Files
puzzles/samegame.c
Franklin Wei 60a929a250 Add a request_keys() function with a midend wrapper.
This function gives the front end a way to find out what keys the back
end requires; and as such it is mostly useful for ports without a
keyboard. It is based on changes originally found in Chris Boyle's
Android port, though some modifications were needed to make it more
flexible.
2018-04-22 17:04:50 +01:00

1676 lines
48 KiB
C

/*
* 'same game' -- try to remove all the coloured squares by
* selecting regions of contiguous colours.
*/
/*
* TODO on grid generation:
*
* - Generation speed could still be improved.
* * 15x10c3 is the only really difficult one of the existing
* presets. The others are all either small enough, or have
* the great flexibility given by four colours, that they
* don't take long at all.
* * I still suspect many problems arise from separate
* subareas. I wonder if we can also somehow prioritise left-
* or rightmost insertions so as to avoid area splitting at
* all where feasible? It's not easy, though, because the
* current shuffle-then-try-all-options approach to move
* choice doesn't leave room for `soft' probabilistic
* prioritisation: we either try all class A moves before any
* class B ones, or we don't.
*
* - The current generation algorithm inserts exactly two squares
* at a time, with a single exception at the beginning of
* generation for grids of odd overall size. An obvious
* extension would be to permit larger inverse moves during
* generation.
* * this might reduce the number of failed generations by
* making the insertion algorithm more flexible
* * on the other hand, it would be significantly more complex
* * if I do this I'll need to take out the odd-subarea
* avoidance
* * a nice feature of the current algorithm is that the
* computer's `intended' solution always receives the minimum
* possible score, so that pretty much the player's entire
* score represents how much better they did than the
* computer.
*
* - Is it possible we can _temporarily_ tolerate neighbouring
* squares of the same colour, until we've finished setting up
* our inverse move?
* * or perhaps even not choose the colour of our inserted
* region until we have finished placing it, and _then_ look
* at what colours border on it?
* * I don't think this is currently meaningful unless we're
* placing more than a domino at a time.
*
* - possibly write out a full solution so that Solve can somehow
* show it step by step?
* * aux_info would have to encode the click points
* * solve_game() would have to encode not only those click
* points but also give a move string which reconstructed the
* initial state
* * the game_state would include a pointer to a solution move
* list, plus an index into that list
* * game_changed_state would auto-select the next move if
* handed a new state which had a solution move list active
* * execute_move, if passed such a state as input, would check
* to see whether the move being made was the same as the one
* stated by the solution, and if so would advance the move
* index. Failing that it would return a game_state without a
* solution move list active at all.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <ctype.h>
#include <math.h>
#include "puzzles.h"
#define TILE_INNER (ds->tileinner)
#define TILE_GAP (ds->tilegap)
#define TILE_SIZE (TILE_INNER + TILE_GAP)
#define PREFERRED_TILE_SIZE 32
#define BORDER (TILE_SIZE / 2)
#define HIGHLIGHT_WIDTH 2
#define FLASH_FRAME 0.13F
#define COORD(x) ( (x) * TILE_SIZE + BORDER )
#define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 )
#define X(state, i) ( (i) % (state)->params.w )
#define Y(state, i) ( (i) / (state)->params.w )
#define C(state, x, y) ( (y) * (state)->w + (x) )
enum {
COL_BACKGROUND,
COL_1, COL_2, COL_3, COL_4, COL_5, COL_6, COL_7, COL_8, COL_9,
COL_IMPOSSIBLE, COL_SEL, COL_HIGHLIGHT, COL_LOWLIGHT,
NCOLOURS
};
/* scoresub is 1 or 2 (for (n-1)^2 or (n-2)^2) */
struct game_params {
int w, h, ncols, scoresub;
int soluble; /* choose generation algorithm */
};
/* These flags must be unique across all uses; in the game_state,
* the game_ui, and the drawstate (as they all get combined in the
* drawstate). */
#define TILE_COLMASK 0x00ff
#define TILE_SELECTED 0x0100 /* used in ui and drawstate */
#define TILE_JOINRIGHT 0x0200 /* used in drawstate */
#define TILE_JOINDOWN 0x0400 /* used in drawstate */
#define TILE_JOINDIAG 0x0800 /* used in drawstate */
#define TILE_HASSEL 0x1000 /* used in drawstate */
#define TILE_IMPOSSIBLE 0x2000 /* used in drawstate */
#define TILE(gs,x,y) ((gs)->tiles[(gs)->params.w*(y)+(x)])
#define COL(gs,x,y) (TILE(gs,x,y) & TILE_COLMASK)
#define ISSEL(gs,x,y) (TILE(gs,x,y) & TILE_SELECTED)
#define SWAPTILE(gs,x1,y1,x2,y2) do { \
int t = TILE(gs,x1,y1); \
TILE(gs,x1,y1) = TILE(gs,x2,y2); \
TILE(gs,x2,y2) = t; \
} while (0)
static int npoints(const game_params *params, int nsel)
{
int sdiff = nsel - params->scoresub;
return (sdiff > 0) ? sdiff * sdiff : 0;
}
struct game_state {
struct game_params params;
int n;
int *tiles; /* colour only */
int score;
int complete, impossible;
};
static game_params *default_params(void)
{
game_params *ret = snew(game_params);
ret->w = 5;
ret->h = 5;
ret->ncols = 3;
ret->scoresub = 2;
ret->soluble = TRUE;
return ret;
}
static const struct game_params samegame_presets[] = {
{ 5, 5, 3, 2, TRUE },
{ 10, 5, 3, 2, TRUE },
#ifdef SLOW_SYSTEM
{ 10, 10, 3, 2, TRUE },
#else
{ 15, 10, 3, 2, TRUE },
#endif
{ 15, 10, 4, 2, TRUE },
{ 20, 15, 4, 2, TRUE }
};
static int game_fetch_preset(int i, char **name, game_params **params)
{
game_params *ret;
char str[80];
if (i < 0 || i >= lenof(samegame_presets))
return FALSE;
ret = snew(game_params);
*ret = samegame_presets[i];
sprintf(str, "%dx%d, %d colours", ret->w, ret->h, ret->ncols);
*name = dupstr(str);
*params = ret;
return TRUE;
}
static void free_params(game_params *params)
{
sfree(params);
}
static game_params *dup_params(const game_params *params)
{
game_params *ret = snew(game_params);
*ret = *params; /* structure copy */
return ret;
}
static void decode_params(game_params *params, char const *string)
{
char const *p = string;
params->w = atoi(p);
while (*p && isdigit((unsigned char)*p)) p++;
if (*p == 'x') {
p++;
params->h = atoi(p);
while (*p && isdigit((unsigned char)*p)) p++;
} else {
params->h = params->w;
}
if (*p == 'c') {
p++;
params->ncols = atoi(p);
while (*p && isdigit((unsigned char)*p)) p++;
} else {
params->ncols = 3;
}
if (*p == 's') {
p++;
params->scoresub = atoi(p);
while (*p && isdigit((unsigned char)*p)) p++;
} else {
params->scoresub = 2;
}
if (*p == 'r') {
p++;
params->soluble = FALSE;
}
}
static char *encode_params(const game_params *params, int full)
{
char ret[80];
sprintf(ret, "%dx%dc%ds%d%s",
params->w, params->h, params->ncols, params->scoresub,
full && !params->soluble ? "r" : "");
return dupstr(ret);
}
static config_item *game_configure(const game_params *params)
{
config_item *ret;
char buf[80];
ret = snewn(6, config_item);
ret[0].name = "Width";
ret[0].type = C_STRING;
sprintf(buf, "%d", params->w);
ret[0].u.string.sval = dupstr(buf);
ret[1].name = "Height";
ret[1].type = C_STRING;
sprintf(buf, "%d", params->h);
ret[1].u.string.sval = dupstr(buf);
ret[2].name = "No. of colours";
ret[2].type = C_STRING;
sprintf(buf, "%d", params->ncols);
ret[2].u.string.sval = dupstr(buf);
ret[3].name = "Scoring system";
ret[3].type = C_CHOICES;
ret[3].u.choices.choicenames = ":(n-1)^2:(n-2)^2";
ret[3].u.choices.selected = params->scoresub-1;
ret[4].name = "Ensure solubility";
ret[4].type = C_BOOLEAN;
ret[4].u.boolean.bval = params->soluble;
ret[5].name = NULL;
ret[5].type = C_END;
return ret;
}
static game_params *custom_params(const config_item *cfg)
{
game_params *ret = snew(game_params);
ret->w = atoi(cfg[0].u.string.sval);
ret->h = atoi(cfg[1].u.string.sval);
ret->ncols = atoi(cfg[2].u.string.sval);
ret->scoresub = cfg[3].u.choices.selected + 1;
ret->soluble = cfg[4].u.boolean.bval;
return ret;
}
static const char *validate_params(const game_params *params, int full)
{
if (params->w < 1 || params->h < 1)
return "Width and height must both be positive";
if (params->ncols > 9)
return "Maximum of 9 colours";
if (params->soluble) {
if (params->ncols < 3)
return "Number of colours must be at least three";
if (params->w * params->h <= 1)
return "Grid area must be greater than 1";
} else {
if (params->ncols < 2)
return "Number of colours must be at least three";
/* ...and we must make sure we can generate at least 2 squares
* of each colour so it's theoretically soluble. */
if ((params->w * params->h) < (params->ncols * 2))
return "Too many colours makes given grid size impossible";
}
if ((params->scoresub < 1) || (params->scoresub > 2))
return "Scoring system not recognised";
return NULL;
}
/*
* Guaranteed-soluble grid generator.
*/
static void gen_grid(int w, int h, int nc, int *grid, random_state *rs)
{
int wh = w*h, tc = nc+1;
int i, j, k, c, x, y, pos, n;
int *list, *grid2;
int ok, failures = 0;
/*
* We'll use `list' to track the possible places to put our
* next insertion. There are up to h places to insert in each
* column: in a column of height n there are n+1 places because
* we can insert at the very bottom or the very top, but a
* column of height h can't have anything at all inserted in it
* so we have up to h in each column. Likewise, with n columns
* present there are n+1 places to fit a new one in between but
* we can't insert a column if there are already w; so there
* are a maximum of w new columns too. Total is wh + w.
*/
list = snewn(wh + w, int);
grid2 = snewn(wh, int);
do {
/*
* Start with two or three squares - depending on parity of w*h
* - of a random colour.
*/
for (i = 0; i < wh; i++)
grid[i] = 0;
j = 2 + (wh % 2);
c = 1 + random_upto(rs, nc);
if (j <= w) {
for (i = 0; i < j; i++)
grid[(h-1)*w+i] = c;
} else {
assert(j <= h);
for (i = 0; i < j; i++)
grid[(h-1-i)*w] = c;
}
/*
* Now repeatedly insert a two-square blob in the grid, of
* whatever colour will go at the position we chose.
*/
while (1) {
n = 0;
/*
* Build up a list of insertion points. Each point is
* encoded as y*w+x; insertion points between columns are
* encoded as h*w+x.
*/
if (grid[wh - 1] == 0) {
/*
* The final column is empty, so we can insert new
* columns.
*/
for (i = 0; i < w; i++) {
list[n++] = wh + i;
if (grid[(h-1)*w + i] == 0)
break;
}
}
/*
* Now look for places to insert within columns.
*/
for (i = 0; i < w; i++) {
if (grid[(h-1)*w+i] == 0)
break; /* no more columns */
if (grid[i] != 0)
continue; /* this column is full */
for (j = h; j-- > 0 ;) {
list[n++] = j*w+i;
if (grid[j*w+i] == 0)
break; /* this column is exhausted */
}
}
if (n == 0)
break; /* we're done */
#ifdef GENERATION_DIAGNOSTICS
printf("initial grid:\n");
{
int x,y;
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++) {
if (grid[y*w+x] == 0)
printf("-");
else
printf("%d", grid[y*w+x]);
}
printf("\n");
}
}
#endif
/*
* Now go through the list one element at a time in
* random order, and actually attempt to insert
* something there.
*/
while (n-- > 0) {
int dirs[4], ndirs, dir;
i = random_upto(rs, n+1);
pos = list[i];
list[i] = list[n];
x = pos % w;
y = pos / w;
memcpy(grid2, grid, wh * sizeof(int));
if (y == h) {
/*
* Insert a column at position x.
*/
for (i = w-1; i > x; i--)
for (j = 0; j < h; j++)
grid2[j*w+i] = grid2[j*w+(i-1)];
/*
* Clear the new column.
*/
for (j = 0; j < h; j++)
grid2[j*w+x] = 0;
/*
* Decrement y so that our first square is actually
* inserted _in_ the grid rather than just below it.
*/
y--;
}
/*
* Insert a square within column x at position y.
*/
for (i = 0; i+1 <= y; i++)
grid2[i*w+x] = grid2[(i+1)*w+x];
#ifdef GENERATION_DIAGNOSTICS
printf("trying at n=%d (%d,%d)\n", n, x, y);
grid2[y*w+x] = tc;
{
int x,y;
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++) {
if (grid2[y*w+x] == 0)
printf("-");
else if (grid2[y*w+x] <= nc)
printf("%d", grid2[y*w+x]);
else
printf("*");
}
printf("\n");
}
}
#endif
/*
* Pick our square colour so that it doesn't match any
* of its neighbours.
*/
{
int wrongcol[4], nwrong = 0;
/*
* List the neighbouring colours.
*/
if (x > 0)
wrongcol[nwrong++] = grid2[y*w+(x-1)];
if (x+1 < w)
wrongcol[nwrong++] = grid2[y*w+(x+1)];
if (y > 0)
wrongcol[nwrong++] = grid2[(y-1)*w+x];
if (y+1 < h)
wrongcol[nwrong++] = grid2[(y+1)*w+x];
/*
* Eliminate duplicates. We can afford a shoddy
* algorithm here because the problem size is
* bounded.
*/
for (i = j = 0 ;; i++) {
int pos = -1, min = 0;
if (j > 0)
min = wrongcol[j-1];
for (k = i; k < nwrong; k++)
if (wrongcol[k] > min &&
(pos == -1 || wrongcol[k] < wrongcol[pos]))
pos = k;
if (pos >= 0) {
int v = wrongcol[pos];
wrongcol[pos] = wrongcol[j];
wrongcol[j++] = v;
} else
break;
}
nwrong = j;
/*
* If no colour will go here, stop trying.
*/
if (nwrong == nc)
continue;
/*
* Otherwise, pick a colour from the remaining
* ones.
*/
c = 1 + random_upto(rs, nc - nwrong);
for (i = 0; i < nwrong; i++) {
if (c >= wrongcol[i])
c++;
else
break;
}
}
/*
* Place the new square.
*
* Although I've _chosen_ the new region's colour
* (so that we can check adjacency), I'm going to
* actually place it as an invalid colour (tc)
* until I'm sure it's viable. This is so that I
* can conveniently check that I really have made a
* _valid_ inverse move later on.
*/
#ifdef GENERATION_DIAGNOSTICS
printf("picked colour %d\n", c);
#endif
grid2[y*w+x] = tc;
/*
* Now attempt to extend it in one of three ways: left,
* right or up.
*/
ndirs = 0;
if (x > 0 &&
grid2[y*w+(x-1)] != c &&
grid2[x-1] == 0 &&
(y+1 >= h || grid2[(y+1)*w+(x-1)] != c) &&
(y+1 >= h || grid2[(y+1)*w+(x-1)] != 0) &&
(x <= 1 || grid2[y*w+(x-2)] != c))
dirs[ndirs++] = -1; /* left */
if (x+1 < w &&
grid2[y*w+(x+1)] != c &&
grid2[x+1] == 0 &&
(y+1 >= h || grid2[(y+1)*w+(x+1)] != c) &&
(y+1 >= h || grid2[(y+1)*w+(x+1)] != 0) &&
(x+2 >= w || grid2[y*w+(x+2)] != c))
dirs[ndirs++] = +1; /* right */
if (y > 0 &&
grid2[x] == 0 &&
(x <= 0 || grid2[(y-1)*w+(x-1)] != c) &&
(x+1 >= w || grid2[(y-1)*w+(x+1)] != c)) {
/*
* We add this possibility _twice_, so that the
* probability of placing a vertical domino is
* about the same as that of a horizontal. This
* should yield less bias in the generated
* grids.
*/
dirs[ndirs++] = 0; /* up */
dirs[ndirs++] = 0; /* up */
}
if (ndirs == 0)
continue;
dir = dirs[random_upto(rs, ndirs)];
#ifdef GENERATION_DIAGNOSTICS
printf("picked dir %d\n", dir);
#endif
/*
* Insert a square within column (x+dir) at position y.
*/
for (i = 0; i+1 <= y; i++)
grid2[i*w+x+dir] = grid2[(i+1)*w+x+dir];
grid2[y*w+x+dir] = tc;
/*
* See if we've divided the remaining grid squares
* into sub-areas. If so, we need every sub-area to
* have an even area or we won't be able to
* complete generation.
*
* If the height is odd and not all columns are
* present, we can increase the area of a subarea
* by adding a new column in it, so in that
* situation we don't mind having as many odd
* subareas as there are spare columns.
*
* If the height is even, we can't fix it at all.
*/
{
int nerrs = 0, nfix = 0;
k = 0; /* current subarea size */
for (i = 0; i < w; i++) {
if (grid2[(h-1)*w+i] == 0) {
if (h % 2)
nfix++;
continue;
}
for (j = 0; j < h && grid2[j*w+i] == 0; j++);
assert(j < h);
if (j == 0) {
/*
* End of previous subarea.
*/
if (k % 2)
nerrs++;
k = 0;
} else {
k += j;
}
}
if (k % 2)
nerrs++;
if (nerrs > nfix)
continue; /* try a different placement */
}
/*
* We've made a move. Verify that it is a valid
* move and that if made it would indeed yield the
* previous grid state. The criteria are:
*
* (a) removing all the squares of colour tc (and
* shuffling the columns up etc) from grid2
* would yield grid
* (b) no square of colour tc is adjacent to one
* of colour c
* (c) all the squares of colour tc form a single
* connected component
*
* We verify the latter property at the same time
* as checking that removing all the tc squares
* would yield the previous grid. Then we colour
* the tc squares in colour c by breadth-first
* search, which conveniently permits us to test
* that they're all connected.
*/
{
int x1, x2, y1, y2;
int ok = TRUE;
int fillstart = -1, ntc = 0;
#ifdef GENERATION_DIAGNOSTICS
{
int x,y;
printf("testing move (new, old):\n");
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++) {
if (grid2[y*w+x] == 0)
printf("-");
else if (grid2[y*w+x] <= nc)
printf("%d", grid2[y*w+x]);
else
printf("*");
}
printf(" ");
for (x = 0; x < w; x++) {
if (grid[y*w+x] == 0)
printf("-");
else
printf("%d", grid[y*w+x]);
}
printf("\n");
}
}
#endif
for (x1 = x2 = 0; x2 < w; x2++) {
int usedcol = FALSE;
for (y1 = y2 = h-1; y2 >= 0; y2--) {
if (grid2[y2*w+x2] == tc) {
ntc++;
if (fillstart == -1)
fillstart = y2*w+x2;
if ((y2+1 < h && grid2[(y2+1)*w+x2] == c) ||
(y2-1 >= 0 && grid2[(y2-1)*w+x2] == c) ||
(x2+1 < w && grid2[y2*w+x2+1] == c) ||
(x2-1 >= 0 && grid2[y2*w+x2-1] == c)) {
#ifdef GENERATION_DIAGNOSTICS
printf("adjacency failure at %d,%d\n",
x2, y2);
#endif
ok = FALSE;
}
continue;
}
if (grid2[y2*w+x2] == 0)
break;
usedcol = TRUE;
if (grid2[y2*w+x2] != grid[y1*w+x1]) {
#ifdef GENERATION_DIAGNOSTICS
printf("matching failure at %d,%d vs %d,%d\n",
x2, y2, x1, y1);
#endif
ok = FALSE;
}
y1--;
}
/*
* If we've reached the top of the column
* in grid2, verify that we've also reached
* the top of the column in `grid'.
*/
if (usedcol) {
while (y1 >= 0) {
if (grid[y1*w+x1] != 0) {
#ifdef GENERATION_DIAGNOSTICS
printf("junk at column top (%d,%d)\n",
x1, y1);
#endif
ok = FALSE;
}
y1--;
}
}
if (!ok)
break;
if (usedcol)
x1++;
}
if (!ok) {
assert(!"This should never happen");
/*
* If this game is compiled NDEBUG so that
* the assertion doesn't bring it to a
* crashing halt, the only thing we can do
* is to give up, loop round again, and
* hope to randomly avoid making whatever
* type of move just caused this failure.
*/
continue;
}
/*
* Now use bfs to fill in the tc section as
* colour c. We use `list' to store the set of
* squares we have to process.
*/
i = j = 0;
assert(fillstart >= 0);
list[i++] = fillstart;
#ifdef OUTPUT_SOLUTION
printf("M");
#endif
while (j < i) {
k = list[j];
x = k % w;
y = k / w;
#ifdef OUTPUT_SOLUTION
printf("%s%d", j ? "," : "", k);
#endif
j++;
assert(grid2[k] == tc);
grid2[k] = c;
if (x > 0 && grid2[k-1] == tc)
list[i++] = k-1;
if (x+1 < w && grid2[k+1] == tc)
list[i++] = k+1;
if (y > 0 && grid2[k-w] == tc)
list[i++] = k-w;
if (y+1 < h && grid2[k+w] == tc)
list[i++] = k+w;
}
#ifdef OUTPUT_SOLUTION
printf("\n");
#endif
/*
* Check that we've filled the same number of
* tc squares as we originally found.
*/
assert(j == ntc);
}
memcpy(grid, grid2, wh * sizeof(int));
break; /* done it! */
}
#ifdef GENERATION_DIAGNOSTICS
{
int x,y;
printf("n=%d\n", n);
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++) {
if (grid[y*w+x] == 0)
printf("-");
else
printf("%d", grid[y*w+x]);
}
printf("\n");
}
}
#endif
if (n < 0)
break;
}
ok = TRUE;
for (i = 0; i < wh; i++)
if (grid[i] == 0) {
ok = FALSE;
failures++;
#if defined GENERATION_DIAGNOSTICS || defined SHOW_INCOMPLETE
{
int x,y;
printf("incomplete grid:\n");
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++) {
if (grid[y*w+x] == 0)
printf("-");
else
printf("%d", grid[y*w+x]);
}
printf("\n");
}
}
#endif
break;
}
} while (!ok);
#if defined GENERATION_DIAGNOSTICS || defined COUNT_FAILURES
printf("%d failures\n", failures);
#endif
#ifdef GENERATION_DIAGNOSTICS
{
int x,y;
printf("final grid:\n");
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++) {
printf("%d", grid[y*w+x]);
}
printf("\n");
}
}
#endif
sfree(grid2);
sfree(list);
}
/*
* Not-guaranteed-soluble grid generator; kept as a legacy, and in
* case someone finds the slightly odd quality of the guaranteed-
* soluble grids to be aesthetically displeasing or finds its CPU
* utilisation to be excessive.
*/
static void gen_grid_random(int w, int h, int nc, int *grid, random_state *rs)
{
int i, j, c;
int n = w * h;
for (i = 0; i < n; i++)
grid[i] = 0;
/*
* Our sole concession to not gratuitously generating insoluble
* grids is to ensure we have at least two of every colour.
*/
for (c = 1; c <= nc; c++) {
for (j = 0; j < 2; j++) {
do {
i = (int)random_upto(rs, n);
} while (grid[i] != 0);
grid[i] = c;
}
}
/*
* Fill in the rest of the grid at random.
*/
for (i = 0; i < n; i++) {
if (grid[i] == 0)
grid[i] = (int)random_upto(rs, nc)+1;
}
}
static char *new_game_desc(const game_params *params, random_state *rs,
char **aux, int interactive)
{
char *ret;
int n, i, retlen, *tiles;
n = params->w * params->h;
tiles = snewn(n, int);
if (params->soluble)
gen_grid(params->w, params->h, params->ncols, tiles, rs);
else
gen_grid_random(params->w, params->h, params->ncols, tiles, rs);
ret = NULL;
retlen = 0;
for (i = 0; i < n; i++) {
char buf[80];
int k;
k = sprintf(buf, "%d,", tiles[i]);
ret = sresize(ret, retlen + k + 1, char);
strcpy(ret + retlen, buf);
retlen += k;
}
ret[retlen-1] = '\0'; /* delete last comma */
sfree(tiles);
return ret;
}
static const char *validate_desc(const game_params *params, const char *desc)
{
int area = params->w * params->h, i;
const char *p = desc;
for (i = 0; i < area; i++) {
const char *q = p;
int n;
if (!isdigit((unsigned char)*p))
return "Not enough numbers in string";
while (isdigit((unsigned char)*p)) p++;
if (i < area-1 && *p != ',')
return "Expected comma after number";
else if (i == area-1 && *p)
return "Excess junk at end of string";
n = atoi(q);
if (n < 0 || n > params->ncols)
return "Colour out of range";
if (*p) p++; /* eat comma */
}
return NULL;
}
static game_state *new_game(midend *me, const game_params *params,
const char *desc)
{
game_state *state = snew(game_state);
const char *p = desc;
int i;
state->params = *params; /* struct copy */
state->n = state->params.w * state->params.h;
state->tiles = snewn(state->n, int);
for (i = 0; i < state->n; i++) {
assert(*p);
state->tiles[i] = atoi(p);
while (*p && *p != ',')
p++;
if (*p) p++; /* eat comma */
}
state->complete = state->impossible = 0;
state->score = 0;
return state;
}
static game_state *dup_game(const game_state *state)
{
game_state *ret = snew(game_state);
*ret = *state; /* structure copy, except... */
ret->tiles = snewn(state->n, int);
memcpy(ret->tiles, state->tiles, state->n * sizeof(int));
return ret;
}
static void free_game(game_state *state)
{
sfree(state->tiles);
sfree(state);
}
static char *solve_game(const game_state *state, const game_state *currstate,
const char *aux, const char **error)
{
return NULL;
}
static int game_can_format_as_text_now(const game_params *params)
{
return TRUE;
}
static char *game_text_format(const game_state *state)
{
char *ret, *p;
int x, y, maxlen;
maxlen = state->params.h * (state->params.w + 1);
ret = snewn(maxlen+1, char);
p = ret;
for (y = 0; y < state->params.h; y++) {
for (x = 0; x < state->params.w; x++) {
int t = TILE(state,x,y);
if (t <= 0) *p++ = ' ';
else if (t < 10) *p++ = '0'+t;
else *p++ = 'a'+(t-10);
}
*p++ = '\n';
}
assert(p - ret == maxlen);
*p = '\0';
return ret;
}
struct game_ui {
struct game_params params;
int *tiles; /* selected-ness only */
int nselected;
int xsel, ysel, displaysel;
};
static game_ui *new_ui(const game_state *state)
{
game_ui *ui = snew(game_ui);
ui->params = state->params; /* structure copy */
ui->tiles = snewn(state->n, int);
memset(ui->tiles, 0, state->n*sizeof(int));
ui->nselected = 0;
ui->xsel = ui->ysel = ui->displaysel = 0;
return ui;
}
static void free_ui(game_ui *ui)
{
sfree(ui->tiles);
sfree(ui);
}
static char *encode_ui(const game_ui *ui)
{
return NULL;
}
static void decode_ui(game_ui *ui, const char *encoding)
{
}
static void sel_clear(game_ui *ui, const game_state *state)
{
int i;
for (i = 0; i < state->n; i++)
ui->tiles[i] &= ~TILE_SELECTED;
ui->nselected = 0;
}
static void game_changed_state(game_ui *ui, const game_state *oldstate,
const game_state *newstate)
{
sel_clear(ui, newstate);
/*
* If the game state has just changed into an unplayable one
* (either completed or impossible), we vanish the keyboard-
* control cursor.
*/
if (newstate->complete || newstate->impossible)
ui->displaysel = 0;
}
static char *sel_movedesc(game_ui *ui, const game_state *state)
{
int i;
char *ret, buf[80];
const char *sep;
int retlen, retsize;
retsize = 256;
ret = snewn(retsize, char);
retlen = 0;
ret[retlen++] = 'M';
sep = "";
for (i = 0; i < state->n; i++) {
if (ui->tiles[i] & TILE_SELECTED) {
sprintf(buf, "%s%d", sep, i);
sep = ",";
if (retlen + (int)strlen(buf) >= retsize) {
retsize = retlen + strlen(buf) + 256;
ret = sresize(ret, retsize, char);
}
strcpy(ret + retlen, buf);
retlen += strlen(buf);
ui->tiles[i] &= ~TILE_SELECTED;
}
}
ui->nselected = 0;
assert(retlen < retsize);
ret[retlen++] = '\0';
return sresize(ret, retlen, char);
}
static void sel_expand(game_ui *ui, const game_state *state, int tx, int ty)
{
int ns = 1, nadded, x, y, c;
TILE(ui,tx,ty) |= TILE_SELECTED;
do {
nadded = 0;
for (x = 0; x < state->params.w; x++) {
for (y = 0; y < state->params.h; y++) {
if (x == tx && y == ty) continue;
if (ISSEL(ui,x,y)) continue;
c = COL(state,x,y);
if ((x > 0) &&
ISSEL(ui,x-1,y) && COL(state,x-1,y) == c) {
TILE(ui,x,y) |= TILE_SELECTED;
nadded++;
continue;
}
if ((x+1 < state->params.w) &&
ISSEL(ui,x+1,y) && COL(state,x+1,y) == c) {
TILE(ui,x,y) |= TILE_SELECTED;
nadded++;
continue;
}
if ((y > 0) &&
ISSEL(ui,x,y-1) && COL(state,x,y-1) == c) {
TILE(ui,x,y) |= TILE_SELECTED;
nadded++;
continue;
}
if ((y+1 < state->params.h) &&
ISSEL(ui,x,y+1) && COL(state,x,y+1) == c) {
TILE(ui,x,y) |= TILE_SELECTED;
nadded++;
continue;
}
}
}
ns += nadded;
} while (nadded > 0);
if (ns > 1) {
ui->nselected = ns;
} else {
sel_clear(ui, state);
}
}
static int sg_emptycol(game_state *ret, int x)
{
int y;
for (y = 0; y < ret->params.h; y++) {
if (COL(ret,x,y)) return 0;
}
return 1;
}
static void sg_snuggle(game_state *ret)
{
int x,y, ndone;
/* make all unsupported tiles fall down. */
do {
ndone = 0;
for (x = 0; x < ret->params.w; x++) {
for (y = ret->params.h-1; y > 0; y--) {
if (COL(ret,x,y) != 0) continue;
if (COL(ret,x,y-1) != 0) {
SWAPTILE(ret,x,y,x,y-1);
ndone++;
}
}
}
} while (ndone);
/* shuffle all columns as far left as they can go. */
do {
ndone = 0;
for (x = 0; x < ret->params.w-1; x++) {
if (sg_emptycol(ret,x) && !sg_emptycol(ret,x+1)) {
ndone++;
for (y = 0; y < ret->params.h; y++) {
SWAPTILE(ret,x,y,x+1,y);
}
}
}
} while (ndone);
}
static void sg_check(game_state *ret)
{
int x,y, complete = 1, impossible = 1;
for (x = 0; x < ret->params.w; x++) {
for (y = 0; y < ret->params.h; y++) {
if (COL(ret,x,y) == 0)
continue;
complete = 0;
if (x+1 < ret->params.w) {
if (COL(ret,x,y) == COL(ret,x+1,y))
impossible = 0;
}
if (y+1 < ret->params.h) {
if (COL(ret,x,y) == COL(ret,x,y+1))
impossible = 0;
}
}
}
ret->complete = complete;
ret->impossible = impossible;
}
struct game_drawstate {
int started, bgcolour;
int tileinner, tilegap;
int *tiles; /* contains colour and SELECTED. */
};
static char *interpret_move(const game_state *state, game_ui *ui,
const game_drawstate *ds,
int x, int y, int button)
{
int tx, ty;
char *ret = UI_UPDATE;
ui->displaysel = 0;
if (button == RIGHT_BUTTON || button == LEFT_BUTTON) {
tx = FROMCOORD(x); ty= FROMCOORD(y);
} else if (IS_CURSOR_MOVE(button)) {
int dx = 0, dy = 0;
ui->displaysel = 1;
dx = (button == CURSOR_LEFT) ? -1 : ((button == CURSOR_RIGHT) ? +1 : 0);
dy = (button == CURSOR_DOWN) ? +1 : ((button == CURSOR_UP) ? -1 : 0);
ui->xsel = (ui->xsel + state->params.w + dx) % state->params.w;
ui->ysel = (ui->ysel + state->params.h + dy) % state->params.h;
return ret;
} else if (IS_CURSOR_SELECT(button)) {
ui->displaysel = 1;
tx = ui->xsel;
ty = ui->ysel;
} else
return NULL;
if (tx < 0 || tx >= state->params.w || ty < 0 || ty >= state->params.h)
return NULL;
if (COL(state, tx, ty) == 0) return NULL;
if (ISSEL(ui,tx,ty)) {
if (button == RIGHT_BUTTON || button == CURSOR_SELECT2)
sel_clear(ui, state);
else
ret = sel_movedesc(ui, state);
} else {
sel_clear(ui, state); /* might be no-op */
sel_expand(ui, state, tx, ty);
}
return ret;
}
static game_state *execute_move(const game_state *from, const char *move)
{
int i, n;
game_state *ret;
if (move[0] == 'M') {
ret = dup_game(from);
n = 0;
move++;
while (*move) {
i = atoi(move);
if (i < 0 || i >= ret->n) {
free_game(ret);
return NULL;
}
n++;
ret->tiles[i] = 0;
while (*move && isdigit((unsigned char)*move)) move++;
if (*move == ',') move++;
}
ret->score += npoints(&ret->params, n);
sg_snuggle(ret); /* shifts blanks down and to the left */
sg_check(ret); /* checks for completeness or impossibility */
return ret;
} else
return NULL; /* couldn't parse move string */
}
/* ----------------------------------------------------------------------
* Drawing routines.
*/
static void game_set_size(drawing *dr, game_drawstate *ds,
const game_params *params, int tilesize)
{
ds->tilegap = 2;
ds->tileinner = tilesize - ds->tilegap;
}
static void game_compute_size(const game_params *params, int tilesize,
int *x, int *y)
{
/* Ick: fake up tile size variables for macro expansion purposes */
game_drawstate ads, *ds = &ads;
game_set_size(NULL, ds, params, tilesize);
*x = TILE_SIZE * params->w + 2 * BORDER - TILE_GAP;
*y = TILE_SIZE * params->h + 2 * BORDER - TILE_GAP;
}
static float *game_colours(frontend *fe, int *ncolours)
{
float *ret = snewn(3 * NCOLOURS, float);
frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
ret[COL_1 * 3 + 0] = 0.0F;
ret[COL_1 * 3 + 1] = 0.0F;
ret[COL_1 * 3 + 2] = 1.0F;
ret[COL_2 * 3 + 0] = 0.0F;
ret[COL_2 * 3 + 1] = 0.5F;
ret[COL_2 * 3 + 2] = 0.0F;
ret[COL_3 * 3 + 0] = 1.0F;
ret[COL_3 * 3 + 1] = 0.0F;
ret[COL_3 * 3 + 2] = 0.0F;
ret[COL_4 * 3 + 0] = 1.0F;
ret[COL_4 * 3 + 1] = 1.0F;
ret[COL_4 * 3 + 2] = 0.0F;
ret[COL_5 * 3 + 0] = 1.0F;
ret[COL_5 * 3 + 1] = 0.0F;
ret[COL_5 * 3 + 2] = 1.0F;
ret[COL_6 * 3 + 0] = 0.0F;
ret[COL_6 * 3 + 1] = 1.0F;
ret[COL_6 * 3 + 2] = 1.0F;
ret[COL_7 * 3 + 0] = 0.5F;
ret[COL_7 * 3 + 1] = 0.5F;
ret[COL_7 * 3 + 2] = 1.0F;
ret[COL_8 * 3 + 0] = 0.5F;
ret[COL_8 * 3 + 1] = 1.0F;
ret[COL_8 * 3 + 2] = 0.5F;
ret[COL_9 * 3 + 0] = 1.0F;
ret[COL_9 * 3 + 1] = 0.5F;
ret[COL_9 * 3 + 2] = 0.5F;
ret[COL_IMPOSSIBLE * 3 + 0] = 0.0F;
ret[COL_IMPOSSIBLE * 3 + 1] = 0.0F;
ret[COL_IMPOSSIBLE * 3 + 2] = 0.0F;
ret[COL_SEL * 3 + 0] = 1.0F;
ret[COL_SEL * 3 + 1] = 1.0F;
ret[COL_SEL * 3 + 2] = 1.0F;
ret[COL_HIGHLIGHT * 3 + 0] = 1.0F;
ret[COL_HIGHLIGHT * 3 + 1] = 1.0F;
ret[COL_HIGHLIGHT * 3 + 2] = 1.0F;
ret[COL_LOWLIGHT * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 2.0F / 3.0F;
ret[COL_LOWLIGHT * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 2.0F / 3.0F;
ret[COL_LOWLIGHT * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 2.0F / 3.0F;
*ncolours = NCOLOURS;
return ret;
}
static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state)
{
struct game_drawstate *ds = snew(struct game_drawstate);
int i;
ds->started = 0;
ds->tileinner = ds->tilegap = 0; /* not decided yet */
ds->tiles = snewn(state->n, int);
ds->bgcolour = -1;
for (i = 0; i < state->n; i++)
ds->tiles[i] = -1;
return ds;
}
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
{
sfree(ds->tiles);
sfree(ds);
}
/* Drawing routing for the tile at (x,y) is responsible for drawing
* itself and the gaps to its right and below. If we're the same colour
* as the tile to our right, then we fill in the gap; ditto below, and if
* both then we fill the teeny tiny square in the corner as well.
*/
static void tile_redraw(drawing *dr, game_drawstate *ds,
int x, int y, int dright, int dbelow,
int tile, int bgcolour)
{
int outer = bgcolour, inner = outer, col = tile & TILE_COLMASK;
if (col) {
if (tile & TILE_IMPOSSIBLE) {
outer = col;
inner = COL_IMPOSSIBLE;
} else if (tile & TILE_SELECTED) {
outer = COL_SEL;
inner = col;
} else {
outer = inner = col;
}
}
draw_rect(dr, COORD(x), COORD(y), TILE_INNER, TILE_INNER, outer);
draw_rect(dr, COORD(x)+TILE_INNER/4, COORD(y)+TILE_INNER/4,
TILE_INNER/2, TILE_INNER/2, inner);
if (dright)
draw_rect(dr, COORD(x)+TILE_INNER, COORD(y), TILE_GAP, TILE_INNER,
(tile & TILE_JOINRIGHT) ? outer : bgcolour);
if (dbelow)
draw_rect(dr, COORD(x), COORD(y)+TILE_INNER, TILE_INNER, TILE_GAP,
(tile & TILE_JOINDOWN) ? outer : bgcolour);
if (dright && dbelow)
draw_rect(dr, COORD(x)+TILE_INNER, COORD(y)+TILE_INNER, TILE_GAP, TILE_GAP,
(tile & TILE_JOINDIAG) ? outer : bgcolour);
if (tile & TILE_HASSEL) {
int sx = COORD(x)+2, sy = COORD(y)+2, ssz = TILE_INNER-5;
int scol = (outer == COL_SEL) ? COL_LOWLIGHT : COL_HIGHLIGHT;
draw_line(dr, sx, sy, sx+ssz, sy, scol);
draw_line(dr, sx+ssz, sy, sx+ssz, sy+ssz, scol);
draw_line(dr, sx+ssz, sy+ssz, sx, sy+ssz, scol);
draw_line(dr, sx, sy+ssz, sx, sy, scol);
}
draw_update(dr, COORD(x), COORD(y), TILE_SIZE, TILE_SIZE);
}
static void game_redraw(drawing *dr, game_drawstate *ds,
const game_state *oldstate, const game_state *state,
int dir, const game_ui *ui,
float animtime, float flashtime)
{
int bgcolour, x, y;
/* This was entirely cloned from fifteen.c; it should probably be
* moved into some generic 'draw-recessed-rectangle' utility fn. */
if (!ds->started) {
int coords[10];
draw_rect(dr, 0, 0,
TILE_SIZE * state->params.w + 2 * BORDER,
TILE_SIZE * state->params.h + 2 * BORDER, COL_BACKGROUND);
draw_update(dr, 0, 0,
TILE_SIZE * state->params.w + 2 * BORDER,
TILE_SIZE * state->params.h + 2 * BORDER);
/*
* Recessed area containing the whole puzzle.
*/
coords[0] = COORD(state->params.w) + HIGHLIGHT_WIDTH - 1 - TILE_GAP;
coords[1] = COORD(state->params.h) + HIGHLIGHT_WIDTH - 1 - TILE_GAP;
coords[2] = COORD(state->params.w) + HIGHLIGHT_WIDTH - 1 - TILE_GAP;
coords[3] = COORD(0) - HIGHLIGHT_WIDTH;
coords[4] = coords[2] - TILE_SIZE;
coords[5] = coords[3] + TILE_SIZE;
coords[8] = COORD(0) - HIGHLIGHT_WIDTH;
coords[9] = COORD(state->params.h) + HIGHLIGHT_WIDTH - 1 - TILE_GAP;
coords[6] = coords[8] + TILE_SIZE;
coords[7] = coords[9] - TILE_SIZE;
draw_polygon(dr, coords, 5, COL_HIGHLIGHT, COL_HIGHLIGHT);
coords[1] = COORD(0) - HIGHLIGHT_WIDTH;
coords[0] = COORD(0) - HIGHLIGHT_WIDTH;
draw_polygon(dr, coords, 5, COL_LOWLIGHT, COL_LOWLIGHT);
ds->started = 1;
}
if (flashtime > 0.0) {
int frame = (int)(flashtime / FLASH_FRAME);
bgcolour = (frame % 2 ? COL_LOWLIGHT : COL_HIGHLIGHT);
} else
bgcolour = COL_BACKGROUND;
for (x = 0; x < state->params.w; x++) {
for (y = 0; y < state->params.h; y++) {
int i = (state->params.w * y) + x;
int col = COL(state,x,y), tile = col;
int dright = (x+1 < state->params.w);
int dbelow = (y+1 < state->params.h);
tile |= ISSEL(ui,x,y);
if (state->impossible)
tile |= TILE_IMPOSSIBLE;
if (dright && COL(state,x+1,y) == col)
tile |= TILE_JOINRIGHT;
if (dbelow && COL(state,x,y+1) == col)
tile |= TILE_JOINDOWN;
if ((tile & TILE_JOINRIGHT) && (tile & TILE_JOINDOWN) &&
COL(state,x+1,y+1) == col)
tile |= TILE_JOINDIAG;
if (ui->displaysel && ui->xsel == x && ui->ysel == y)
tile |= TILE_HASSEL;
/* For now we're never expecting oldstate at all (because we have
* no animation); when we do we might well want to be looking
* at the tile colours from oldstate, not state. */
if ((oldstate && COL(oldstate,x,y) != col) ||
(ds->bgcolour != bgcolour) ||
(tile != ds->tiles[i])) {
tile_redraw(dr, ds, x, y, dright, dbelow, tile, bgcolour);
ds->tiles[i] = tile;
}
}
}
ds->bgcolour = bgcolour;
{
char status[255], score[80];
sprintf(score, "Score: %d", state->score);
if (state->complete)
sprintf(status, "COMPLETE! %s", score);
else if (state->impossible)
sprintf(status, "Cannot move! %s", score);
else if (ui->nselected)
sprintf(status, "%s Selected: %d (%d)",
score, ui->nselected, npoints(&state->params, ui->nselected));
else
sprintf(status, "%s", score);
status_bar(dr, status);
}
}
static float game_anim_length(const game_state *oldstate,
const game_state *newstate, int dir, game_ui *ui)
{
return 0.0F;
}
static float game_flash_length(const game_state *oldstate,
const game_state *newstate, int dir, game_ui *ui)
{
if ((!oldstate->complete && newstate->complete) ||
(!oldstate->impossible && newstate->impossible))
return 2 * FLASH_FRAME;
else
return 0.0F;
}
static int game_status(const game_state *state)
{
/*
* Dead-end situations are assumed to be rescuable by Undo, so we
* don't bother to identify them and return -1.
*/
return state->complete ? +1 : 0;
}
static int game_timing_state(const game_state *state, game_ui *ui)
{
return TRUE;
}
static void game_print_size(const game_params *params, float *x, float *y)
{
}
static void game_print(drawing *dr, const game_state *state, int tilesize)
{
}
#ifdef COMBINED
#define thegame samegame
#endif
const struct game thegame = {
"Same Game", "games.samegame", "samegame",
default_params,
game_fetch_preset, NULL,
decode_params,
encode_params,
free_params,
dup_params,
TRUE, game_configure, custom_params,
validate_params,
new_game_desc,
validate_desc,
new_game,
dup_game,
free_game,
FALSE, solve_game,
TRUE, game_can_format_as_text_now, game_text_format,
new_ui,
free_ui,
encode_ui,
decode_ui,
NULL, /* game_request_keys */
game_changed_state,
interpret_move,
execute_move,
PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
game_colours,
game_new_drawstate,
game_free_drawstate,
game_redraw,
game_anim_length,
game_flash_length,
game_status,
FALSE, FALSE, game_print_size, game_print,
TRUE, /* wants_statusbar */
FALSE, game_timing_state,
0, /* flags */
};