Files
puzzles/drawing.c
Ben Harris e8ac0381f9 Convert a lot of floating-point constants to single precision
For reasons now lost to history, Puzzles generally uses single-precision
floating point.  However, C floating-point constants are by default
double-precision, and if they're then operated on along with a
single-precision variable the value of the variable gets promoted to
double precision, then the operation gets done, and then often the
result gets converted back to single precision again.

This is obviously silly, so I've used Clang's "-Wdouble-promotion" to
find instances of this and mark the constants as single-precision as
well.  This is a bit awkward for PI, which ends up with a cast.  Maybe
there should be a PIF, or maybe PI should just be single-precision.

This doesn't eliminate all warnings from -Wdouble-promotion.  Some of
the others might merit fixing but adding explicit casts to double just
to shut the compiler up would be going too far, I feel.
2023-02-19 12:41:13 +00:00

354 lines
9.0 KiB
C

/*
* drawing.c: Intermediary between the drawing interface as
* presented to the back end, and that implemented by the front
* end.
*
* Mostly just looks up calls in a vtable and passes them through
* unchanged. However, on the printing side it tracks print colours
* so the front end API doesn't have to.
*
* FIXME:
*
* - I'd _like_ to do automatic draw_updates, but it's a pain for
* draw_text in particular. I'd have to invent a front end API
* which retrieved the text bounds.
* + that might allow me to do the alignment centrally as well?
* * perhaps not, because PS can't return this information,
* so there would have to be a special case for it.
* + however, that at least doesn't stand in the way of using
* the text bounds for draw_update, because PS doesn't need
* draw_update since it's printing-only. Any _interactive_
* drawing API couldn't get away with refusing to tell you
* what parts of the screen a text draw had covered, because
* you would inevitably need to erase it later on.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <math.h>
#include "puzzles.h"
struct print_colour {
int hatch;
int hatch_when; /* 0=never 1=only-in-b&w 2=always */
float r, g, b;
float grey;
};
struct drawing {
const drawing_api *api;
void *handle;
struct print_colour *colours;
int ncolours, coloursize;
float scale;
/* `me' is only used in status_bar(), so print-oriented instances of
* this may set it to NULL. */
midend *me;
char *laststatus;
};
drawing *drawing_new(const drawing_api *api, midend *me, void *handle)
{
drawing *dr = snew(drawing);
dr->api = api;
dr->handle = handle;
dr->colours = NULL;
dr->ncolours = dr->coloursize = 0;
dr->scale = 1.0F;
dr->me = me;
dr->laststatus = NULL;
return dr;
}
void drawing_free(drawing *dr)
{
sfree(dr->laststatus);
sfree(dr->colours);
sfree(dr);
}
void draw_text(drawing *dr, int x, int y, int fonttype, int fontsize,
int align, int colour, const char *text)
{
dr->api->draw_text(dr->handle, x, y, fonttype, fontsize, align,
colour, text);
}
void draw_rect(drawing *dr, int x, int y, int w, int h, int colour)
{
dr->api->draw_rect(dr->handle, x, y, w, h, colour);
}
void draw_line(drawing *dr, int x1, int y1, int x2, int y2, int colour)
{
dr->api->draw_line(dr->handle, x1, y1, x2, y2, colour);
}
void draw_thick_line(drawing *dr, float thickness,
float x1, float y1, float x2, float y2, int colour)
{
if (thickness < 1.0F)
thickness = 1.0F;
if (dr->api->draw_thick_line) {
dr->api->draw_thick_line(dr->handle, thickness,
x1, y1, x2, y2, colour);
} else {
/* We'll fake it up with a filled polygon. The tweak to the
* thickness empirically compensates for rounding errors, because
* polygon rendering uses integer coordinates.
*/
float len = sqrt((x2 - x1)*(x2 - x1) + (y2 - y1)*(y2 - y1));
float tvhatx = (x2 - x1)/len * (thickness/2 - 0.2F);
float tvhaty = (y2 - y1)/len * (thickness/2 - 0.2F);
int p[8];
p[0] = x1 - tvhaty;
p[1] = y1 + tvhatx;
p[2] = x2 - tvhaty;
p[3] = y2 + tvhatx;
p[4] = x2 + tvhaty;
p[5] = y2 - tvhatx;
p[6] = x1 + tvhaty;
p[7] = y1 - tvhatx;
dr->api->draw_polygon(dr->handle, p, 4, colour, colour);
}
}
void draw_polygon(drawing *dr, const int *coords, int npoints,
int fillcolour, int outlinecolour)
{
dr->api->draw_polygon(dr->handle, coords, npoints, fillcolour,
outlinecolour);
}
void draw_circle(drawing *dr, int cx, int cy, int radius,
int fillcolour, int outlinecolour)
{
dr->api->draw_circle(dr->handle, cx, cy, radius, fillcolour,
outlinecolour);
}
void draw_update(drawing *dr, int x, int y, int w, int h)
{
if (dr->api->draw_update)
dr->api->draw_update(dr->handle, x, y, w, h);
}
void clip(drawing *dr, int x, int y, int w, int h)
{
dr->api->clip(dr->handle, x, y, w, h);
}
void unclip(drawing *dr)
{
dr->api->unclip(dr->handle);
}
void start_draw(drawing *dr)
{
dr->api->start_draw(dr->handle);
}
void end_draw(drawing *dr)
{
dr->api->end_draw(dr->handle);
}
char *text_fallback(drawing *dr, const char *const *strings, int nstrings)
{
int i;
/*
* If the drawing implementation provides one of these, use it.
*/
if (dr && dr->api->text_fallback)
return dr->api->text_fallback(dr->handle, strings, nstrings);
/*
* Otherwise, do the simple thing and just pick the first string
* that fits in plain ASCII. It will then need no translation
* out of UTF-8.
*/
for (i = 0; i < nstrings; i++) {
const char *p;
for (p = strings[i]; *p; p++)
if (*p & 0x80)
break;
if (!*p)
return dupstr(strings[i]);
}
/*
* The caller was responsible for making sure _some_ string in
* the list was in plain ASCII.
*/
assert(!"Should never get here");
return NULL; /* placate optimiser */
}
void status_bar(drawing *dr, const char *text)
{
char *rewritten;
if (!dr->api->status_bar)
return;
assert(dr->me);
rewritten = midend_rewrite_statusbar(dr->me, text);
if (!dr->laststatus || strcmp(rewritten, dr->laststatus)) {
dr->api->status_bar(dr->handle, rewritten);
sfree(dr->laststatus);
dr->laststatus = rewritten;
} else {
sfree(rewritten);
}
}
blitter *blitter_new(drawing *dr, int w, int h)
{
return dr->api->blitter_new(dr->handle, w, h);
}
void blitter_free(drawing *dr, blitter *bl)
{
dr->api->blitter_free(dr->handle, bl);
}
void blitter_save(drawing *dr, blitter *bl, int x, int y)
{
dr->api->blitter_save(dr->handle, bl, x, y);
}
void blitter_load(drawing *dr, blitter *bl, int x, int y)
{
dr->api->blitter_load(dr->handle, bl, x, y);
}
void print_begin_doc(drawing *dr, int pages)
{
dr->api->begin_doc(dr->handle, pages);
}
void print_begin_page(drawing *dr, int number)
{
dr->api->begin_page(dr->handle, number);
}
void print_begin_puzzle(drawing *dr, float xm, float xc,
float ym, float yc, int pw, int ph, float wmm,
float scale)
{
dr->scale = scale;
dr->ncolours = 0;
dr->api->begin_puzzle(dr->handle, xm, xc, ym, yc, pw, ph, wmm);
}
void print_end_puzzle(drawing *dr)
{
dr->api->end_puzzle(dr->handle);
dr->scale = 1.0F;
}
void print_end_page(drawing *dr, int number)
{
dr->api->end_page(dr->handle, number);
}
void print_end_doc(drawing *dr)
{
dr->api->end_doc(dr->handle);
}
void print_get_colour(drawing *dr, int colour, bool printing_in_colour,
int *hatch, float *r, float *g, float *b)
{
assert(colour >= 0 && colour < dr->ncolours);
if (dr->colours[colour].hatch_when == 2 ||
(dr->colours[colour].hatch_when == 1 && !printing_in_colour)) {
*hatch = dr->colours[colour].hatch;
} else {
*hatch = -1;
if (printing_in_colour) {
*r = dr->colours[colour].r;
*g = dr->colours[colour].g;
*b = dr->colours[colour].b;
} else {
*r = *g = *b = dr->colours[colour].grey;
}
}
}
static int print_generic_colour(drawing *dr, float r, float g, float b,
float grey, int hatch, int hatch_when)
{
if (dr->ncolours >= dr->coloursize) {
dr->coloursize = dr->ncolours + 16;
dr->colours = sresize(dr->colours, dr->coloursize,
struct print_colour);
}
dr->colours[dr->ncolours].hatch = hatch;
dr->colours[dr->ncolours].hatch_when = hatch_when;
dr->colours[dr->ncolours].r = r;
dr->colours[dr->ncolours].g = g;
dr->colours[dr->ncolours].b = b;
dr->colours[dr->ncolours].grey = grey;
return dr->ncolours++;
}
int print_mono_colour(drawing *dr, int grey)
{
return print_generic_colour(dr, grey, grey, grey, grey, -1, 0);
}
int print_grey_colour(drawing *dr, float grey)
{
return print_generic_colour(dr, grey, grey, grey, grey, -1, 0);
}
int print_hatched_colour(drawing *dr, int hatch)
{
return print_generic_colour(dr, 0, 0, 0, 0, hatch, 2);
}
int print_rgb_mono_colour(drawing *dr, float r, float g, float b, int grey)
{
return print_generic_colour(dr, r, g, b, grey, -1, 0);
}
int print_rgb_grey_colour(drawing *dr, float r, float g, float b, float grey)
{
return print_generic_colour(dr, r, g, b, grey, -1, 0);
}
int print_rgb_hatched_colour(drawing *dr, float r, float g, float b, int hatch)
{
return print_generic_colour(dr, r, g, b, 0, hatch, 1);
}
void print_line_width(drawing *dr, int width)
{
/*
* I don't think it's entirely sensible to have line widths be
* entirely relative to the puzzle size; there is a point
* beyond which lines are just _stupidly_ thick. On the other
* hand, absolute line widths aren't particularly nice either
* because they start to feel a bit feeble at really large
* scales.
*
* My experimental answer is to scale line widths as the
* _square root_ of the main puzzle scale. Double the puzzle
* size, and the line width multiplies by 1.4.
*/
dr->api->line_width(dr->handle, (float)sqrt(dr->scale) * width);
}
void print_line_dotted(drawing *dr, bool dotted)
{
dr->api->line_dotted(dr->handle, dotted);
}