Files
puzzles/sixteen.c
Ben Harris a3310ab857 New backend function: current_key_label()
This provides a way for the front end to ask how a particular key should
be labelled right now (specifically, for a given game_state and
game_ui).  This is useful on feature phones where it's conventional to
put a small caption above each soft key indicating what it currently
does.

The function currently provides labels only for CURSOR_SELECT and
CURSOR_SELECT2.  This is because these are the only keys that need
labelling on KaiOS.

The concept of labelling keys also turns up in the request_keys() call,
but there are quite a few differences.  The labels returned by
current_key_label() are dynamic and likely to vary with each move, while
the labels provided by request_keys() are constant for a given
game_params.  Also, the keys returned by request_keys() don't generally
include CURSOR_SELECT and CURSOR_SELECT2, because those aren't necessary
on platforms with pointing devices.  It might be possible to provide a
unified API covering both of this, but I think it would be quite
difficult to work with.

Where a key is to be unlabelled, current_key_label() is expected to
return an empty string.  This leaves open the possibility of NULL
indicating a fallback to button2label or the label specified by
request_keys() in the future.

It's tempting to try to implement current_key_label() by calling
interpret_move() and parsing its output.  This doesn't work for two
reasons.  One is that interpret_move() is entitled to modify the
game_ui, and there isn't really a practical way to back those changes
out.  The other is that the information returned by interpret_move()
isn't sufficient to generate a label.  For instance, in many puzzles it
generates moves that toggle the state of a square, but we want the label
to reflect which state the square will be toggled to.  The result is
that I've generally ended up pulling bits of code from interpret_move()
and execute_move() together to implement current_key_label().

Alongside the back-end function, there's a midend_current_key_label()
that's a thin wrapper around the back-end function.  It just adds an
assertion about which key's being requested and a default null
implementation so that back-ends can avoid defining the function if it
will do nothing useful.
2022-12-09 20:48:30 +00:00

1234 lines
31 KiB
C

/*
* sixteen.c: `16-puzzle', a sliding-tiles jigsaw which differs
* from the 15-puzzle in that you toroidally rotate a row or column
* at a time.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <ctype.h>
#include <math.h>
#include "puzzles.h"
#define PREFERRED_TILE_SIZE 48
#define TILE_SIZE (ds->tilesize)
#define BORDER TILE_SIZE
#define HIGHLIGHT_WIDTH (TILE_SIZE / 20)
#define COORD(x) ( (x) * TILE_SIZE + BORDER )
#define FROMCOORD(x) ( ((x) - BORDER + 2*TILE_SIZE) / TILE_SIZE - 2 )
#define ANIM_TIME 0.13F
#define FLASH_FRAME 0.13F
#define X(state, i) ( (i) % (state)->w )
#define Y(state, i) ( (i) / (state)->w )
#define C(state, x, y) ( (y) * (state)->w + (x) )
#define TILE_CURSOR(i, state, x, y) ((i) == C((state), (x), (y)) && \
0 <= (x) && (x) < (state)->w && \
0 <= (y) && (y) < (state)->h)
enum {
COL_BACKGROUND,
COL_TEXT,
COL_HIGHLIGHT,
COL_LOWLIGHT,
NCOLOURS
};
struct game_params {
int w, h;
int movetarget;
};
struct game_state {
int w, h, n;
int *tiles;
int completed;
bool used_solve; /* used to suppress completion flash */
int movecount, movetarget;
int last_movement_sense;
};
static game_params *default_params(void)
{
game_params *ret = snew(game_params);
ret->w = ret->h = 4;
ret->movetarget = 0;
return ret;
}
static bool game_fetch_preset(int i, char **name, game_params **params)
{
game_params *ret;
int w, h;
char buf[80];
switch (i) {
case 0: w = 3, h = 3; break;
case 1: w = 4, h = 3; break;
case 2: w = 4, h = 4; break;
case 3: w = 5, h = 4; break;
case 4: w = 5, h = 5; break;
default: return false;
}
sprintf(buf, "%dx%d", w, h);
*name = dupstr(buf);
*params = ret = snew(game_params);
ret->w = w;
ret->h = h;
ret->movetarget = 0;
return true;
}
static void free_params(game_params *params)
{
sfree(params);
}
static game_params *dup_params(const game_params *params)
{
game_params *ret = snew(game_params);
*ret = *params; /* structure copy */
return ret;
}
static void decode_params(game_params *ret, char const *string)
{
ret->w = ret->h = atoi(string);
ret->movetarget = 0;
while (*string && isdigit((unsigned char)*string)) string++;
if (*string == 'x') {
string++;
ret->h = atoi(string);
while (*string && isdigit((unsigned char)*string))
string++;
}
if (*string == 'm') {
string++;
ret->movetarget = atoi(string);
while (*string && isdigit((unsigned char)*string))
string++;
}
}
static char *encode_params(const game_params *params, bool full)
{
char data[256];
sprintf(data, "%dx%d", params->w, params->h);
/* Shuffle limit is part of the limited parameters, because we have to
* supply the target move count. */
if (params->movetarget)
sprintf(data + strlen(data), "m%d", params->movetarget);
return dupstr(data);
}
static config_item *game_configure(const game_params *params)
{
config_item *ret;
char buf[80];
ret = snewn(4, config_item);
ret[0].name = "Width";
ret[0].type = C_STRING;
sprintf(buf, "%d", params->w);
ret[0].u.string.sval = dupstr(buf);
ret[1].name = "Height";
ret[1].type = C_STRING;
sprintf(buf, "%d", params->h);
ret[1].u.string.sval = dupstr(buf);
ret[2].name = "Number of shuffling moves";
ret[2].type = C_STRING;
sprintf(buf, "%d", params->movetarget);
ret[2].u.string.sval = dupstr(buf);
ret[3].name = NULL;
ret[3].type = C_END;
return ret;
}
static game_params *custom_params(const config_item *cfg)
{
game_params *ret = snew(game_params);
ret->w = atoi(cfg[0].u.string.sval);
ret->h = atoi(cfg[1].u.string.sval);
ret->movetarget = atoi(cfg[2].u.string.sval);
return ret;
}
static const char *validate_params(const game_params *params, bool full)
{
if (params->w < 2 || params->h < 2)
return "Width and height must both be at least two";
return NULL;
}
static int perm_parity(int *perm, int n)
{
int i, j, ret;
ret = 0;
for (i = 0; i < n-1; i++)
for (j = i+1; j < n; j++)
if (perm[i] > perm[j])
ret = !ret;
return ret;
}
static char *new_game_desc(const game_params *params, random_state *rs,
char **aux, bool interactive)
{
int stop, n, i, x;
int x1, x2, p1, p2;
int *tiles;
bool *used;
char *ret;
int retlen;
n = params->w * params->h;
tiles = snewn(n, int);
if (params->movetarget) {
int prevoffset = -1;
int max = (params->w > params->h ? params->w : params->h);
int *prevmoves = snewn(max, int);
/*
* Shuffle the old-fashioned way, by making a series of
* single moves on the grid.
*/
for (i = 0; i < n; i++)
tiles[i] = i;
for (i = 0; i < params->movetarget; i++) {
int start, offset, len, direction, index;
int j, tmp;
/*
* Choose a move to make. We can choose from any row
* or any column.
*/
while (1) {
j = random_upto(rs, params->w + params->h);
if (j < params->w) {
/* Column. */
index = j;
start = j;
offset = params->w;
len = params->h;
} else {
/* Row. */
index = j - params->w;
start = index * params->w;
offset = 1;
len = params->w;
}
direction = -1 + 2 * random_upto(rs, 2);
/*
* To at least _try_ to avoid boring cases, check
* that this move doesn't directly undo a previous
* one, or repeat it so many times as to turn it
* into fewer moves in the opposite direction. (For
* example, in a row of length 4, we're allowed to
* move it the same way twice, but not three
* times.)
*
* We track this for each individual row/column,
* and clear all the counters as soon as a
* perpendicular move is made. This isn't perfect
* (it _can't_ guaranteeably be perfect - there
* will always come a move count beyond which a
* shorter solution will be possible than the one
* which constructed the position) but it should
* sort out all the obvious cases.
*/
if (offset == prevoffset) {
tmp = prevmoves[index] + direction;
if (abs(2*tmp) > len || abs(tmp) < abs(prevmoves[index]))
continue;
}
/* If we didn't `continue', we've found an OK move to make. */
if (offset != prevoffset) {
int i;
for (i = 0; i < max; i++)
prevmoves[i] = 0;
prevoffset = offset;
}
prevmoves[index] += direction;
break;
}
/*
* Make the move.
*/
if (direction < 0) {
start += (len-1) * offset;
offset = -offset;
}
tmp = tiles[start];
for (j = 0; j+1 < len; j++)
tiles[start + j*offset] = tiles[start + (j+1)*offset];
tiles[start + (len-1) * offset] = tmp;
}
sfree(prevmoves);
} else {
used = snewn(n, bool);
for (i = 0; i < n; i++) {
tiles[i] = -1;
used[i] = false;
}
/*
* If both dimensions are odd, there is a parity
* constraint.
*/
if (params->w & params->h & 1)
stop = 2;
else
stop = 0;
/*
* Place everything except (possibly) the last two tiles.
*/
for (x = 0, i = n; i > stop; i--) {
int k = i > 1 ? random_upto(rs, i) : 0;
int j;
for (j = 0; j < n; j++)
if (!used[j] && (k-- == 0))
break;
assert(j < n && !used[j]);
used[j] = true;
while (tiles[x] >= 0)
x++;
assert(x < n);
tiles[x] = j;
}
if (stop) {
/*
* Find the last two locations, and the last two
* pieces.
*/
while (tiles[x] >= 0)
x++;
assert(x < n);
x1 = x;
x++;
while (tiles[x] >= 0)
x++;
assert(x < n);
x2 = x;
for (i = 0; i < n; i++)
if (!used[i])
break;
p1 = i;
for (i = p1+1; i < n; i++)
if (!used[i])
break;
p2 = i;
/*
* Try the last two tiles one way round. If that fails,
* swap them.
*/
tiles[x1] = p1;
tiles[x2] = p2;
if (perm_parity(tiles, n) != 0) {
tiles[x1] = p2;
tiles[x2] = p1;
assert(perm_parity(tiles, n) == 0);
}
}
sfree(used);
}
/*
* Now construct the game description, by describing the tile
* array as a simple sequence of comma-separated integers.
*/
ret = NULL;
retlen = 0;
for (i = 0; i < n; i++) {
char buf[80];
int k;
k = sprintf(buf, "%d,", tiles[i]+1);
ret = sresize(ret, retlen + k + 1, char);
strcpy(ret + retlen, buf);
retlen += k;
}
ret[retlen-1] = '\0'; /* delete last comma */
sfree(tiles);
return ret;
}
static const char *validate_desc(const game_params *params, const char *desc)
{
const char *p, *err;
int i, area;
bool *used;
area = params->w * params->h;
p = desc;
err = NULL;
used = snewn(area, bool);
for (i = 0; i < area; i++)
used[i] = false;
for (i = 0; i < area; i++) {
const char *q = p;
int n;
if (*p < '0' || *p > '9') {
err = "Not enough numbers in string";
goto leave;
}
while (*p >= '0' && *p <= '9')
p++;
if (i < area-1 && *p != ',') {
err = "Expected comma after number";
goto leave;
}
else if (i == area-1 && *p) {
err = "Excess junk at end of string";
goto leave;
}
n = atoi(q);
if (n < 1 || n > area) {
err = "Number out of range";
goto leave;
}
if (used[n-1]) {
err = "Number used twice";
goto leave;
}
used[n-1] = true;
if (*p) p++; /* eat comma */
}
leave:
sfree(used);
return err;
}
static game_state *new_game(midend *me, const game_params *params,
const char *desc)
{
game_state *state = snew(game_state);
int i;
const char *p;
state->w = params->w;
state->h = params->h;
state->n = params->w * params->h;
state->tiles = snewn(state->n, int);
p = desc;
i = 0;
for (i = 0; i < state->n; i++) {
assert(*p);
state->tiles[i] = atoi(p);
while (*p && *p != ',')
p++;
if (*p) p++; /* eat comma */
}
assert(!*p);
state->completed = state->movecount = 0;
state->movetarget = params->movetarget;
state->used_solve = false;
state->last_movement_sense = 0;
return state;
}
static game_state *dup_game(const game_state *state)
{
game_state *ret = snew(game_state);
ret->w = state->w;
ret->h = state->h;
ret->n = state->n;
ret->tiles = snewn(state->w * state->h, int);
memcpy(ret->tiles, state->tiles, state->w * state->h * sizeof(int));
ret->completed = state->completed;
ret->movecount = state->movecount;
ret->movetarget = state->movetarget;
ret->used_solve = state->used_solve;
ret->last_movement_sense = state->last_movement_sense;
return ret;
}
static void free_game(game_state *state)
{
sfree(state->tiles);
sfree(state);
}
static char *solve_game(const game_state *state, const game_state *currstate,
const char *aux, const char **error)
{
return dupstr("S");
}
static bool game_can_format_as_text_now(const game_params *params)
{
return true;
}
static char *game_text_format(const game_state *state)
{
char *ret, *p, buf[80];
int x, y, col, maxlen;
/*
* First work out how many characters we need to display each
* number.
*/
col = sprintf(buf, "%d", state->n);
/*
* Now we know the exact total size of the grid we're going to
* produce: it's got h rows, each containing w lots of col, w-1
* spaces and a trailing newline.
*/
maxlen = state->h * state->w * (col+1);
ret = snewn(maxlen+1, char);
p = ret;
for (y = 0; y < state->h; y++) {
for (x = 0; x < state->w; x++) {
int v = state->tiles[state->w*y+x];
sprintf(buf, "%*d", col, v);
memcpy(p, buf, col);
p += col;
if (x+1 == state->w)
*p++ = '\n';
else
*p++ = ' ';
}
}
assert(p - ret == maxlen);
*p = '\0';
return ret;
}
enum cursor_mode { unlocked, lock_tile, lock_position };
struct game_ui {
int cur_x, cur_y;
bool cur_visible;
enum cursor_mode cur_mode;
};
static game_ui *new_ui(const game_state *state)
{
game_ui *ui = snew(game_ui);
ui->cur_x = 0;
ui->cur_y = 0;
ui->cur_visible = false;
ui->cur_mode = unlocked;
return ui;
}
static void free_ui(game_ui *ui)
{
sfree(ui);
}
static char *encode_ui(const game_ui *ui)
{
return NULL;
}
static void decode_ui(game_ui *ui, const char *encoding)
{
}
static void game_changed_state(game_ui *ui, const game_state *oldstate,
const game_state *newstate)
{
}
static const char *current_key_label(const game_ui *ui,
const game_state *state, int button)
{
if (IS_CURSOR_SELECT(button) && ui->cur_visible) {
if (ui->cur_x == -1 || ui->cur_x == state->w ||
ui->cur_y == -1 || ui->cur_y == state->h)
return button == CURSOR_SELECT2 ? "Back" : "Slide";
if (button == CURSOR_SELECT)
return ui->cur_mode == lock_tile ? "Unlock" : "Lock tile";
if (button == CURSOR_SELECT2)
return ui->cur_mode == lock_position ? "Unlock" : "Lock pos";
}
return "";
}
struct game_drawstate {
bool started;
int w, h, bgcolour;
int *tiles;
int tilesize;
int cur_x, cur_y;
};
static char *interpret_move(const game_state *state, game_ui *ui,
const game_drawstate *ds,
int x, int y, int button)
{
int cx = -1, cy = -1, dx, dy;
char buf[80];
bool shift = button & MOD_SHFT, control = button & MOD_CTRL;
int pad = button & MOD_NUM_KEYPAD;
button &= ~MOD_MASK;
if (IS_CURSOR_MOVE(button) || pad) {
if (!ui->cur_visible) {
ui->cur_visible = true;
return UI_UPDATE;
}
if (control || shift || ui->cur_mode) {
int x = ui->cur_x, y = ui->cur_y, xwrap = x, ywrap = y;
if (x < 0 || x >= state->w || y < 0 || y >= state->h)
return NULL;
move_cursor(button | pad, &x, &y,
state->w, state->h, false);
move_cursor(button | pad, &xwrap, &ywrap,
state->w, state->h, true);
if (x != xwrap) {
sprintf(buf, "R%d,%c1", y, x ? '+' : '-');
} else if (y != ywrap) {
sprintf(buf, "C%d,%c1", x, y ? '+' : '-');
} else if (x == ui->cur_x)
sprintf(buf, "C%d,%d", x, y - ui->cur_y);
else
sprintf(buf, "R%d,%d", y, x - ui->cur_x);
if (control || (!shift && ui->cur_mode == lock_tile)) {
ui->cur_x = xwrap;
ui->cur_y = ywrap;
}
return dupstr(buf);
} else {
int x = ui->cur_x + 1, y = ui->cur_y + 1;
move_cursor(button | pad, &x, &y,
state->w + 2, state->h + 2, false);
if (x == 0 && y == 0) {
int t = ui->cur_x;
ui->cur_x = ui->cur_y;
ui->cur_y = t;
} else if (x == 0 && y == state->h + 1) {
int t = ui->cur_x;
ui->cur_x = (state->h - 1) - ui->cur_y;
ui->cur_y = (state->h - 1) - t;
} else if (x == state->w + 1 && y == 0) {
int t = ui->cur_x;
ui->cur_x = (state->w - 1) - ui->cur_y;
ui->cur_y = (state->w - 1) - t;
} else if (x == state->w + 1 && y == state->h + 1) {
int t = ui->cur_x;
ui->cur_x = state->w - state->h + ui->cur_y;
ui->cur_y = state->h - state->w + t;
} else {
ui->cur_x = x - 1;
ui->cur_y = y - 1;
}
ui->cur_visible = true;
return UI_UPDATE;
}
}
if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
cx = FROMCOORD(x);
cy = FROMCOORD(y);
ui->cur_visible = false;
} else if (IS_CURSOR_SELECT(button)) {
if (ui->cur_visible) {
if (ui->cur_x == -1 || ui->cur_x == state->w ||
ui->cur_y == -1 || ui->cur_y == state->h) {
cx = ui->cur_x;
cy = ui->cur_y;
} else {
const enum cursor_mode m = (button == CURSOR_SELECT2 ?
lock_position : lock_tile);
ui->cur_mode = (ui->cur_mode == m ? unlocked : m);
return UI_UPDATE;
}
} else {
ui->cur_visible = true;
return UI_UPDATE;
}
} else {
return NULL;
}
if (cx == -1 && cy >= 0 && cy < state->h)
dx = -1, dy = 0;
else if (cx == state->w && cy >= 0 && cy < state->h)
dx = +1, dy = 0;
else if (cy == -1 && cx >= 0 && cx < state->w)
dy = -1, dx = 0;
else if (cy == state->h && cx >= 0 && cx < state->w)
dy = +1, dx = 0;
else
return UI_UPDATE; /* invalid click location */
/* reverse direction if right hand button is pressed */
if (button == RIGHT_BUTTON || button == CURSOR_SELECT2) {
dx = -dx;
dy = -dy;
}
if (dx)
sprintf(buf, "R%d,%d", cy, dx);
else
sprintf(buf, "C%d,%d", cx, dy);
return dupstr(buf);
}
static game_state *execute_move(const game_state *from, const char *move)
{
int cx, cy, dx, dy;
int tx, ty, n;
game_state *ret;
if (!strcmp(move, "S")) {
int i;
ret = dup_game(from);
/*
* Simply replace the grid with a solved one. For this game,
* this isn't a useful operation for actually telling the user
* what they should have done, but it is useful for
* conveniently being able to get hold of a clean state from
* which to practise manoeuvres.
*/
for (i = 0; i < ret->n; i++)
ret->tiles[i] = i+1;
ret->used_solve = true;
ret->completed = ret->movecount = 1;
return ret;
}
if (move[0] == 'R' && sscanf(move+1, "%d,%d", &cy, &dx) == 2 &&
cy >= 0 && cy < from->h) {
cx = dy = 0;
n = from->w;
} else if (move[0] == 'C' && sscanf(move+1, "%d,%d", &cx, &dy) == 2 &&
cx >= 0 && cx < from->w) {
cy = dx = 0;
n = from->h;
} else
return NULL;
ret = dup_game(from);
do {
tx = (cx - dx + from->w) % from->w;
ty = (cy - dy + from->h) % from->h;
ret->tiles[C(ret, cx, cy)] = from->tiles[C(from, tx, ty)];
cx = tx;
cy = ty;
} while (--n > 0);
ret->movecount++;
ret->last_movement_sense = dx+dy;
/*
* See if the game has been completed.
*/
if (!ret->completed) {
ret->completed = ret->movecount;
for (n = 0; n < ret->n; n++)
if (ret->tiles[n] != n+1)
ret->completed = 0;
}
return ret;
}
/* ----------------------------------------------------------------------
* Drawing routines.
*/
static void game_compute_size(const game_params *params, int tilesize,
int *x, int *y)
{
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
struct { int tilesize; } ads, *ds = &ads;
ads.tilesize = tilesize;
*x = TILE_SIZE * params->w + 2 * BORDER;
*y = TILE_SIZE * params->h + 2 * BORDER;
}
static void game_set_size(drawing *dr, game_drawstate *ds,
const game_params *params, int tilesize)
{
ds->tilesize = tilesize;
}
static float *game_colours(frontend *fe, int *ncolours)
{
float *ret = snewn(3 * NCOLOURS, float);
int i;
game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT);
for (i = 0; i < 3; i++)
ret[COL_TEXT * 3 + i] = 0.0;
*ncolours = NCOLOURS;
return ret;
}
static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state)
{
struct game_drawstate *ds = snew(struct game_drawstate);
int i;
ds->started = false;
ds->w = state->w;
ds->h = state->h;
ds->bgcolour = COL_BACKGROUND;
ds->tiles = snewn(ds->w*ds->h, int);
ds->tilesize = 0; /* haven't decided yet */
for (i = 0; i < ds->w*ds->h; i++)
ds->tiles[i] = -1;
ds->cur_x = ds->cur_y = -1;
return ds;
}
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
{
sfree(ds->tiles);
sfree(ds);
}
static void draw_tile(drawing *dr, game_drawstate *ds,
const game_state *state, int x, int y,
int tile, int flash_colour)
{
if (tile == 0) {
draw_rect(dr, x, y, TILE_SIZE, TILE_SIZE,
flash_colour);
} else {
int coords[6];
char str[40];
coords[0] = x + TILE_SIZE - 1;
coords[1] = y + TILE_SIZE - 1;
coords[2] = x + TILE_SIZE - 1;
coords[3] = y;
coords[4] = x;
coords[5] = y + TILE_SIZE - 1;
draw_polygon(dr, coords, 3, COL_LOWLIGHT, COL_LOWLIGHT);
coords[0] = x;
coords[1] = y;
draw_polygon(dr, coords, 3, COL_HIGHLIGHT, COL_HIGHLIGHT);
draw_rect(dr, x + HIGHLIGHT_WIDTH, y + HIGHLIGHT_WIDTH,
TILE_SIZE - 2*HIGHLIGHT_WIDTH, TILE_SIZE - 2*HIGHLIGHT_WIDTH,
flash_colour);
sprintf(str, "%d", tile);
draw_text(dr, x + TILE_SIZE/2, y + TILE_SIZE/2,
FONT_VARIABLE, TILE_SIZE/3, ALIGN_VCENTRE | ALIGN_HCENTRE,
COL_TEXT, str);
}
draw_update(dr, x, y, TILE_SIZE, TILE_SIZE);
}
static void draw_arrow(drawing *dr, game_drawstate *ds,
int x, int y, int xdx, int xdy, bool cur)
{
int coords[14];
int ydy = -xdx, ydx = xdy;
#define POINT(n, xx, yy) ( \
coords[2*(n)+0] = x + (xx)*xdx + (yy)*ydx, \
coords[2*(n)+1] = y + (xx)*xdy + (yy)*ydy)
POINT(0, TILE_SIZE / 2, 3 * TILE_SIZE / 4); /* top of arrow */
POINT(1, 3 * TILE_SIZE / 4, TILE_SIZE / 2); /* right corner */
POINT(2, 5 * TILE_SIZE / 8, TILE_SIZE / 2); /* right concave */
POINT(3, 5 * TILE_SIZE / 8, TILE_SIZE / 4); /* bottom right */
POINT(4, 3 * TILE_SIZE / 8, TILE_SIZE / 4); /* bottom left */
POINT(5, 3 * TILE_SIZE / 8, TILE_SIZE / 2); /* left concave */
POINT(6, TILE_SIZE / 4, TILE_SIZE / 2); /* left corner */
draw_polygon(dr, coords, 7, cur ? COL_HIGHLIGHT : COL_LOWLIGHT, COL_TEXT);
}
static void draw_arrow_for_cursor(drawing *dr, game_drawstate *ds,
int cur_x, int cur_y, bool cur)
{
if (cur_x == -1 && cur_y == -1)
return; /* 'no cursur here */
else if (cur_x == -1) /* LH column. */
draw_arrow(dr, ds, COORD(0), COORD(cur_y+1), 0, -1, cur);
else if (cur_x == ds->w) /* RH column */
draw_arrow(dr, ds, COORD(ds->w), COORD(cur_y), 0, +1, cur);
else if (cur_y == -1) /* Top row */
draw_arrow(dr, ds, COORD(cur_x), COORD(0), +1, 0, cur);
else if (cur_y == ds->h) /* Bottom row */
draw_arrow(dr, ds, COORD(cur_x+1), COORD(ds->h), -1, 0, cur);
else
return;
draw_update(dr, COORD(cur_x), COORD(cur_y),
TILE_SIZE, TILE_SIZE);
}
static void game_redraw(drawing *dr, game_drawstate *ds,
const game_state *oldstate, const game_state *state,
int dir, const game_ui *ui,
float animtime, float flashtime)
{
int i, bgcolour;
int cur_x = -1, cur_y = -1;
if (flashtime > 0) {
int frame = (int)(flashtime / FLASH_FRAME);
bgcolour = (frame % 2 ? COL_LOWLIGHT : COL_HIGHLIGHT);
} else
bgcolour = COL_BACKGROUND;
if (!ds->started) {
int coords[10];
/*
* Recessed area containing the whole puzzle.
*/
coords[0] = COORD(state->w) + HIGHLIGHT_WIDTH - 1;
coords[1] = COORD(state->h) + HIGHLIGHT_WIDTH - 1;
coords[2] = COORD(state->w) + HIGHLIGHT_WIDTH - 1;
coords[3] = COORD(0) - HIGHLIGHT_WIDTH;
coords[4] = coords[2] - TILE_SIZE;
coords[5] = coords[3] + TILE_SIZE;
coords[8] = COORD(0) - HIGHLIGHT_WIDTH;
coords[9] = COORD(state->h) + HIGHLIGHT_WIDTH - 1;
coords[6] = coords[8] + TILE_SIZE;
coords[7] = coords[9] - TILE_SIZE;
draw_polygon(dr, coords, 5, COL_HIGHLIGHT, COL_HIGHLIGHT);
coords[1] = COORD(0) - HIGHLIGHT_WIDTH;
coords[0] = COORD(0) - HIGHLIGHT_WIDTH;
draw_polygon(dr, coords, 5, COL_LOWLIGHT, COL_LOWLIGHT);
/*
* Arrows for making moves.
*/
for (i = 0; i < state->w; i++) {
draw_arrow(dr, ds, COORD(i), COORD(0), +1, 0, false);
draw_arrow(dr, ds, COORD(i+1), COORD(state->h), -1, 0, false);
}
for (i = 0; i < state->h; i++) {
draw_arrow(dr, ds, COORD(state->w), COORD(i), 0, +1, false);
draw_arrow(dr, ds, COORD(0), COORD(i+1), 0, -1, false);
}
ds->started = true;
}
/*
* Cursor (highlighted arrow around edge)
*/
if (ui->cur_visible) {
cur_x = ui->cur_x; cur_y = ui->cur_y;
}
if (cur_x != ds->cur_x || cur_y != ds->cur_y) {
/* Cursor has changed; redraw two (prev and curr) arrows. */
draw_arrow_for_cursor(dr, ds, cur_x, cur_y, true);
draw_arrow_for_cursor(dr, ds, ds->cur_x, ds->cur_y, false);
}
/*
* Now draw each tile.
*/
clip(dr, COORD(0), COORD(0), TILE_SIZE*state->w, TILE_SIZE*state->h);
for (i = 0; i < state->n; i++) {
int t, t0;
/*
* Figure out what should be displayed at this
* location. It's either a simple tile, or it's a
* transition between two tiles (in which case we say
* -1 because it must always be drawn).
*/
if (oldstate && oldstate->tiles[i] != state->tiles[i])
t = -1;
else
t = state->tiles[i];
t0 = t;
if (ds->bgcolour != bgcolour || /* always redraw when flashing */
ds->tiles[i] != t || ds->tiles[i] == -1 || t == -1 ||
((ds->cur_x != cur_x || ds->cur_y != cur_y) && /* cursor moved */
(TILE_CURSOR(i, state, ds->cur_x, ds->cur_y) ||
TILE_CURSOR(i, state, cur_x, cur_y)))) {
int x, y, x2, y2;
/*
* Figure out what to _actually_ draw, and where to
* draw it.
*/
if (t == -1) {
int x0, y0, x1, y1, dx, dy;
int j;
float c;
int sense;
if (dir < 0) {
assert(oldstate);
sense = -oldstate->last_movement_sense;
} else {
sense = state->last_movement_sense;
}
t = state->tiles[i];
/*
* FIXME: must be prepared to draw a double
* tile in some situations.
*/
/*
* Find the coordinates of this tile in the old and
* new states.
*/
x1 = COORD(X(state, i));
y1 = COORD(Y(state, i));
for (j = 0; j < oldstate->n; j++)
if (oldstate->tiles[j] == state->tiles[i])
break;
assert(j < oldstate->n);
x0 = COORD(X(state, j));
y0 = COORD(Y(state, j));
dx = (x1 - x0);
if (dx != 0 &&
dx != TILE_SIZE * sense) {
dx = (dx < 0 ? dx + TILE_SIZE * state->w :
dx - TILE_SIZE * state->w);
assert(abs(dx) == TILE_SIZE);
}
dy = (y1 - y0);
if (dy != 0 &&
dy != TILE_SIZE * sense) {
dy = (dy < 0 ? dy + TILE_SIZE * state->h :
dy - TILE_SIZE * state->h);
assert(abs(dy) == TILE_SIZE);
}
c = (animtime / ANIM_TIME);
if (c < 0.0F) c = 0.0F;
if (c > 1.0F) c = 1.0F;
x = x0 + (int)(c * dx);
y = y0 + (int)(c * dy);
x2 = x1 - dx + (int)(c * dx);
y2 = y1 - dy + (int)(c * dy);
} else {
x = COORD(X(state, i));
y = COORD(Y(state, i));
x2 = y2 = -1;
}
draw_tile(dr, ds, state, x, y, t,
(x2 == -1 && TILE_CURSOR(i, state, cur_x, cur_y)) ?
COL_LOWLIGHT : bgcolour);
if (x2 != -1 || y2 != -1)
draw_tile(dr, ds, state, x2, y2, t, bgcolour);
}
ds->tiles[i] = t0;
}
ds->cur_x = cur_x;
ds->cur_y = cur_y;
unclip(dr);
ds->bgcolour = bgcolour;
/*
* Update the status bar.
*/
{
char statusbuf[256];
/*
* Don't show the new status until we're also showing the
* new _state_ - after the game animation is complete.
*/
if (oldstate)
state = oldstate;
if (state->used_solve)
sprintf(statusbuf, "Moves since auto-solve: %d",
state->movecount - state->completed);
else {
sprintf(statusbuf, "%sMoves: %d",
(state->completed ? "COMPLETED! " : ""),
(state->completed ? state->completed : state->movecount));
if (state->movetarget)
sprintf(statusbuf+strlen(statusbuf), " (target %d)",
state->movetarget);
}
status_bar(dr, statusbuf);
}
}
static float game_anim_length(const game_state *oldstate,
const game_state *newstate, int dir, game_ui *ui)
{
return ANIM_TIME;
}
static float game_flash_length(const game_state *oldstate,
const game_state *newstate, int dir, game_ui *ui)
{
if (!oldstate->completed && newstate->completed &&
!oldstate->used_solve && !newstate->used_solve)
return 2 * FLASH_FRAME;
else
return 0.0F;
}
static void game_get_cursor_location(const game_ui *ui,
const game_drawstate *ds,
const game_state *state,
const game_params *params,
int *x, int *y, int *w, int *h)
{
if(ui->cur_visible) {
*x = COORD(ui->cur_x);
*y = COORD(ui->cur_y);
*w = *h = TILE_SIZE;
}
}
static int game_status(const game_state *state)
{
return state->completed ? +1 : 0;
}
static bool game_timing_state(const game_state *state, game_ui *ui)
{
return true;
}
static void game_print_size(const game_params *params, float *x, float *y)
{
}
static void game_print(drawing *dr, const game_state *state, int tilesize)
{
}
#ifdef COMBINED
#define thegame sixteen
#endif
const struct game thegame = {
"Sixteen", "games.sixteen", "sixteen",
default_params,
game_fetch_preset, NULL,
decode_params,
encode_params,
free_params,
dup_params,
true, game_configure, custom_params,
validate_params,
new_game_desc,
validate_desc,
new_game,
dup_game,
free_game,
true, solve_game,
true, game_can_format_as_text_now, game_text_format,
new_ui,
free_ui,
encode_ui,
decode_ui,
NULL, /* game_request_keys */
game_changed_state,
current_key_label,
interpret_move,
execute_move,
PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
game_colours,
game_new_drawstate,
game_free_drawstate,
game_redraw,
game_anim_length,
game_flash_length,
game_get_cursor_location,
game_status,
false, false, game_print_size, game_print,
true, /* wants_statusbar */
false, game_timing_state,
0, /* flags */
};
/* vim: set shiftwidth=4 tabstop=8: */