Files
puzzles/dsf.c
Simon Tatham 348aac4c85 Remove size parameter from dsf init and copy functions.
Now that the dsf knows its own size internally, there's no need to
tell it again when one is copied or reinitialised.

This makes dsf_init much more about *re*initialising a dsf, since now
dsfs are always allocated using a function that will initialise them
anyway. So I think it deserves a rename.
2023-04-20 17:30:03 +01:00

217 lines
5.6 KiB
C

/*
* dsf.c: some functions to handle a disjoint set forest,
* which is a data structure useful in any solver which has to
* worry about avoiding closed loops.
*/
#include <assert.h>
#include <string.h>
#include "puzzles.h"
struct DSF {
int size;
int *p;
};
/*void print_dsf(int *dsf, int size)
{
int *printed_elements = snewn(size, int);
int *equal_elements = snewn(size, int);
int *inverse_elements = snewn(size, int);
int printed_count = 0, equal_count, inverse_count;
int i, n;
bool inverse;
memset(printed_elements, -1, sizeof(int) * size);
while (1) {
equal_count = 0;
inverse_count = 0;
for (i = 0; i < size; ++i) {
if (!memchr(printed_elements, i, sizeof(int) * size))
break;
}
if (i == size)
goto done;
i = dsf_canonify(dsf, i);
for (n = 0; n < size; ++n) {
if (edsf_canonify(dsf, n, &inverse) == i) {
if (inverse)
inverse_elements[inverse_count++] = n;
else
equal_elements[equal_count++] = n;
}
}
for (n = 0; n < equal_count; ++n) {
fprintf(stderr, "%d ", equal_elements[n]);
printed_elements[printed_count++] = equal_elements[n];
}
if (inverse_count) {
fprintf(stderr, "!= ");
for (n = 0; n < inverse_count; ++n) {
fprintf(stderr, "%d ", inverse_elements[n]);
printed_elements[printed_count++] = inverse_elements[n];
}
}
fprintf(stderr, "\n");
}
done:
sfree(printed_elements);
sfree(equal_elements);
sfree(inverse_elements);
}*/
void dsf_reinit(DSF *dsf)
{
int i;
for (i = 0; i < dsf->size; i++)
dsf->p[i] = 6;
/* Bottom bit of each element of this array stores whether that
* element is opposite to its parent, which starts off as
* false. Second bit of each element stores whether that element
* is the root of its tree or not. If it's not the root, the
* remaining 30 bits are the parent, otherwise the remaining 30
* bits are the number of elements in the tree. */
}
void dsf_copy(DSF *to, DSF *from)
{
assert(to->size == from->size && "Mismatch in dsf_copy");
memcpy(to->p, from->p, to->size * sizeof(int));
}
DSF *snew_dsf(int size)
{
DSF *ret = snew(DSF);
ret->size = size;
ret->p = snewn(size, int);
dsf_reinit(ret);
/*print_dsf(ret, size); */
return ret;
}
void dsf_free(DSF *dsf)
{
if (dsf) {
sfree(dsf->p);
sfree(dsf);
}
}
int dsf_canonify(DSF *dsf, int index)
{
return edsf_canonify(dsf, index, NULL);
}
void dsf_merge(DSF *dsf, int v1, int v2)
{
edsf_merge(dsf, v1, v2, false);
}
int dsf_size(DSF *dsf, int index) {
return dsf->p[dsf_canonify(dsf, index)] >> 2;
}
int edsf_canonify(DSF *dsf, int index, bool *inverse_return)
{
int start_index = index, canonical_index;
bool inverse = false;
/* fprintf(stderr, "dsf = %p\n", dsf); */
/* fprintf(stderr, "Canonify %2d\n", index); */
assert(0 <= index && index < dsf->size && "Overrun in edsf_canonify");
/* Find the index of the canonical element of the 'equivalence class' of
* which start_index is a member, and figure out whether start_index is the
* same as or inverse to that. */
while ((dsf->p[index] & 2) == 0) {
inverse ^= (dsf->p[index] & 1);
index = dsf->p[index] >> 2;
/* fprintf(stderr, "index = %2d, ", index); */
/* fprintf(stderr, "inverse = %d\n", inverse); */
}
canonical_index = index;
if (inverse_return)
*inverse_return = inverse;
/* Update every member of this 'equivalence class' to point directly at the
* canonical member. */
index = start_index;
while (index != canonical_index) {
int nextindex = dsf->p[index] >> 2;
bool nextinverse = inverse ^ (dsf->p[index] & 1);
dsf->p[index] = (canonical_index << 2) | inverse;
inverse = nextinverse;
index = nextindex;
}
assert(!inverse);
/* fprintf(stderr, "Return %2d\n", index); */
return index;
}
void edsf_merge(DSF *dsf, int v1, int v2, bool inverse)
{
bool i1, i2;
assert(0 <= v1 && v1 < dsf->size && "Overrun in edsf_merge");
assert(0 <= v2 && v2 < dsf->size && "Overrun in edsf_merge");
/* fprintf(stderr, "dsf = %p\n", dsf); */
/* fprintf(stderr, "Merge [%2d,%2d], %d\n", v1, v2, inverse); */
v1 = edsf_canonify(dsf, v1, &i1);
assert(dsf->p[v1] & 2);
inverse ^= i1;
v2 = edsf_canonify(dsf, v2, &i2);
assert(dsf->p[v2] & 2);
inverse ^= i2;
/* fprintf(stderr, "Doing [%2d,%2d], %d\n", v1, v2, inverse); */
if (v1 == v2)
assert(!inverse);
else {
/*
* We always make the smaller of v1 and v2 the new canonical
* element. This ensures that the canonical element of any
* class in this structure is always the first element in
* it. 'Keen' depends critically on this property.
*
* (Jonas Koelker previously had this code choosing which
* way round to connect the trees by examining the sizes of
* the classes being merged, so that the root of the
* larger-sized class became the new root. This gives better
* asymptotic performance, but I've changed it to do it this
* way because I like having a deterministic canonical
* element.)
*/
if (v1 > v2) {
int v3 = v1;
v1 = v2;
v2 = v3;
}
dsf->p[v1] += (dsf->p[v2] >> 2) << 2;
dsf->p[v2] = (v1 << 2) | inverse;
}
v2 = edsf_canonify(dsf, v2, &i2);
assert(v2 == v1);
assert(i2 == inverse);
/* fprintf(stderr, "dsf[%2d] = %2d\n", v2, dsf->p[v2]); */
}