRIVIAL },
|
|
{ 5, DIFF_TRIVIAL },
|
|
{ 6, DIFF_TRIVIAL },
|
|
{ 4, DIFF_BASIC },
|
|
{ 5, DIFF_BASIC },
|
|
{ 6, DIFF_BASIC },
|
|
{ 7, DIFF_BASIC },
|
|
{ 8, DIFF_BASIC },
|
|
{ 9, DIFF_BASIC },
|
|
};
|
|
|
|
static bool game_fetch_preset(int i, char **name, game_params **params_out)
|
|
{
|
|
game_params *params;
|
|
char buf[80];
|
|
|
|
if (i < 0 || i >= lenof(dominosa_presets))
|
|
return false;
|
|
|
|
params = snew(game_params);
|
|
*params = dominosa_presets[i]; /* structure copy */
|
|
|
|
sprintf(buf, "Order %d, %s", params->n, dominosa_diffnames[params->diff]);
|
|
|
|
*name = dupstr(buf);
|
|
*params_out = params;
|
|
return true;
|
|
}
|
|
|
|
static void free_params(game_params *params)
|
|
{
|
|
sfree(params);
|
|
}
|
|
|
|
static game_params *dup_params(const game_params *params)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
*ret = *params; /* structure copy */
|
|
return ret;
|
|
}
|
|
|
|
static void decode_params(game_params *params, char const *string)
|
|
{
|
|
const char *p = string;
|
|
|
|
params->n = atoi(p);
|
|
while (*p && isdigit((unsigned char)*p)) p++;
|
|
|
|
while (*p) {
|
|
char c = *p++;
|
|
if (c == 'a') {
|
|
/* Legacy encoding from before the difficulty system */
|
|
params->diff = DIFF_AMBIGUOUS;
|
|
} else if (c == 'd') {
|
|
int i;
|
|
params->diff = DIFFCOUNT+1; /* ...which is invalid */
|
|
if (*p) {
|
|
for (i = 0; i < DIFFCOUNT; i++) {
|
|
if (*p == dominosa_diffchars[i])
|
|
params->diff = i;
|
|
}
|
|
p++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static char *encode_params(const game_params *params, bool full)
|
|
{
|
|
char buf[80];
|
|
int len = sprintf(buf, "%d", params->n);
|
|
if (full)
|
|
len += sprintf(buf + len, "d%c", dominosa_diffchars[params->diff]);
|
|
return dupstr(buf);
|
|
}
|
|
|
|
static config_item *game_configure(const game_params *params)
|
|
{
|
|
config_item *ret;
|
|
char buf[80];
|
|
|
|
ret = snewn(3, config_item);
|
|
|
|
ret[0].name = "Maximum number on dominoes";
|
|
ret[0].type = C_STRING;
|
|
sprintf(buf, "%d", params->n);
|
|
ret[0].u.string.sval = dupstr(buf);
|
|
|
|
ret[1].name = "Difficulty";
|
|
ret[1].type = C_CHOICES;
|
|
ret[1].u.choices.choicenames = DIFFCONFIG;
|
|
ret[1].u.choices.selected = params->diff;
|
|
|
|
ret[2].name = NULL;
|
|
ret[2].type = C_END;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static game_params *custom_params(const config_item *cfg)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->n = atoi(cfg[0].u.string.sval);
|
|
ret->diff = cfg[1].u.choices.selected;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const char *validate_params(const game_params *params, bool full)
|
|
{
|
|
if (params->n < 1)
|
|
return "Maximum face number must be at least one";
|
|
if (params->diff >= DIFFCOUNT)
|
|
return "Unknown difficulty rating";
|
|
return NULL;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Solver.
|
|
*/
|
|
|
|
#ifdef STANDALONE_SOLVER
|
|
#define SOLVER_DIAGNOSTICS
|
|
bool solver_diagnostics = false;
|
|
#endif
|
|
|
|
struct solver_domino;
|
|
struct solver_placement;
|
|
|
|
/*
|
|
* Information about a particular domino.
|
|
*/
|
|
struct solver_domino {
|
|
/* The numbers on the domino. */
|
|
int lo, hi;
|
|
|
|
/* List of placements not yet ruled out for this domino. */
|
|
int nplacements;
|
|
struct solver_placement **placements;
|
|
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
/* A textual name we can easily reuse in solver diagnostics. */
|
|
char *name;
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* Information about a particular 'placement' (i.e. specific location
|
|
* that a domino might go in).
|
|
*/
|
|
struct solver_placement {
|
|
/* The two squares that make up this placement. */
|
|
struct solver_square *squares[2];
|
|
|
|
/* The domino that has to go in this position, if any. */
|
|
struct solver_domino *domino;
|
|
|
|
/* The index of this placement in each square's placements array,
|
|
* and in that of the domino. */
|
|
int spi[2], dpi;
|
|
|
|
/* Whether this is still considered a possible placement. */
|
|
bool active;
|
|
|
|
/* Other domino placements that overlap with this one. (Maximum 6:
|
|
* three overlapping each square of the placement.) */
|
|
int noverlaps;
|
|
struct solver_placement *overlaps[6];
|
|
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
/* A textual name we can easily reuse in solver diagnostics. */
|
|
char *name;
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* Information about a particular solver square.
|
|
*/
|
|
struct solver_square {
|
|
/* The coordinates of the square, and its index in a normal grid array. */
|
|
int x, y, index;
|
|
|
|
/* List of domino placements not yet ruled out for this square. */
|
|
int nplacements;
|
|
struct solver_placement *placements[4];
|
|
|
|
/* The number in the square. */
|
|
int number;
|
|
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
/* A textual name we can easily reuse in solver diagnostics. */
|
|
char *name;
|
|
#endif
|
|
};
|
|
|
|
struct solver_scratch {
|
|
int n, dc, pc, w, h, wh;
|
|
int max_diff_used;
|
|
struct solver_domino *dominoes;
|
|
struct solver_placement *placements;
|
|
struct solver_square *squares;
|
|
struct solver_placement **domino_placement_lists;
|
|
};
|
|
|
|
static struct solver_scratch *solver_make_scratch(int n)
|
|
{
|
|
int dc = DCOUNT(n), w = n+2, h = n+1, wh = w*h;
|
|
int pc = (w-1)*h + w*(h-1);
|
|
struct solver_scratch *sc = snew(struct solver_scratch);
|
|
int hi, lo, di, x, y, pi, si;
|
|
|
|
sc->n = n;
|
|
sc->dc = dc;
|
|
sc->pc = pc;
|
|
sc->w = w;
|
|
sc->h = h;
|
|
sc->wh = wh;
|
|
|
|
sc->dominoes = snewn(dc, struct solver_domino);
|
|
sc->placements = snewn(pc, struct solver_placement);
|
|
sc->squares = snewn(wh, struct solver_square);
|
|
sc->domino_placement_lists = snewn(pc, struct solver_placement *);
|
|
|
|
for (di = hi = 0; hi <= n; hi++) {
|
|
for (lo = 0; lo <= hi; lo++) {
|
|
assert(di == DINDEX(hi, lo));
|
|
sc->dominoes[di].hi = hi;
|
|
sc->dominoes[di].lo = lo;
|
|
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
{
|
|
char buf[128];
|
|
sprintf(buf, "%d-%d", hi, lo);
|
|
sc->dominoes[di].name = dupstr(buf);
|
|
}
|
|
#endif
|
|
|
|
di++;
|
|
}
|
|
}
|
|
|
|
for (y = 0; y < h; y++) {
|
|
for (x = 0; x < w; x++) {
|
|
struct solver_square *sq = &sc->squares[y*w+x];
|
|
sq->x = x;
|
|
sq->y = y;
|
|
sq->index = y * w + x;
|
|
sq->nplacements = 0;
|
|
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
{
|
|
char buf[128];
|
|
sprintf(buf, "(%d,%d)", x, y);
|
|
sq->name = dupstr(buf);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
pi = 0;
|
|
for (y = 0; y < h-1; y++) {
|
|
for (x = 0; x < w; x++) {
|
|
assert(pi < pc);
|
|
sc->placements[pi].squares[0] = &sc->squares[y*w+x];
|
|
sc->placements[pi].squares[1] = &sc->squares[(y+1)*w+x];
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
{
|
|
char buf[128];
|
|
sprintf(buf, "(%d,%d-%d)", x, y, y+1);
|
|
sc->placements[pi].name = dupstr(buf);
|
|
}
|
|
#endif
|
|
pi++;
|
|
}
|
|
}
|
|
for (y = 0; y < h; y++) {
|
|
for (x = 0; x < w-1; x++) {
|
|
assert(pi < pc);
|
|
sc->placements[pi].squares[0] = &sc->squares[y*w+x];
|
|
sc->placements[pi].squares[1] = &sc->squares[y*w+(x+1)];
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
{
|
|
char buf[128];
|
|
sprintf(buf, "(%d-%d,%d)", x, x+1, y);
|
|
sc->placements[pi].name = dupstr(buf);
|
|
}
|
|
#endif
|
|
pi++;
|
|
}
|
|
}
|
|
assert(pi == pc);
|
|
|
|
/* Set up the full placement lists for all squares, temporarily,
|
|
* so as to use them to calculate the overlap lists */
|
|
for (si = 0; si < wh; si++)
|
|
sc->squares[si].nplacements = 0;
|
|
for (pi = 0; pi < pc; pi++) {
|
|
struct solver_placement *p = &sc->placements[pi];
|
|
for (si = 0; si < 2; si++) {
|
|
struct solver_square *sq = p->squares[si];
|
|
p->spi[si] = sq->nplacements;
|
|
sq->placements[sq->nplacements++] = p;
|
|
}
|
|
}
|
|
|
|
/* Actually calculate the overlap lists */
|
|
for (pi = 0; pi < pc; pi++) {
|
|
struct solver_placement *p = &sc->placements[pi];
|
|
p->noverlaps = 0;
|
|
for (si = 0; si < 2; si++) {
|
|
struct solver_square *sq = p->squares[si];
|
|
int j;
|
|
for (j = 0; j < sq->nplacements; j++) {
|
|
struct solver_placement *q = sq->placements[j];
|
|
if (q != p)
|
|
p->overlaps[p->noverlaps++] = q;
|
|
}
|
|
}
|
|
}
|
|
|
|
return sc;
|
|
}
|
|
|
|
static void solver_free_scratch(struct solver_scratch *sc)
|
|
{
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
{
|
|
int i;
|
|
for (i = 0; i < sc->dc; i++)
|
|
sfree(sc->dominoes[i].name);
|
|
for (i = 0; i < sc->pc; i++)
|
|
sfree(sc->placements[i].name);
|
|
for (i = 0; i < sc->wh; i++)
|
|
sfree(sc->squares[i].name);
|
|
}
|
|
#endif
|
|
sfree(sc->dominoes);
|
|
sfree(sc->placements);
|
|
sfree(sc->squares);
|
|
sfree(sc->domino_placement_lists);
|
|
sfree(sc);
|
|
}
|
|
|
|
static void solver_setup_grid(struct solver_scratch *sc, const int *numbers)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < sc->wh; i++) {
|
|
sc->squares[i].nplacements = 0;
|
|
sc->squares[i].number = numbers[sc->squares[i].index];
|
|
}
|
|
|
|
for (i = 0; i < sc->pc; i++) {
|
|
struct solver_placement *p = &sc->placements[i];
|
|
int di = DINDEX(p->squares[0]->number, p->squares[1]->number);
|
|
p->domino = &sc->dominoes[di];
|
|
}
|
|
|
|
for (i = 0; i < sc->dc; i++)
|
|
sc->dominoes[i].nplacements = 0;
|
|
for (i = 0; i < sc->pc; i++)
|
|
sc->placements[i].domino->nplacements++;
|
|
for (i = j = 0; i < sc->dc; i++) {
|
|
sc->dominoes[i].placements = sc->domino_placement_lists + j;
|
|
j += sc->dominoes[i].nplacements;
|
|
sc->dominoes[i].nplacements = 0;
|
|
}
|
|
for (i = 0; i < sc->pc; i++) {
|
|
struct solver_placement *p = &sc->placements[i];
|
|
p->dpi = p->domino->nplacements;
|
|
p->domino->placements[p->domino->nplacements++] = p;
|
|
p->active = true;
|
|
}
|
|
|
|
for (i = 0; i < sc->wh; i++)
|
|
sc->squares[i].nplacements = 0;
|
|
for (i = 0; i < sc->pc; i++) {
|
|
struct solver_placement *p = &sc->placements[i];
|
|
for (j = 0; j < 2; j++) {
|
|
struct solver_square *sq = p->squares[j];
|
|
p->spi[j] = sq->nplacements;
|
|
sq->placements[sq->nplacements++] = p;
|
|
}
|
|
}
|
|
|
|
sc->max_diff_used = DIFF_TRIVIAL;
|
|
}
|
|
|
|
/* Given two placements p,q that overlap, returns si such that
|
|
* p->squares[si] is the square also in q */
|
|
static int common_square_index(struct solver_placement *p,
|
|
struct solver_placement *q)
|
|
{
|
|
return (p->squares[0] == q->squares[0] ||
|
|
p->squares[0] == q->squares[1]) ? 0 : 1;
|
|
}
|
|
|
|
static void rule_out_placement(
|
|
struct solver_scratch *sc, struct solver_placement *p)
|
|
{
|
|
struct solver_domino *d = p->domino;
|
|
int i, j, si;
|
|
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
if (solver_diagnostics)
|
|
printf(" ruling out placement %s for domino %s\n", p->name, d->name);
|
|
#endif
|
|
|
|
p->active = false;
|
|
|
|
i = p->dpi;
|
|
assert(d->placements[i] == p);
|
|
if (--d->nplacements != i) {
|
|
d->placements[i] = d->placements[d->nplacements];
|
|
d->placements[i]->dpi = i;
|
|
}
|
|
|
|
for (si = 0; si < 2; si++) {
|
|
struct solver_square *sq = p->squares[si];
|
|
i = p->spi[si];
|
|
assert(sq->placements[i] == p);
|
|
if (--sq->nplacements != i) {
|
|
sq->placements[i] = sq->placements[sq->nplacements];
|
|
j = (sq->placements[i]->squares[0] == sq ? 0 : 1);
|
|
sq->placements[i]->spi[j] = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If a domino has only one placement remaining, rule out all other
|
|
* placements that overlap it.
|
|
*/
|
|
static bool deduce_domino_single_placement(struct solver_scratch *sc, int di)
|
|
{
|
|
struct solver_domino *d = &sc->dominoes[di];
|
|
struct solver_placement *p, *q;
|
|
int oi;
|
|
bool done_something = false;
|
|
|
|
if (d->nplacements != 1)
|
|
return false;
|
|
p = d->placements[0];
|
|
|
|
for (oi = 0; oi < p->noverlaps; oi++) {
|
|
q = p->overlaps[oi];
|
|
if (q->active) {
|
|
if (!done_something) {
|
|
done_something = true;
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
if (solver_diagnostics)
|
|
printf("domino %s has unique placement %s\n",
|
|
d->name, p->name);
|
|
#endif
|
|
}
|
|
rule_out_placement(sc, q);
|
|
}
|
|
}
|
|
|
|
return done_something;
|
|
}
|
|
|
|
/*
|
|
* If a square has only one placement remaining, rule out all other
|
|
* placements of its domino.
|
|
*/
|
|
static bool deduce_square_single_placement(struct solver_scratch *sc, int si)
|
|
{
|
|
struct solver_square *sq = &sc->squares[si];
|
|
struct solver_placement *p;
|
|
struct solver_domino *d;
|
|
|
|
if (sq->nplacements != 1)
|
|
return false;
|
|
p = sq->placements[0];
|
|
d = p->domino;
|
|
|
|
if (d->nplacements <= 1)
|
|
return false; /* we already knew everything this would tell us */
|
|
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
if (solver_diagnostics)
|
|
printf("square %s has unique placement %s (domino %s)\n",
|
|
sq->name, p->name, p->domino->name);
|
|
#endif
|
|
|
|
while (d->nplacements > 1)
|
|
rule_out_placement(
|
|
sc, d->placements[0] == p ? d->placements[1] : d->placements[0]);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* If all placements for a square involve the same domino, rule out
|
|
* all other placements of that domino.
|
|
*/
|
|
static bool deduce_square_single_domino(struct solver_scratch *sc, int si)
|
|
{
|
|
struct solver_square *sq = &sc->squares[si];
|
|
struct solver_domino *d;
|
|
int i;
|
|
|
|
/*
|
|
* We only bother with this if the square has at least _two_
|
|
* placements. If it only has one, then a simpler deduction will
|
|
* have handled it already, or will do so the next time round the
|
|
* main solver loop - and we should let the simpler deduction do
|
|
* it, because that will give a less overblown diagnostic.
|
|
*/
|
|
if (sq->nplacements < 2)
|
|
return false;
|
|
|
|
d = sq->placements[0]->domino;
|
|
for (i = 1; i < sq->nplacements; i++)
|
|
if (sq->placements[i]->domino != d)
|
|
return false; /* not all the same domino */
|
|
|
|
if (d->nplacements <= sq->nplacements)
|
|
return false; /* no other placements of d to rule out */
|
|
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
if (solver_diagnostics)
|
|
printf("square %s can only contain domino %s\n", sq->name, d->name);
|
|
#endif
|
|
|
|
for (i = d->nplacements; i-- > 0 ;) {
|
|
struct solver_placement *p = d->placements[i];
|
|
if (p->squares[0] != sq && p->squares[1] != sq)
|
|
rule_out_placement(sc, p);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* If any placement is overlapped by _all_ possible placements of a
|
|
* given domino, rule that placement out.
|
|
*/
|
|
static bool deduce_domino_must_overlap(struct solver_scratch *sc, int di)
|
|
{
|
|
struct solver_domino *d = &sc->dominoes[di];
|
|
struct solver_placement *intersection[6], *p;
|
|
int nintersection = 0;
|
|
int i, j, k;
|
|
|
|
/*
|
|
* As in deduce_square_single_domino, we only bother with this
|
|
* deduction if the domino has at least two placements.
|
|
*/
|
|
if (d->nplacements < 2)
|
|
return false;
|
|
|
|
/* Initialise our set of overlapped placements with all the active
|
|
* ones overlapped by placements[0]. */
|
|
p = d->placements[0];
|
|
for (i = 0; i < p->noverlaps; i++)
|
|
if (p->overlaps[i]->active)
|
|
intersection[nintersection++] = p->overlaps[i];
|
|
|
|
/* Now loop over the other placements of d, winnowing that set. */
|
|
for (j = 1; j < d->nplacements; j++) {
|
|
int old_n;
|
|
|
|
p = d->placements[j];
|
|
|
|
old_n = nintersection;
|
|
nintersection = 0;
|
|
|
|
for (k = 0; k < old_n; k++) {
|
|
for (i = 0; i < p->noverlaps; i++)
|
|
if (p->overlaps[i] == intersection[k])
|
|
goto found;
|
|
/* If intersection[k] isn't in p->overlaps, exclude it
|
|
* from our set of placements overlapped by everything */
|
|
continue;
|
|
found:
|
|
intersection[nintersection++] = intersection[k];
|
|
}
|
|
}
|
|
|
|
if (nintersection == 0)
|
|
return false; /* no new exclusions */
|
|
|
|
for (i = 0; i < nintersection; i++) {
|
|
p = intersection[i];
|
|
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
if (solver_diagnostics) {
|
|
printf("placement %s of domino %s overlaps all placements "
|
|
"of domino %s:", p->name, p->domino->name, d->name);
|
|
for (j = 0; j < d->nplacements; j++)
|
|
printf(" %s", d->placements[j]->name);
|
|
printf("\n");
|
|
}
|
|
#endif
|
|
rule_out_placement(sc, p);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/*
|
|
* If a placement of domino D overlaps the only remaining placement
|
|
* for some square S which is not also for domino D, then placing D
|
|
* here would require another copy of it in S, so we can rule it out.
|
|
*/
|
|
static bool deduce_local_duplicate(struct solver_scratch *sc, int pi)
|
|
{
|
|
struct solver_placement *p = &sc->placements[pi];
|
|
struct solver_domino *d = p->domino;
|
|
int i, j;
|
|
|
|
if (!p->active)
|
|
return false;
|
|
|
|
for (i = 0; i < p->noverlaps; i++) {
|
|
struct solver_placement *q = p->overlaps[i];
|
|
struct solver_square *sq;
|
|
|
|
if (!q->active)
|
|
continue;
|
|
|
|
/* Find the square of q that _isn't_ part of p */
|
|
sq = q->squares[1 - common_square_index(q, p)];
|
|
|
|
for (j = 0; j < sq->nplacements; j++)
|
|
if (sq->placements[j] != q && sq->placements[j]->domino != d)
|
|
goto no;
|
|
|
|
/* If we get here, every possible placement for sq is either q
|
|
* itself, or another copy of d. Success! We can rule out p. */
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
if (solver_diagnostics) {
|
|
printf("placement %s of domino %s would force another copy of %s "
|
|
"in square %s\n", p->name, d->name, d->name, sq->name);
|
|
}
|
|
#endif
|
|
|
|
rule_out_placement(sc, p);
|
|
return true;
|
|
|
|
no:;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Run the solver until it can't make any more progress.
|
|
*
|
|
* Return value is:
|
|
* 0 = no solution exists (puzzle clues are unsatisfiable)
|
|
* 1 = unique solution found (success!)
|
|
* 2 = multiple possibilities remain (puzzle is ambiguous or solver is not
|
|
* smart enough)
|
|
*/
|
|
static int run_solver(struct solver_scratch *sc, int max_diff_allowed)
|
|
{
|
|
int di, si, pi;
|
|
bool done_something;
|
|
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
if (solver_diagnostics) {
|
|
int di, j;
|
|
printf("Initial possible placements:\n");
|
|
for (di = 0; di < sc->dc; di++) {
|
|
struct solver_domino *d = &sc->dominoes[di];
|
|
printf(" %s:", d->name);
|
|
for (j = 0; j < d->nplacements; j++)
|
|
printf(" %s", d->placements[j]->name);
|
|
printf("\n");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
do {
|
|
done_something = false;
|
|
|
|
for (di = 0; di < sc->dc; di++)
|
|
if (deduce_domino_single_placement(sc, di))
|
|
done_something = true;
|
|
if (done_something) {
|
|
sc->max_diff_used = max(sc->max_diff_used, DIFF_TRIVIAL);
|
|
continue;
|
|
}
|
|
|
|
for (si = 0; si < sc->wh; si++)
|
|
if (deduce_square_single_placement(sc, si))
|
|
done_something = true;
|
|
if (done_something) {
|
|
sc->max_diff_used = max(sc->max_diff_used, DIFF_TRIVIAL);
|
|
continue;
|
|
}
|
|
|
|
if (max_diff_allowed <= DIFF_TRIVIAL)
|
|
continue;
|
|
|
|
for (si = 0; si < sc->wh; si++)
|
|
if (deduce_square_single_domino(sc, si))
|
|
done_something = true;
|
|
if (done_something) {
|
|
sc->max_diff_used = max(sc->max_diff_used, DIFF_BASIC);
|
|
continue;
|
|
}
|
|
|
|
for (di = 0; di < sc->dc; di++)
|
|
if (deduce_domino_must_overlap(sc, di))
|
|
done_something = true;
|
|
if (done_something) {
|
|
sc->max_diff_used = max(sc->max_diff_used, DIFF_BASIC);
|
|
continue;
|
|
}
|
|
|
|
for (pi = 0; pi < sc->pc; pi++)
|
|
if (deduce_local_duplicate(sc, pi))
|
|
done_something = true;
|
|
if (done_something) {
|
|
sc->max_diff_used = max(sc->max_diff_used, DIFF_BASIC);
|
|
continue;
|
|
}
|
|
|
|
} while (done_something);
|
|
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
if (solver_diagnostics) {
|
|
int di, j;
|
|
printf("Final possible placements:\n");
|
|
for (di = 0; di < sc->dc; di++) {
|
|
struct solver_domino *d = &sc->dominoes[di];
|
|
printf(" %s:", d->name);
|
|
for (j = 0; j < d->nplacements; j++)
|
|
printf(" %s", d->placements[j]->name);
|
|
printf("\n");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
for (di = 0; di < sc->dc; di++)
|
|
if (sc->dominoes[di].nplacements == 0)
|
|
return 0;
|
|
for (di = 0; di < sc->dc; di++)
|
|
if (sc->dominoes[di].nplacements > 1)
|
|
return 2;
|
|
return 1;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* End of solver code.
|
|
*/
|
|
|
|
static char *new_game_desc(const game_params *params, random_state *rs,
|
|
char **aux, bool interactive)
|
|
{
|
|
int n = params->n, w = n+2, h = n+1, wh = w*h;
|
|
int *grid, *grid2, *list;
|
|
struct solver_scratch *sc;
|
|
int i, j, k, len;
|
|
char *ret;
|
|
|
|
/*
|
|
* Allocate space in which to lay the grid out.
|
|
*/
|
|
grid = snewn(wh, int);
|
|
grid2 = snewn(wh, int);
|
|
list = snewn(2*wh, int);
|
|
sc = solver_make_scratch(n);
|
|
|
|
/*
|
|
* I haven't been able to think of any particularly clever
|
|
* techniques for generating instances of Dominosa with a
|
|
* unique solution. Many of the deductions used in this puzzle
|
|
* are based on information involving half the grid at a time
|
|
* (`of all the 6s, exactly one is next to a 3'), so a strategy
|
|
* of partially solving the grid and then perturbing the place
|
|
* where the solver got stuck seems particularly likely to
|
|
* accidentally destroy the information which the solver had
|
|
* used in getting that far. (Contrast with, say, Mines, in
|
|
* which most deductions are local so this is an excellent
|
|
* strategy.)
|
|
*
|
|
* Therefore I resort to the basest of brute force methods:
|
|
* generate a random grid, see if it's solvable, throw it away
|
|
* and try again if not. My only concession to sophistication
|
|
* and cleverness is to at least _try_ not to generate obvious
|
|
* 2x2 ambiguous sections (see comment below in the domino-
|
|
* flipping section).
|
|
*
|
|
* During tests performed on 2005-07-15, I found that the brute
|
|
* force approach without that tweak had to throw away about 87
|
|
* grids on average (at the default n=6) before finding a
|
|
* unique one, or a staggering 379 at n=9; good job the
|
|
* generator and solver are fast! When I added the
|
|
* ambiguous-section avoidance, those numbers came down to 19
|
|
* and 26 respectively, which is a lot more sensible.
|
|
*/
|
|
|
|
do {
|
|
domino_layout_prealloc(w, h, rs, grid, grid2, list);
|
|
|
|
/*
|
|
* Now we have a complete layout covering the whole
|
|
* rectangle with dominoes. So shuffle the actual domino
|
|
* values and fill the rectangle with numbers.
|
|
*/
|
|
k = 0;
|
|
for (i = 0; i <= params->n; i++)
|
|
for (j = 0; j <= i; j++) {
|
|
list[k++] = i;
|
|
list[k++] = j;
|
|
}
|
|
shuffle(list, k/2, 2*sizeof(*list), rs);
|
|
j = 0;
|
|
for (i = 0; i < wh; i++)
|
|
if (grid[i] > i) {
|
|
/* Optionally flip the domino round. */
|
|
int flip = -1;
|
|
|
|
if (params->diff != DIFF_AMBIGUOUS) {
|
|
int t1, t2;
|
|
/*
|
|
* If we're after a unique solution, we can do
|
|
* something here to improve the chances. If
|
|
* we're placing a domino so that it forms a
|
|
* 2x2 rectangle with one we've already placed,
|
|
* and if that domino and this one share a
|
|
* number, we can try not to put them so that
|
|
* the identical numbers are diagonally
|
|
* separated, because that automatically causes
|
|
* non-uniqueness:
|
|
*
|
|
* +---+ +-+-+
|
|
* |2 3| |2|3|
|
|
* +---+ -> | | |
|
|
* |4 2| |4|2|
|
|
* +---+ +-+-+
|
|
*/
|
|
t1 = i;
|
|
t2 = grid[i];
|
|
if (t2 == t1 + w) { /* this domino is vertical */
|
|
if (t1 % w > 0 &&/* and not on the left hand edge */
|
|
grid[t1-1] == t2-1 &&/* alongside one to left */
|
|
(grid2[t1-1] == list[j] || /* and has a number */
|
|
grid2[t1-1] == list[j+1] || /* in common */
|
|
grid2[t2-1] == list[j] ||
|
|
grid2[t2-1] == list[j+1])) {
|
|
if (grid2[t1-1] == list[j] ||
|
|
grid2[t2-1] == list[j+1])
|
|
flip = 0;
|
|
else
|
|
flip = 1;
|
|
}
|
|
} else { /* this domino is horizontal */
|
|
if (t1 / w > 0 &&/* and not on the top edge */
|
|
grid[t1-w] == t2-w &&/* alongside one above */
|
|
(grid2[t1-w] == list[j] || /* and has a number */
|
|
grid2[t1-w] == list[j+1] || /* in common */
|
|
grid2[t2-w] == list[j] ||
|
|
grid2[t2-w] == list[j+1])) {
|
|
if (grid2[t1-w] == list[j] ||
|
|
grid2[t2-w] == list[j+1])
|
|
flip = 0;
|
|
else
|
|
flip = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (flip < 0)
|
|
flip = random_upto(rs, 2);
|
|
|
|
grid2[i] = list[j + flip];
|
|
grid2[grid[i]] = list[j + 1 - flip];
|
|
j += 2;
|
|
}
|
|
assert(j == k);
|
|
solver_setup_grid(sc, grid2);
|
|
} while (params->diff != DIFF_AMBIGUOUS &&
|
|
(run_solver(sc, params->diff) > 1 ||
|
|
sc->max_diff_used < params->diff));
|
|
|
|
solver_free_scratch(sc);
|
|
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
for (j = 0; j < h; j++) {
|
|
for (i = 0; i < w; i++) {
|
|
putchar('0' + grid2[j*w+i]);
|
|
}
|
|
putchar('\n');
|
|
}
|
|
putchar('\n');
|
|
#endif
|
|
|
|
/*
|
|
* Encode the resulting game state.
|
|
*
|
|
* Our encoding is a string of digits. Any number greater than
|
|
* 9 is represented by a decimal integer within square
|
|
* brackets. We know there are n+2 of every number (it's paired
|
|
* with each number from 0 to n inclusive, and one of those is
|
|
* itself so that adds another occurrence), so we can work out
|
|
* the string length in advance.
|
|
*/
|
|
|
|
/*
|
|
* To work out the total length of the decimal encodings of all
|
|
* the numbers from 0 to n inclusive:
|
|
* - every number has a units digit; total is n+1.
|
|
* - all numbers above 9 have a tens digit; total is max(n+1-10,0).
|
|
* - all numbers above 99 have a hundreds digit; total is max(n+1-100,0).
|
|
* - and so on.
|
|
*/
|
|
len = n+1;
|
|
for (i = 10; i <= n; i *= 10)
|
|
len += max(n + 1 - i, 0);
|
|
/* Now add two square brackets for each number above 9. */
|
|
len += 2 * max(n + 1 - 10, 0);
|
|
/* And multiply by n+2 for the repeated occurrences of each number. */
|
|
len *= n+2;
|
|
|
|
/*
|
|
* Now actually encode the string.
|
|
*/
|
|
ret = snewn(len+1, char);
|
|
j = 0;
|
|
for (i = 0; i < wh; i++) {
|
|
k = grid2[i];
|
|
if (k < 10)
|
|
ret[j++] = '0' + k;
|
|
else
|
|
j += sprintf(ret+j, "[%d]", k);
|
|
assert(j <= len);
|
|
}
|
|
assert(j == len);
|
|
ret[j] = '\0';
|
|
|
|
/*
|
|
* Encode the solved state as an aux_info.
|
|
*/
|
|
{
|
|
char *auxinfo = snewn(wh+1, char);
|
|
|
|
for (i = 0; i < wh; i++) {
|
|
int v = grid[i];
|
|
auxinfo[i] = (v == i+1 ? 'L' : v == i-1 ? 'R' :
|
|
v == i+w ? 'T' : v == i-w ? 'B' : '.');
|
|
}
|
|
auxinfo[wh] = '\0';
|
|
|
|
*aux = auxinfo;
|
|
}
|
|
|
|
sfree(list);
|
|
sfree(grid2);
|
|
sfree(grid);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const char *validate_desc(const game_params *params, const char *desc)
|
|
{
|
|
int n = params->n, w = n+2, h = n+1, wh = w*h;
|
|
int *occurrences;
|
|
int i, j;
|
|
const char *ret;
|
|
|
|
ret = NULL;
|
|
occurrences = snewn(n+1, int);
|
|
for (i = 0; i <= n; i++)
|
|
occurrences[i] = 0;
|
|
|
|
for (i = 0; i < wh; i++) {
|
|
if (!*desc) {
|
|
ret = ret ? ret : "Game description is too short";
|
|
} else {
|
|
if (*desc >= '0' && *desc <= '9')
|
|
j = *desc++ - '0';
|
|
else if (*desc == '[') {
|
|
desc++;
|
|
j = atoi(desc);
|
|
while (*desc && isdigit((unsigned char)*desc)) desc++;
|
|
if (*desc != ']')
|
|
ret = ret ? ret : "Missing ']' in game description";
|
|
else
|
|
desc++;
|
|
} else {
|
|
j = -1;
|
|
ret = ret ? ret : "Invalid syntax in game description";
|
|
}
|
|
if (j < 0 || j > n)
|
|
ret = ret ? ret : "Number out of range in game description";
|
|
else
|
|
occurrences[j]++;
|
|
}
|
|
}
|
|
|
|
if (*desc)
|
|
ret = ret ? ret : "Game description is too long";
|
|
|
|
if (!ret) {
|
|
for (i = 0; i <= n; i++)
|
|
if (occurrences[i] != n+2)
|
|
ret = "Incorrect number balance in game description";
|
|
}
|
|
|
|
sfree(occurrences);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static game_state *new_game(midend *me, const game_params *params,
|
|
const char *desc)
|
|
{
|
|
int n = params->n, w = n+2, h = n+1, wh = w*h;
|
|
game_state *state = snew(game_state);
|
|
int i, j;
|
|
|
|
state->params = *params;
|
|
state->w = w;
|
|
state->h = h;
|
|
|
|
state->grid = snewn(wh, int);
|
|
for (i = 0; i < wh; i++)
|
|
state->grid[i] = i;
|
|
|
|
state->edges = snewn(wh, unsigned short);
|
|
for (i = 0; i < wh; i++)
|
|
state->edges[i] = 0;
|
|
|
|
state->numbers = snew(struct game_numbers);
|
|
state->numbers->refcount = 1;
|
|
state->numbers->numbers = snewn(wh, int);
|
|
|
|
for (i = 0; i < wh; i++) {
|
|
assert(*desc);
|
|
if (*desc >= '0' && *desc <= '9')
|
|
j = *desc++ - '0';
|
|
else {
|
|
assert(*desc == '[');
|
|
desc++;
|
|
j = atoi(desc);
|
|
while (*desc && isdigit((unsigned char)*desc)) desc++;
|
|
assert(*desc == ']');
|
|
desc++;
|
|
}
|
|
assert(j >= 0 && j <= n);
|
|
state->numbers->numbers[i] = j;
|
|
}
|
|
|
|
state->completed = false;
|
|
state->cheated = false;
|
|
|
|
return state;
|
|
}
|
|
|
|
static game_state *dup_game(const game_state *state)
|
|
{
|
|
int n = state->params.n, w = n+2, h = n+1, wh = w*h;
|
|
game_state *ret = snew(game_state);
|
|
|
|
ret->params = state->params;
|
|
ret->w = state->w;
|
|
ret->h = state->h;
|
|
ret->grid = snewn(wh, int);
|
|
memcpy(ret->grid, state->grid, wh * sizeof(int));
|
|
ret->edges = snewn(wh, unsigned short);
|
|
memcpy(ret->edges, state->edges, wh * sizeof(unsigned short));
|
|
ret->numbers = state->numbers;
|
|
ret->numbers->refcount++;
|
|
ret->completed = state->completed;
|
|
ret->cheated = state->cheated;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void free_game(game_state *state)
|
|
{
|
|
sfree(state->grid);
|
|
sfree(state->edges);
|
|
if (--state->numbers->refcount <= 0) {
|
|
sfree(state->numbers->numbers);
|
|
sfree(state->numbers);
|
|
}
|
|
sfree(state);
|
|
}
|
|
|
|
static char *solution_move_string(struct solver_scratch *sc)
|
|
{
|
|
char *ret;
|
|
int retlen, retsize;
|
|
int i, pass;
|
|
|
|
/*
|
|
* First make a pass putting in edges for -1, then make a pass
|
|
* putting in dominoes for +1.
|
|
*/
|
|
retsize = 256;
|
|
ret = snewn(retsize, char);
|
|
retlen = sprintf(ret, "S");
|
|
|
|
for (pass = 0; pass < 2; pass++) {
|
|
char type = "ED"[pass];
|
|
|
|
for (i = 0; i < sc->pc; i++) {
|
|
struct solver_placement *p = &sc->placements[i];
|
|
char buf[80];
|
|
int extra;
|
|
|
|
if (pass == 0) {
|
|
/* Emit a barrier if this placement is ruled out for
|
|
* the domino. */
|
|
if (p->active)
|
|
continue;
|
|
} else {
|
|
/* Emit a domino if this placement is the only one not
|
|
* ruled out. */
|
|
if (!p->active || p->domino->nplacements > 1)
|
|
continue;
|
|
}
|
|
|
|
extra = sprintf(buf, ";%c%d,%d", type,
|
|
p->squares[0]->index, p->squares[1]->index);
|
|
|
|
if (retlen + extra + 1 >= retsize) {
|
|
retsize = retlen + extra + 256;
|
|
ret = sresize(ret, retsize, char);
|
|
}
|
|
strcpy(ret + retlen, buf);
|
|
retlen += extra;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static char *solve_game(const game_state *state, const game_state *currstate,
|
|
const char *aux, const char **error)
|
|
{
|
|
int n = state->params.n, w = n+2, h = n+1, wh = w*h;
|
|
char *ret;
|
|
int retlen, retsize;
|
|
int i;
|
|
char buf[80];
|
|
int extra;
|
|
|
|
if (aux) {
|
|
retsize = 256;
|
|
ret = snewn(retsize, char);
|
|
retlen = sprintf(ret, "S");
|
|
|
|
for (i = 0; i < wh; i++) {
|
|
if (aux[i] == 'L')
|
|
extra = sprintf(buf, ";D%d,%d", i, i+1);
|
|
else if (aux[i] == 'T')
|
|
extra = sprintf(buf, ";D%d,%d", i, i+w);
|
|
else
|
|
continue;
|
|
|
|
if (retlen + extra + 1 >= retsize) {
|
|
retsize = retlen + extra + 256;
|
|
ret = sresize(ret, retsize, char);
|
|
}
|
|
strcpy(ret + retlen, buf);
|
|
retlen += extra;
|
|
}
|
|
|
|
} else {
|
|
struct solver_scratch *sc = solver_make_scratch(n);
|
|
solver_setup_grid(sc, state->numbers->numbers);
|
|
run_solver(sc, DIFFCOUNT);
|
|
ret = solution_move_string(sc);
|
|
solver_free_scratch(sc);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool game_can_format_as_text_now(const game_params *params)
|
|
{
|
|
return params->n < 1000;
|
|
}
|
|
|
|
static void draw_domino(char *board, int start, char corner,
|
|
int dshort, int nshort, char cshort,
|
|
int dlong, int nlong, char clong)
|
|
{
|
|
int go_short = nshort*dshort, go_long = nlong*dlong, i;
|
|
|
|
board[start] = corner;
|
|
board[start + go_short] = corner;
|
|
board[start + go_long] = corner;
|
|
board[start + go_short + go_long] = corner;
|
|
|
|
for (i = 1; i < nshort; ++i) {
|
|
int j = start + i*dshort, k = start + i*dshort + go_long;
|
|
if (board[j] != corner) board[j] = cshort;
|
|
if (board[k] != corner) board[k] = cshort;
|
|
}
|
|
|
|
for (i = 1; i < nlong; ++i) {
|
|
int j = start + i*dlong, k = start + i*dlong + go_short;
|
|
if (board[j] != corner) board[j] = clong;
|
|
if (board[k] != corner) board[k] = clong;
|
|
}
|
|
}
|
|
|
|
static char *game_text_format(const game_state *state)
|
|
{
|
|
int w = state->w, h = state->h, r, c;
|
|
int cw = 4, ch = 2, gw = cw*w + 2, gh = ch * h + 1, len = gw * gh;
|
|
char *board = snewn(len + 1, char);
|
|
|
|
memset(board, ' ', len);
|
|
|
|
for (r = 0; r < h; ++r) {
|
|
for (c = 0; c < w; ++c) {
|
|
int cell = r*ch*gw + cw*c, center = cell + gw*ch/2 + cw/2;
|
|
int i = r*w + c, num = state->numbers->numbers[i];
|
|
|
|
if (num < 100) {
|
|
board[center] = '0' + num % 10;
|
|
if (num >= 10) board[center - 1] = '0' + num / 10;
|
|
} else {
|
|
board[center+1] = '0' + num % 10;
|
|
board[center] = '0' + num / 10 % 10;
|
|
board[center-1] = '0' + num / 100;
|
|
}
|
|
|
|
if (state->edges[i] & EDGE_L) board[center - cw/2] = '|';
|
|
if (state->edges[i] & EDGE_R) board[center + cw/2] = '|';
|
|
if (state->edges[i] & EDGE_T) board[center - gw] = '-';
|
|
if (state->edges[i] & EDGE_B) board[center + gw] = '-';
|
|
|
|
if (state->grid[i] == i) continue; /* no domino pairing */
|
|
if (state->grid[i] < i) continue; /* already done */
|
|
assert (state->grid[i] == i + 1 || state->grid[i] == i + w);
|
|
if (state->grid[i] == i + 1)
|
|
draw_domino(board, cell, '+', gw, ch, '|', +1, 2*cw, '-');
|
|
else if (state->grid[i] == i + w)
|
|
draw_domino(board, cell, '+', +1, cw, '-', gw, 2*ch, '|');
|
|
}
|
|
board[r*ch*gw + gw - 1] = '\n';
|
|
board[r*ch*gw + gw + gw - 1] = '\n';
|
|
}
|
|
board[len - 1] = '\n';
|
|
board[len] = '\0';
|
|
return board;
|
|
}
|
|
|
|
struct game_ui {
|
|
int cur_x, cur_y, highlight_1, highlight_2;
|
|
bool cur_visible;
|
|
};
|
|
|
|
static game_ui *new_ui(const game_state *state)
|
|
{
|
|
game_ui *ui = snew(game_ui);
|
|
ui->cur_x = ui->cur_y = 0;
|
|
ui->cur_visible = false;
|
|
ui->highlight_1 = ui->highlight_2 = -1;
|
|
return ui;
|
|
}
|
|
|
|
static void free_ui(game_ui *ui)
|
|
{
|
|
sfree(ui);
|
|
}
|
|
|
|
static char *encode_ui(const game_ui *ui)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static void decode_ui(game_ui *ui, const char *encoding)
|
|
{
|
|
}
|
|
|
|
static void game_changed_state(game_ui *ui, const game_state *oldstate,
|
|
const game_state *newstate)
|
|
{
|
|
if (!oldstate->completed && newstate->completed)
|
|
ui->cur_visible = false;
|
|
}
|
|
|
|
#define PREFERRED_TILESIZE 32
|
|
#define TILESIZE (ds->tilesize)
|
|
#define BORDER (TILESIZE * 3 / 4)
|
|
#define DOMINO_GUTTER (TILESIZE / 16)
|
|
#define DOMINO_RADIUS (TILESIZE / 8)
|
|
#define DOMINO_COFFSET (DOMINO_GUTTER + DOMINO_RADIUS)
|
|
#define CURSOR_RADIUS (TILESIZE / 4)
|
|
|
|
#define COORD(x) ( (x) * TILESIZE + BORDER )
|
|
#define FROMCOORD(x) ( ((x) - BORDER + TILESIZE) / TILESIZE - 1 )
|
|
|
|
struct game_drawstate {
|
|
bool started;
|
|
int w, h, tilesize;
|
|
unsigned long *visible;
|
|
};
|
|
|
|
static char *interpret_move(const game_state *state, game_ui *ui,
|
|
const game_drawstate *ds,
|
|
int x, int y, int button)
|
|
{
|
|
int w = state->w, h = state->h;
|
|
char buf[80];
|
|
|
|
/*
|
|
* A left-click between two numbers toggles a domino covering
|
|
* them. A right-click toggles an edge.
|
|
*/
|
|
if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
|
|
int tx = FROMCOORD(x), ty = FROMCOORD(y), t = ty*w+tx;
|
|
int dx, dy;
|
|
int d1, d2;
|
|
|
|
if (tx < 0 || tx >= w || ty < 0 || ty >= h)
|
|
return NULL;
|
|
|
|
/*
|
|
* Now we know which square the click was in, decide which
|
|
* edge of the square it was closest to.
|
|
*/
|
|
dx = 2 * (x - COORD(tx)) - TILESIZE;
|
|
dy = 2 * (y - COORD(ty)) - TILESIZE;
|
|
|
|
if (abs(dx) > abs(dy) && dx < 0 && tx > 0)
|
|
d1 = t - 1, d2 = t; /* clicked in right side of domino */
|
|
else if (abs(dx) > abs(dy) && dx > 0 && tx+1 < w)
|
|
d1 = t, d2 = t + 1; /* clicked in left side of domino */
|
|
else if (abs(dy) > abs(dx) && dy < 0 && ty > 0)
|
|
d1 = t - w, d2 = t; /* clicked in bottom half of domino */
|
|
else if (abs(dy) > abs(dx) && dy > 0 && ty+1 < h)
|
|
d1 = t, d2 = t + w; /* clicked in top half of domino */
|
|
else
|
|
return NULL;
|
|
|
|
/*
|
|
* We can't mark an edge next to any domino.
|
|
*/
|
|
if (button == RIGHT_BUTTON &&
|
|
(state->grid[d1] != d1 || state->grid[d2] != d2))
|
|
return NULL;
|
|
|
|
ui->cur_visible = false;
|
|
sprintf(buf, "%c%d,%d", (int)(button == RIGHT_BUTTON ? 'E' : 'D'), d1, d2);
|
|
return dupstr(buf);
|
|
} else if (IS_CURSOR_MOVE(button)) {
|
|
ui->cur_visible = true;
|
|
|
|
move_cursor(button, &ui->cur_x, &ui->cur_y, 2*w-1, 2*h-1, false);
|
|
|
|
return UI_UPDATE;
|
|
} else if (IS_CURSOR_SELECT(button)) {
|
|
int d1, d2;
|
|
|
|
if (!((ui->cur_x ^ ui->cur_y) & 1))
|
|
return NULL; /* must have exactly one dimension odd */
|
|
d1 = (ui->cur_y / 2) * w + (ui->cur_x / 2);
|
|
d2 = ((ui->cur_y+1) / 2) * w + ((ui->cur_x+1) / 2);
|
|
|
|
/*
|
|
* We can't mark an edge next to any domino.
|
|
*/
|
|
if (button == CURSOR_SELECT2 &&
|
|
(state->grid[d1] != d1 || state->grid[d2] != d2))
|
|
return NULL;
|
|
|
|
sprintf(buf, "%c%d,%d", (int)(button == CURSOR_SELECT2 ? 'E' : 'D'), d1, d2);
|
|
return dupstr(buf);
|
|
} else if (isdigit(button)) {
|
|
int n = state->params.n, num = button - '0';
|
|
if (num > n) {
|
|
return NULL;
|
|
} else if (ui->highlight_1 == num) {
|
|
ui->highlight_1 = -1;
|
|
} else if (ui->highlight_2 == num) {
|
|
ui->highlight_2 = -1;
|
|
} else if (ui->highlight_1 == -1) {
|
|
ui->highlight_1 = num;
|
|
} else if (ui->highlight_2 == -1) {
|
|
ui->highlight_2 = num;
|
|
} else {
|
|
return NULL;
|
|
}
|
|
return UI_UPDATE;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static game_state *execute_move(const game_state *state, const char *move)
|
|
{
|
|
int n = state->params.n, w = n+2, h = n+1, wh = w*h;
|
|
int d1, d2, d3, p;
|
|
game_state *ret = dup_game(state);
|
|
|
|
while (*move) {
|
|
if (move[0] == 'S') {
|
|
int i;
|
|
|
|
ret->cheated = true;
|
|
|
|
/*
|
|
* Clear the existing edges and domino placements. We
|
|
* expect the S to be followed by other commands.
|
|
*/
|
|
for (i = 0; i < wh; i++) {
|
|
ret->grid[i] = i;
|
|
ret->edges[i] = 0;
|
|
}
|
|
move++;
|
|
} else if (move[0] == 'D' &&
|
|
sscanf(move+1, "%d,%d%n", &d1, &d2, &p) == 2 &&
|
|
d1 >= 0 && d1 < wh && d2 >= 0 && d2 < wh && d1 < d2) {
|
|
|
|
/*
|
|
* Toggle domino presence between d1 and d2.
|
|
*/
|
|
if (ret->grid[d1] == d2) {
|
|
assert(ret->grid[d2] == d1);
|
|
ret->grid[d1] = d1;
|
|
ret->grid[d2] = d2;
|
|
} else {
|
|
/*
|
|
* Erase any dominoes that might overlap the new one.
|
|
*/
|
|
d3 = ret->grid[d1];
|
|
if (d3 != d1)
|
|
ret->grid[d3] = d3;
|
|
d3 = ret->grid[d2];
|
|
if (d3 != d2)
|
|
ret->grid[d3] = d3;
|
|
/*
|
|
* Place the new one.
|
|
*/
|
|
ret->grid[d1] = d2;
|
|
ret->grid[d2] = d1;
|
|
|
|
/*
|
|
* Destroy any edges lurking around it.
|
|
*/
|
|
if (ret->edges[d1] & EDGE_L) {
|
|
assert(d1 - 1 >= 0);
|
|
ret->edges[d1 - 1] &= ~EDGE_R;
|
|
}
|
|
if (ret->edges[d1] & EDGE_R) {
|
|
assert(d1 + 1 < wh);
|
|
ret->edges[d1 + 1] &= ~EDGE_L;
|
|
}
|
|
if (ret->edges[d1] & EDGE_T) {
|
|
assert(d1 - w >= 0);
|
|
ret->edges[d1 - w] &= ~EDGE_B;
|
|
}
|
|
if (ret->edges[d1] & EDGE_B) {
|
|
assert(d1 + 1 < wh);
|
|
ret->edges[d1 + w] &= ~EDGE_T;
|
|
}
|
|
ret->edges[d1] = 0;
|
|
if (ret->edges[d2] & EDGE_L) {
|
|
assert(d2 - 1 >= 0);
|
|
ret->edges[d2 - 1] &= ~EDGE_R;
|
|
}
|
|
if (ret->edges[d2] & EDGE_R) {
|
|
assert(d2 + 1 < wh);
|
|
ret->edges[d2 + 1] &= ~EDGE_L;
|
|
}
|
|
if (ret->edges[d2] & EDGE_T) {
|
|
assert(d2 - w >= 0);
|
|
ret->edges[d2 - w] &= ~EDGE_B;
|
|
}
|
|
if (ret->edges[d2] & EDGE_B) {
|
|
assert(d2 + 1 < wh);
|
|
ret->edges[d2 + w] &= ~EDGE_T;
|
|
}
|
|
ret->edges[d2] = 0;
|
|
}
|
|
|
|
move += p+1;
|
|
} else if (move[0] == 'E' &&
|
|
sscanf(move+1, "%d,%d%n", &d1, &d2, &p) == 2 &&
|
|
d1 >= 0 && d1 < wh && d2 >= 0 && d2 < wh && d1 < d2 &&
|
|
ret->grid[d1] == d1 && ret->grid[d2] == d2) {
|
|
|
|
/*
|
|
* Toggle edge presence between d1 and d2.
|
|
*/
|
|
if (d2 == d1 + 1) {
|
|
ret->edges[d1] ^= EDGE_R;
|
|
ret->edges[d2] ^= EDGE_L;
|
|
} else {
|
|
ret->edges[d1] ^= EDGE_B;
|
|
ret->edges[d2] ^= EDGE_T;
|
|
}
|
|
|
|
move += p+1;
|
|
} else {
|
|
free_game(ret);
|
|
return NULL;
|
|
}
|
|
|
|
if (*move) {
|
|
if (*move != ';') {
|
|
free_game(ret);
|
|
return NULL;
|
|
}
|
|
move++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* After modifying the grid, check completion.
|
|
*/
|
|
if (!ret->completed) {
|
|
int i, ok = 0;
|
|
bool *used = snewn(TRI(n+1), bool);
|
|
|
|
memset(used, 0, TRI(n+1));
|
|
for (i = 0; i < wh; i++)
|
|
if (ret->grid[i] > i) {
|
|
int n1, n2, di;
|
|
|
|
n1 = ret->numbers->numbers[i];
|
|
n2 = ret->numbers->numbers[ret->grid[i]];
|
|
|
|
di = DINDEX(n1, n2);
|
|
assert(di >= 0 && di < TRI(n+1));
|
|
|
|
if (!used[di]) {
|
|
used[di] = true;
|
|
ok++;
|
|
}
|
|
}
|
|
|
|
sfree(used);
|
|
if (ok == DCOUNT(n))
|
|
ret->completed = true;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Drawing routines.
|
|
*/
|
|
|
|
static void game_compute_size(const game_params *params, int tilesize,
|
|
int *x, int *y)
|
|
{
|
|
int n = params->n, w = n+2, h = n+1;
|
|
|
|
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
|
|
struct { int tilesize; } ads, *ds = &ads;
|
|
ads.tilesize = tilesize;
|
|
|
|
*x = w * TILESIZE + 2*BORDER;
|
|
*y = h * TILESIZE + 2*BORDER;
|
|
}
|
|
|
|
static void game_set_size(drawing *dr, game_drawstate *ds,
|
|
const game_params *params, int tilesize)
|
|
{
|
|
ds->tilesize = tilesize;
|
|
}
|
|
|
|
static float *game_colours(frontend *fe, int *ncolours)
|
|
{
|
|
float *ret = snewn(3 * NCOLOURS, float);
|
|
|
|
frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
|
|
|
|
ret[COL_TEXT * 3 + 0] = 0.0F;
|
|
ret[COL_TEXT * 3 + 1] = 0.0F;
|
|
ret[COL_TEXT * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_DOMINO * 3 + 0] = 0.0F;
|
|
ret[COL_DOMINO * 3 + 1] = 0.0F;
|
|
ret[COL_DOMINO * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_DOMINOCLASH * 3 + 0] = 0.5F;
|
|
ret[COL_DOMINOCLASH * 3 + 1] = 0.0F;
|
|
ret[COL_DOMINOCLASH * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_DOMINOTEXT * 3 + 0] = 1.0F;
|
|
ret[COL_DOMINOTEXT * 3 + 1] = 1.0F;
|
|
ret[COL_DOMINOTEXT * 3 + 2] = 1.0F;
|
|
|
|
ret[COL_EDGE * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 2 / 3;
|
|
ret[COL_EDGE * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 2 / 3;
|
|
ret[COL_EDGE * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 2 / 3;
|
|
|
|
ret[COL_HIGHLIGHT_1 * 3 + 0] = 0.85;
|
|
ret[COL_HIGHLIGHT_1 * 3 + 1] = 0.20;
|
|
ret[COL_HIGHLIGHT_1 * 3 + 2] = 0.20;
|
|
|
|
ret[COL_HIGHLIGHT_2 * 3 + 0] = 0.30;
|
|
ret[COL_HIGHLIGHT_2 * 3 + 1] = 0.85;
|
|
ret[COL_HIGHLIGHT_2 * 3 + 2] = 0.20;
|
|
|
|
*ncolours = NCOLOURS;
|
|
return ret;
|
|
}
|
|
|
|
static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state)
|
|
{
|
|
struct game_drawstate *ds = snew(struct game_drawstate);
|
|
int i;
|
|
|
|
ds->started = false;
|
|
ds->w = state->w;
|
|
ds->h = state->h;
|
|
ds->visible = snewn(ds->w * ds->h, unsigned long);
|
|
ds->tilesize = 0; /* not decided yet */
|
|
for (i = 0; i < ds->w * ds->h; i++)
|
|
ds->visible[i] = 0xFFFF;
|
|
|
|
return ds;
|
|
}
|
|
|
|
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
|
|
{
|
|
sfree(ds->visible);
|
|
sfree(ds);
|
|
}
|
|
|
|
enum {
|
|
TYPE_L,
|
|
TYPE_R,
|
|
TYPE_T,
|
|
TYPE_B,
|
|
TYPE_BLANK,
|
|
TYPE_MASK = 0x0F
|
|
};
|
|
|
|
/* These flags must be disjoint with:
|
|
* the above enum (TYPE_*) [0x000 -- 0x00F]
|
|
* EDGE_* [0x100 -- 0xF00]
|
|
* and must fit into an unsigned long (32 bits).
|
|
*/
|
|
#define DF_HIGHLIGHT_1 0x10
|
|
#define DF_HIGHLIGHT_2 0x20
|
|
#define DF_FLASH 0x40
|
|
#define DF_CLASH 0x80
|
|
|
|
#define DF_CURSOR 0x01000
|
|
#define DF_CURSOR_USEFUL 0x02000
|
|
#define DF_CURSOR_XBASE 0x10000
|
|
#define DF_CURSOR_XMASK 0x30000
|
|
#define DF_CURSOR_YBASE 0x40000
|
|
#define DF_CURSOR_YMASK 0xC0000
|
|
|
|
#define CEDGE_OFF (TILESIZE / 8)
|
|
#define IS_EMPTY(s,x,y) ((s)->grid[(y)*(s)->w+(x)] == ((y)*(s)->w+(x)))
|
|
|
|
static void draw_tile(drawing *dr, game_drawstate *ds, const game_state *state,
|
|
int x, int y, int type, int highlight_1, int highlight_2)
|
|
{
|
|
int w = state->w /*, h = state->h */;
|
|
int cx = COORD(x), cy = COORD(y);
|
|
int nc;
|
|
char str[80];
|
|
int flags;
|
|
|
|
clip(dr, cx, cy, TILESIZE, TILESIZE);
|
|
draw_rect(dr, cx, cy, TILESIZE, TILESIZE, COL_BACKGROUND);
|
|
|
|
flags = type &~ TYPE_MASK;
|
|
type &= TYPE_MASK;
|
|
|
|
if (type != TYPE_BLANK) {
|
|
int i, bg;
|
|
|
|
/*
|
|
* Draw one end of a domino. This is composed of:
|
|
*
|
|
* - two filled circles (rounded corners)
|
|
* - two rectangles
|
|
* - a slight shift in the number
|
|
*/
|
|
|
|
if (flags & DF_CLASH)
|
|
bg = COL_DOMINOCLASH;
|
|
else
|
|
bg = COL_DOMINO;
|
|
nc = COL_DOMINOTEXT;
|
|
|
|
if (flags & DF_FLASH) {
|
|
int tmp = nc;
|
|
nc = bg;
|
|
bg = tmp;
|
|
}
|
|
|
|
if (type == TYPE_L || type == TYPE_T)
|
|
draw_circle(dr, cx+DOMINO_COFFSET, cy+DOMINO_COFFSET,
|
|
DOMINO_RADIUS, bg, bg);
|
|
if (type == TYPE_R || type == TYPE_T)
|
|
draw_circle(dr, cx+TILESIZE-1-DOMINO_COFFSET, cy+DOMINO_COFFSET,
|
|
DOMINO_RADIUS, bg, bg);
|
|
if (type == TYPE_L || type == TYPE_B)
|
|
draw_circle(dr, cx+DOMINO_COFFSET, cy+TILESIZE-1-DOMINO_COFFSET,
|
|
DOMINO_RADIUS, bg, bg);
|
|
if (type == TYPE_R || type == TYPE_B)
|
|
draw_circle(dr, cx+TILESIZE-1-DOMINO_COFFSET,
|
|
cy+TILESIZE-1-DOMINO_COFFSET,
|
|
DOMINO_RADIUS, bg, bg);
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
int x1, y1, x2, y2;
|
|
|
|
x1 = cx + (i ? DOMINO_GUTTER : DOMINO_COFFSET);
|
|
y1 = cy + (i ? DOMINO_COFFSET : DOMINO_GUTTER);
|
|
x2 = cx + TILESIZE-1 - (i ? DOMINO_GUTTER : DOMINO_COFFSET);
|
|
y2 = cy + TILESIZE-1 - (i ? DOMINO_COFFSET : DOMINO_GUTTER);
|
|
if (type == TYPE_L)
|
|
x2 = cx + TILESIZE + TILESIZE/16;
|
|
else if (type == TYPE_R)
|
|
x1 = cx - TILESIZE/16;
|
|
else if (type == TYPE_T)
|
|
y2 = cy + TILESIZE + TILESIZE/16;
|
|
else if (type == TYPE_B)
|
|
y1 = cy - TILESIZE/16;
|
|
|
|
draw_rect(dr, x1, y1, x2-x1+1, y2-y1+1, bg);
|
|
}
|
|
} else {
|
|
if (flags & EDGE_T)
|
|
draw_rect(dr, cx+DOMINO_GUTTER, cy,
|
|
TILESIZE-2*DOMINO_GUTTER, 1, COL_EDGE);
|
|
if (flags & EDGE_B)
|
|
draw_rect(dr, cx+DOMINO_GUTTER, cy+TILESIZE-1,
|
|
TILESIZE-2*DOMINO_GUTTER, 1, COL_EDGE);
|
|
if (flags & EDGE_L)
|
|
draw_rect(dr, cx, cy+DOMINO_GUTTER,
|
|
1, TILESIZE-2*DOMINO_GUTTER, COL_EDGE);
|
|
if (flags & EDGE_R)
|
|
draw_rect(dr, cx+TILESIZE-1, cy+DOMINO_GUTTER,
|
|
1, TILESIZE-2*DOMINO_GUTTER, COL_EDGE);
|
|
nc = COL_TEXT;
|
|
}
|
|
|
|
if (flags & DF_CURSOR) {
|
|
int curx = ((flags & DF_CURSOR_XMASK) / DF_CURSOR_XBASE) & 3;
|
|
int cury = ((flags & DF_CURSOR_YMASK) / DF_CURSOR_YBASE) & 3;
|
|
int ox = cx + curx*TILESIZE/2;
|
|
int oy = cy + cury*TILESIZE/2;
|
|
|
|
draw_rect_corners(dr, ox, oy, CURSOR_RADIUS, nc);
|
|
if (flags & DF_CURSOR_USEFUL)
|
|
draw_rect_corners(dr, ox, oy, CURSOR_RADIUS+1, nc);
|
|
}
|
|
|
|
if (flags & DF_HIGHLIGHT_1) {
|
|
nc = COL_HIGHLIGHT_1;
|
|
} else if (flags & DF_HIGHLIGHT_2) {
|
|
nc = COL_HIGHLIGHT_2;
|
|
}
|
|
|
|
sprintf(str, "%d", state->numbers->numbers[y*w+x]);
|
|
draw_text(dr, cx+TILESIZE/2, cy+TILESIZE/2, FONT_VARIABLE, TILESIZE/2,
|
|
ALIGN_HCENTRE | ALIGN_VCENTRE, nc, str);
|
|
|
|
draw_update(dr, cx, cy, TILESIZE, TILESIZE);
|
|
unclip(dr);
|
|
}
|
|
|
|
static void game_redraw(drawing *dr, game_drawstate *ds,
|
|
const game_state *oldstate, const game_state *state,
|
|
int dir, const game_ui *ui,
|
|
float animtime, float flashtime)
|
|
{
|
|
int n = state->params.n, w = state->w, h = state->h, wh = w*h;
|
|
int x, y, i;
|
|
unsigned char *used;
|
|
|
|
if (!ds->started) {
|
|
int pw, ph;
|
|
game_compute_size(&state->params, TILESIZE, &pw, &ph);
|
|
draw_rect(dr, 0, 0, pw, ph, COL_BACKGROUND);
|
|
draw_update(dr, 0, 0, pw, ph);
|
|
ds->started = true;
|
|
}
|
|
|
|
/*
|
|
* See how many dominoes of each type there are, so we can
|
|
* highlight clashes in red.
|
|
*/
|
|
used = snewn(TRI(n+1), unsigned char);
|
|
memset(used, 0, TRI(n+1));
|
|
for (i = 0; i < wh; i++)
|
|
if (state->grid[i] > i) {
|
|
int n1, n2, di;
|
|
|
|
n1 = state->numbers->numbers[i];
|
|
n2 = state->numbers->numbers[state->grid[i]];
|
|
|
|
di = DINDEX(n1, n2);
|
|
assert(di >= 0 && di < TRI(n+1));
|
|
|
|
if (used[di] < 2)
|
|
used[di]++;
|
|
}
|
|
|
|
for (y = 0; y < h; y++)
|
|
for (x = 0; x < w; x++) {
|
|
int n = y*w+x;
|
|
int n1, n2, di;
|
|
unsigned long c;
|
|
|
|
if (state->grid[n] == n-1)
|
|
c = TYPE_R;
|
|
else if (state->grid[n] == n+1)
|
|
c = TYPE_L;
|
|
else if (state->grid[n] == n-w)
|
|
c = TYPE_B;
|
|
else if (state->grid[n] == n+w)
|
|
c = TYPE_T;
|
|
else
|
|
c = TYPE_BLANK;
|
|
|
|
n1 = state->numbers->numbers[n];
|
|
if (c != TYPE_BLANK) {
|
|
n2 = state->numbers->numbers[state->grid[n]];
|
|
di = DINDEX(n1, n2);
|
|
if (used[di] > 1)
|
|
c |= DF_CLASH; /* highlight a clash */
|
|
} else {
|
|
c |= state->edges[n];
|
|
}
|
|
|
|
if (n1 == ui->highlight_1)
|
|
c |= DF_HIGHLIGHT_1;
|
|
if (n1 == ui->highlight_2)
|
|
c |= DF_HIGHLIGHT_2;
|
|
|
|
if (flashtime != 0)
|
|
c |= DF_FLASH; /* we're flashing */
|
|
|
|
if (ui->cur_visible) {
|
|
unsigned curx = (unsigned)(ui->cur_x - (2*x-1));
|
|
unsigned cury = (unsigned)(ui->cur_y - (2*y-1));
|
|
if (curx < 3 && cury < 3) {
|
|
c |= (DF_CURSOR |
|
|
(curx * DF_CURSOR_XBASE) |
|
|
(cury * DF_CURSOR_YBASE));
|
|
if ((ui->cur_x ^ ui->cur_y) & 1)
|
|
c |= DF_CURSOR_USEFUL;
|
|
}
|
|
}
|
|
|
|
if (ds->visible[n] != c) {
|
|
draw_tile(dr, ds, state, x, y, c,
|
|
ui->highlight_1, ui->highlight_2);
|
|
ds->visible[n] = c;
|
|
}
|
|
}
|
|
|
|
sfree(used);
|
|
}
|
|
|
|
static float game_anim_length(const game_state *oldstate,
|
|
const game_state *newstate, int dir, game_ui *ui)
|
|
{
|
|
return 0.0F;
|
|
}
|
|
|
|
static float game_flash_length(const game_state *oldstate,
|
|
const game_state *newstate, int dir, game_ui *ui)
|
|
{
|
|
if (!oldstate->completed && newstate->completed &&
|
|
!oldstate->cheated && !newstate->cheated)
|
|
{
|
|
ui->highlight_1 = ui->highlight_2 = -1;
|
|
return FLASH_TIME;
|
|
}
|
|
return 0.0F;
|
|
}
|
|
|
|
static int game_status(const game_state *state)
|
|
{
|
|
return state->completed ? +1 : 0;
|
|
}
|
|
|
|
static bool game_timing_state(const game_state *state, game_ui *ui)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static void game_print_size(const game_params *params, float *x, float *y)
|
|
{
|
|
int pw, ph;
|
|
|
|
/*
|
|
* I'll use 6mm squares by default.
|
|
*/
|
|
game_compute_size(params, 600, &pw, &ph);
|
|
*x = pw / 100.0F;
|
|
*y = ph / 100.0F;
|
|
}
|
|
|
|
static void game_print(drawing *dr, const game_state *state, int tilesize)
|
|
{
|
|
int w = state->w, h = state->h;
|
|
int c, x, y;
|
|
|
|
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
|
|
game_drawstate ads, *ds = &ads;
|
|
game_set_size(dr, ds, NULL, tilesize);
|
|
|
|
c = print_mono_colour(dr, 1); assert(c == COL_BACKGROUND);
|
|
c = print_mono_colour(dr, 0); assert(c == COL_TEXT);
|
|
c = print_mono_colour(dr, 0); assert(c == COL_DOMINO);
|
|
c = print_mono_colour(dr, 0); assert(c == COL_DOMINOCLASH);
|
|
c = print_mono_colour(dr, 1); assert(c == COL_DOMINOTEXT);
|
|
c = print_mono_colour(dr, 0); assert(c == COL_EDGE);
|
|
|
|
for (y = 0; y < h; y++)
|
|
for (x = 0; x < w; x++) {
|
|
int n = y*w+x;
|
|
unsigned long c;
|
|
|
|
if (state->grid[n] == n-1)
|
|
c = TYPE_R;
|
|
else if (state->grid[n] == n+1)
|
|
c = TYPE_L;
|
|
else if (state->grid[n] == n-w)
|
|
c = TYPE_B;
|
|
else if (state->grid[n] == n+w)
|
|
c = TYPE_T;
|
|
else
|
|
c = TYPE_BLANK;
|
|
|
|
draw_tile(dr, ds, state, x, y, c, -1, -1);
|
|
}
|
|
}
|
|
|
|
#ifdef COMBINED
|
|
#define thegame dominosa
|
|
#endif
|
|
|
|
const struct game thegame = {
|
|
"Dominosa", "games.dominosa", "dominosa",
|
|
default_params,
|
|
game_fetch_preset, NULL,
|
|
decode_params,
|
|
encode_params,
|
|
free_params,
|
|
dup_params,
|
|
true, game_configure, custom_params,
|
|
validate_params,
|
|
new_game_desc,
|
|
validate_desc,
|
|
new_game,
|
|
dup_game,
|
|
free_game,
|
|
true, solve_game,
|
|
true, game_can_format_as_text_now, game_text_format,
|
|
new_ui,
|
|
free_ui,
|
|
encode_ui,
|
|
decode_ui,
|
|
NULL, /* game_request_keys */
|
|
game_changed_state,
|
|
interpret_move,
|
|
execute_move,
|
|
PREFERRED_TILESIZE, game_compute_size, game_set_size,
|
|
game_colours,
|
|
game_new_drawstate,
|
|
game_free_drawstate,
|
|
game_redraw,
|
|
game_anim_length,
|
|
game_flash_length,
|
|
game_status,
|
|
true, false, game_print_size, game_print,
|
|
false, /* wants_statusbar */
|
|
false, game_timing_state,
|
|
0, /* flags */
|
|
};
|
|
|
|
#ifdef STANDALONE_SOLVER
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
game_params *p;
|
|
game_state *s, *s2;
|
|
char *id = NULL, *desc;
|
|
const char *err;
|
|
bool grade = false, diagnostics = false;
|
|
struct solver_scratch *sc;
|
|
int retd;
|
|
|
|
while (--argc > 0) {
|
|
char *p = *++argv;
|
|
if (!strcmp(p, "-v")) {
|
|
diagnostics = true;
|
|
} else if (!strcmp(p, "-g")) {
|
|
grade = true;
|
|
} else if (*p == '-') {
|
|
fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
|
|
return 1;
|
|
} else {
|
|
id = p;
|
|
}
|
|
}
|
|
|
|
if (!id) {
|
|
fprintf(stderr, "usage: %s [-v | -g] <game_id>\n", argv[0]);
|
|
return 1;
|
|
}
|
|
|
|
desc = strchr(id, ':');
|
|
if (!desc) {
|
|
fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
|
|
return 1;
|
|
}
|
|
*desc++ = '\0';
|
|
|
|
p = default_params();
|
|
decode_params(p, id);
|
|
err = validate_desc(p, desc);
|
|
if (err) {
|
|
fprintf(stderr, "%s: %s\n", argv[0], err);
|
|
return 1;
|
|
}
|
|
s = new_game(NULL, p, desc);
|
|
|
|
solver_diagnostics = diagnostics;
|
|
sc = solver_make_scratch(p->n);
|
|
solver_setup_grid(sc, s->numbers->numbers);
|
|
retd = run_solver(sc, DIFFCOUNT);
|
|
if (retd == 0) {
|
|
printf("Puzzle is inconsistent\n");
|
|
} else if (grade) {
|
|
printf("Difficulty rating: %s\n",
|
|
dominosa_diffnames[sc->max_diff_used]);
|
|
} else {
|
|
char *move, *text;
|
|
move = solution_move_string(sc);
|
|
s2 = execute_move(s, move);
|
|
text = game_text_format(s2);
|
|
sfree(move);
|
|
fputs(text, stdout);
|
|
sfree(text);
|
|
free_game(s2);
|
|
if (retd > 1)
|
|
printf("Could not deduce a unique solution\n");
|
|
}
|
|
solver_free_scratch(sc);
|
|
free_game(s);
|
|
free_params(p);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
/* vim: set shiftwidth=4 :set textwidth=80: */
|
|
|