mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-22 00:15:46 -07:00
Files

any equivalence class is always the element with the smallest index. This is slower (the previous behaviour, suggested by Jonas Koelker, was to choose the new root element to maximise performance), but still more than acceptably fast and more useful. [originally from svn r8792]
193 lines
5.1 KiB
C
193 lines
5.1 KiB
C
/*
|
|
* dsf.c: some functions to handle a disjoint set forest,
|
|
* which is a data structure useful in any solver which has to
|
|
* worry about avoiding closed loops.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
|
|
#include "puzzles.h"
|
|
|
|
/*void print_dsf(int *dsf, int size)
|
|
{
|
|
int *printed_elements = snewn(size, int);
|
|
int *equal_elements = snewn(size, int);
|
|
int *inverse_elements = snewn(size, int);
|
|
int printed_count = 0, equal_count, inverse_count;
|
|
int i, n, inverse;
|
|
|
|
memset(printed_elements, -1, sizeof(int) * size);
|
|
|
|
while (1) {
|
|
equal_count = 0;
|
|
inverse_count = 0;
|
|
for (i = 0; i < size; ++i) {
|
|
if (!memchr(printed_elements, i, sizeof(int) * size))
|
|
break;
|
|
}
|
|
if (i == size)
|
|
goto done;
|
|
|
|
i = dsf_canonify(dsf, i);
|
|
|
|
for (n = 0; n < size; ++n) {
|
|
if (edsf_canonify(dsf, n, &inverse) == i) {
|
|
if (inverse)
|
|
inverse_elements[inverse_count++] = n;
|
|
else
|
|
equal_elements[equal_count++] = n;
|
|
}
|
|
}
|
|
|
|
for (n = 0; n < equal_count; ++n) {
|
|
fprintf(stderr, "%d ", equal_elements[n]);
|
|
printed_elements[printed_count++] = equal_elements[n];
|
|
}
|
|
if (inverse_count) {
|
|
fprintf(stderr, "!= ");
|
|
for (n = 0; n < inverse_count; ++n) {
|
|
fprintf(stderr, "%d ", inverse_elements[n]);
|
|
printed_elements[printed_count++] = inverse_elements[n];
|
|
}
|
|
}
|
|
fprintf(stderr, "\n");
|
|
}
|
|
done:
|
|
|
|
sfree(printed_elements);
|
|
sfree(equal_elements);
|
|
sfree(inverse_elements);
|
|
}*/
|
|
|
|
void dsf_init(int *dsf, int size)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < size; i++) dsf[i] = 6;
|
|
/* Bottom bit of each element of this array stores whether that
|
|
* element is opposite to its parent, which starts off as
|
|
* false. Second bit of each element stores whether that element
|
|
* is the root of its tree or not. If it's not the root, the
|
|
* remaining 30 bits are the parent, otherwise the remaining 30
|
|
* bits are the number of elements in the tree. */
|
|
}
|
|
|
|
int *snew_dsf(int size)
|
|
{
|
|
int *ret;
|
|
|
|
ret = snewn(size, int);
|
|
dsf_init(ret, size);
|
|
|
|
/*print_dsf(ret, size); */
|
|
|
|
return ret;
|
|
}
|
|
|
|
int dsf_canonify(int *dsf, int index)
|
|
{
|
|
return edsf_canonify(dsf, index, NULL);
|
|
}
|
|
|
|
void dsf_merge(int *dsf, int v1, int v2)
|
|
{
|
|
edsf_merge(dsf, v1, v2, FALSE);
|
|
}
|
|
|
|
int dsf_size(int *dsf, int index) {
|
|
return dsf[dsf_canonify(dsf, index)] >> 2;
|
|
}
|
|
|
|
int edsf_canonify(int *dsf, int index, int *inverse_return)
|
|
{
|
|
int start_index = index, canonical_index;
|
|
int inverse = 0;
|
|
|
|
/* fprintf(stderr, "dsf = %p\n", dsf); */
|
|
/* fprintf(stderr, "Canonify %2d\n", index); */
|
|
|
|
assert(index >= 0);
|
|
|
|
/* Find the index of the canonical element of the 'equivalence class' of
|
|
* which start_index is a member, and figure out whether start_index is the
|
|
* same as or inverse to that. */
|
|
while ((dsf[index] & 2) == 0) {
|
|
inverse ^= (dsf[index] & 1);
|
|
index = dsf[index] >> 2;
|
|
/* fprintf(stderr, "index = %2d, ", index); */
|
|
/* fprintf(stderr, "inverse = %d\n", inverse); */
|
|
}
|
|
canonical_index = index;
|
|
|
|
if (inverse_return)
|
|
*inverse_return = inverse;
|
|
|
|
/* Update every member of this 'equivalence class' to point directly at the
|
|
* canonical member. */
|
|
index = start_index;
|
|
while (index != canonical_index) {
|
|
int nextindex = dsf[index] >> 2;
|
|
int nextinverse = inverse ^ (dsf[index] & 1);
|
|
dsf[index] = (canonical_index << 2) | inverse;
|
|
inverse = nextinverse;
|
|
index = nextindex;
|
|
}
|
|
|
|
assert(inverse == 0);
|
|
|
|
/* fprintf(stderr, "Return %2d\n", index); */
|
|
|
|
return index;
|
|
}
|
|
|
|
void edsf_merge(int *dsf, int v1, int v2, int inverse)
|
|
{
|
|
int i1, i2;
|
|
|
|
/* fprintf(stderr, "dsf = %p\n", dsf); */
|
|
/* fprintf(stderr, "Merge [%2d,%2d], %d\n", v1, v2, inverse); */
|
|
|
|
v1 = edsf_canonify(dsf, v1, &i1);
|
|
assert(dsf[v1] & 2);
|
|
inverse ^= i1;
|
|
v2 = edsf_canonify(dsf, v2, &i2);
|
|
assert(dsf[v2] & 2);
|
|
inverse ^= i2;
|
|
|
|
/* fprintf(stderr, "Doing [%2d,%2d], %d\n", v1, v2, inverse); */
|
|
|
|
if (v1 == v2)
|
|
assert(!inverse);
|
|
else {
|
|
assert(inverse == 0 || inverse == 1);
|
|
/*
|
|
* We always make the smaller of v1 and v2 the new canonical
|
|
* element. This ensures that the canonical element of any
|
|
* class in this structure is always the first element in
|
|
* it.
|
|
*
|
|
* (Jonas Koelker previously had this code choosing which
|
|
* way round to connect the trees by examining the sizes of
|
|
* the classes being merged, so that the root of the
|
|
* larger-sized class became the new root. This gives better
|
|
* asymptotic performance, but I've changed it to do it this
|
|
* way because I like having a deterministic canonical
|
|
* element.)
|
|
*/
|
|
if (v1 > v2) {
|
|
int v3 = v1;
|
|
v1 = v2;
|
|
v2 = v3;
|
|
}
|
|
dsf[v1] += (dsf[v2] >> 2) << 2;
|
|
dsf[v2] = (v1 << 2) | !!inverse;
|
|
}
|
|
|
|
v2 = edsf_canonify(dsf, v2, &i2);
|
|
assert(v2 == v1);
|
|
assert(i2 == inverse);
|
|
|
|
/* fprintf(stderr, "dsf[%2d] = %2d\n", v2, dsf[v2]); */
|
|
}
|