mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-20 23:51:29 -07:00
Files

This refactors all instances of bitwise-ANDs with `~MOD_MASK'. There is a handful of more complex instances I left unchanged (in cube.c, midend.c, and twiddle.c), since those AND with `~MOD_MASK | MOD_NUM_KEYPAD' or similar. I don't think it's worth writing a macro for those cases. Also document this new macro's usage in devel.but.
1402 lines
42 KiB
C
1402 lines
42 KiB
C
/* -*- indent-tabs-mode: nil; tab-width: 1000 -*- */
|
|
|
|
/*
|
|
* palisade.c: Nikoli's `Five Cells' puzzle.
|
|
*
|
|
* See http://nikoli.co.jp/en/puzzles/five_cells.html
|
|
*/
|
|
|
|
/* TODO:
|
|
*
|
|
* - better solver: implement the sketched-out deductions
|
|
*
|
|
* - improve the victory flash?
|
|
* - the LINE_NOs look ugly against COL_FLASH.
|
|
* - white-blink the edges (instead), a la loopy?
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <ctype.h>
|
|
#include <limits.h>
|
|
#include <stdarg.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "puzzles.h"
|
|
|
|
#define setmem(ptr, byte, len) memset((ptr), (byte), (len) * sizeof (ptr)[0])
|
|
#define scopy(dst, src, len) memcpy((dst), (src), (len) * sizeof (dst)[0])
|
|
#define dupmem(p, n) memcpy(smalloc(n * sizeof (*p)), p, n * sizeof (*p))
|
|
#define snewa(ptr, len) (ptr) = smalloc((len) * sizeof (*ptr))
|
|
#define clone(ptr) (dupmem((ptr), 1))
|
|
|
|
static char *string(int n, const char *fmt, ...)
|
|
{
|
|
va_list va;
|
|
char *ret;
|
|
int m;
|
|
va_start(va, fmt);
|
|
m = vsprintf(snewa(ret, n + 1), fmt, va);
|
|
va_end(va);
|
|
if (m > n) fatal("memory corruption");
|
|
return ret;
|
|
}
|
|
|
|
struct game_params {
|
|
int w, h, k;
|
|
};
|
|
|
|
typedef signed char clue;
|
|
typedef unsigned char borderflag;
|
|
|
|
typedef struct shared_state {
|
|
game_params params;
|
|
clue *clues;
|
|
int refcount;
|
|
} shared_state;
|
|
|
|
struct game_state {
|
|
shared_state *shared;
|
|
borderflag *borders; /* length w*h */
|
|
|
|
bool completed, cheated;
|
|
};
|
|
|
|
#define DEFAULT_PRESET 0
|
|
static struct game_params presets[] = {
|
|
{5, 5, 5}, {8, 6, 6}, {10, 8, 8}, {15, 12, 10}
|
|
/* I definitely want 5x5n5 since that gives "Five Cells" its name.
|
|
* But how about the others? By which criteria do I choose? */
|
|
};
|
|
|
|
static game_params *default_params(void)
|
|
{
|
|
return clone(&presets[DEFAULT_PRESET]);
|
|
}
|
|
|
|
static bool game_fetch_preset(int i, char **name, game_params **params)
|
|
{
|
|
if (i < 0 || i >= lenof(presets)) return false;
|
|
|
|
*params = clone(&presets[i]);
|
|
*name = string(60, "%d x %d, regions of size %d",
|
|
presets[i].w, presets[i].h, presets[i].k);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void free_params(game_params *params)
|
|
{
|
|
sfree(params);
|
|
}
|
|
|
|
static game_params *dup_params(const game_params *params)
|
|
{
|
|
return clone(params);
|
|
}
|
|
|
|
static void decode_params(game_params *params, char const *string)
|
|
{
|
|
params->w = params->h = params->k = atoi(string);
|
|
while (*string && isdigit((unsigned char)*string)) ++string;
|
|
if (*string == 'x') {
|
|
params->h = atoi(++string);
|
|
while (*string && isdigit((unsigned char)*string)) ++string;
|
|
}
|
|
if (*string == 'n') params->k = atoi(++string);
|
|
}
|
|
|
|
static char *encode_params(const game_params *params, bool full)
|
|
{
|
|
return string(40, "%dx%dn%d", params->w, params->h, params->k);
|
|
}
|
|
|
|
#define CONFIG(i, nm, ty, iv, sv) \
|
|
(ret[i].name = nm, ret[i].type = ty, ret[i].ival = iv, ret[i].sval = sv)
|
|
|
|
static config_item *game_configure(const game_params *params)
|
|
{
|
|
config_item *ret = snewn(4, config_item);
|
|
|
|
ret[0].name = "Width";
|
|
ret[0].type = C_STRING;
|
|
ret[0].u.string.sval = string(20, "%d", params->w);
|
|
|
|
ret[1].name = "Height";
|
|
ret[1].type = C_STRING;
|
|
ret[1].u.string.sval = string(20, "%d", params->h);
|
|
|
|
ret[2].name = "Region size";
|
|
ret[2].type = C_STRING;
|
|
ret[2].u.string.sval = string(20, "%d", params->k);
|
|
|
|
ret[3].name = NULL;
|
|
ret[3].type = C_END;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static game_params *custom_params(const config_item *cfg)
|
|
{
|
|
game_params *params = snew(game_params);
|
|
|
|
params->w = atoi(cfg[0].u.string.sval);
|
|
params->h = atoi(cfg[1].u.string.sval);
|
|
params->k = atoi(cfg[2].u.string.sval);
|
|
|
|
return params;
|
|
}
|
|
|
|
/* +---+ << The one possible domino (up to symmetry). +---+---+
|
|
* | 3 | | 3 | 3 |
|
|
* | | If two dominos are adjacent as depicted here >> +---+---+
|
|
* | 3 | then it's ambiguous whether the edge between | 3 | 3 |
|
|
* +---+ the dominos is horizontal or vertical. +---+---+
|
|
*/
|
|
|
|
static const char *validate_params(const game_params *params, bool full)
|
|
{
|
|
int w = params->w, h = params->h, k = params->k, wh;
|
|
|
|
if (k < 1) return "Region size must be at least one";
|
|
if (w < 1) return "Width must be at least one";
|
|
if (h < 1) return "Height must be at least one";
|
|
if (w > INT_MAX / h)
|
|
return "Width times height must not be unreasonably large";
|
|
wh = w * h;
|
|
if (wh % k) return "Region size must divide grid area";
|
|
if (!full) return NULL; /* succeed partial validation */
|
|
|
|
/* MAYBE FIXME: we (just?) don't have the UI for winning these. */
|
|
if (k == wh) return "Region size must be less than the grid area";
|
|
assert (k < wh); /* or wh % k != 0 */
|
|
|
|
if (k == 2 && w != 1 && h != 1)
|
|
return "Region size can't be two unless width or height is one";
|
|
|
|
return NULL; /* succeed full validation */
|
|
}
|
|
|
|
/* --- Solver ------------------------------------------------------- */
|
|
|
|
/* the solver may write at will to these arrays, but shouldn't free them */
|
|
/* it's up to the client to dup/free as needed */
|
|
typedef struct solver_ctx {
|
|
const game_params *params; /* also in shared_state */
|
|
clue *clues; /* also in shared_state */
|
|
borderflag *borders; /* also in game_state */
|
|
DSF *dsf; /* particular to the solver */
|
|
} solver_ctx;
|
|
|
|
/* Deductions:
|
|
*
|
|
* - If two adjacent clues do not have a border between them, this
|
|
* gives a lower limit on the size of their region (which is also an
|
|
* upper limit if both clues are 3). Rule out any non-border which
|
|
* would make its region either too large or too small.
|
|
*
|
|
* - If a clue, k, is adjacent to k borders or (4 - k) non-borders,
|
|
* the remaining edges incident to the clue are readily decided.
|
|
*
|
|
* - If a region has only one other region (e.g. square) to grow into
|
|
* and it's not of full size yet, grow it into that one region.
|
|
*
|
|
* - If two regions are adjacent and their combined size would be too
|
|
* large, put an edge between them.
|
|
*
|
|
* - If a border is adjacent to two non-borders, its last vertex-mate
|
|
* must also be a border. If a maybe-border is adjacent to three
|
|
* nonborders, the maybe-border is a non-border.
|
|
*
|
|
* - If a clue square is adjacent to several squares belonging to the
|
|
* same region, and enabling (disabling) those borders would violate
|
|
* the clue, those borders must be disabled (enabled).
|
|
*
|
|
* - If there's a path crossing only non-borders between two squares,
|
|
* the maybe-border between them is a non-border.
|
|
* (This is implicitly computed in the dsf representation)
|
|
*/
|
|
|
|
/* TODO deductions:
|
|
*
|
|
* If a vertex is adjacent to a LINE_YES and (4-3)*LINE_NO, at least
|
|
* one of the last two edges are LINE_YES. If they're adjacent to a
|
|
* 1, then the other two edges incident to that 1 are LINE_NO.
|
|
*
|
|
* For each square: set all as unknown, then for each k-omino and each
|
|
* way of placing it on that square, if that way is consistent with
|
|
* the board, mark its edges and interior as possible LINE_YES and
|
|
* LINE_NO, respectively. When all k-ominos are through, see what
|
|
* isn't possible and remove those impossibilities from the board.
|
|
* (Sounds pretty nasty for k > 4 or so.)
|
|
*
|
|
* A black-bordered subregion must have a size divisible by k. So,
|
|
* draw a graph with one node per dsf component and edges between
|
|
* those dsf components which have adjacent squares. Identify cut
|
|
* vertices and edges. If a cut-vertex-delimited component contains a
|
|
* number of squares not divisible by k, cut vertex not included, then
|
|
* the cut vertex must belong to the component. If it has exactly one
|
|
* edge _out_ of the component, the line(s) corresponding to that edge
|
|
* are all LINE_YES (i.e. a BORDER()).
|
|
* (This sounds complicated, but visually it is rather easy.)
|
|
*
|
|
* [Look at loopy and see how the at-least/-most k out of m edges
|
|
* thing is done. See how it is propagated across multiple squares.]
|
|
*/
|
|
|
|
#define EMPTY (~0)
|
|
|
|
#define BIT(i) (1 << (i))
|
|
#define BORDER(i) BIT(i)
|
|
#define BORDER_U BORDER(0)
|
|
#define BORDER_R BORDER(1)
|
|
#define BORDER_D BORDER(2)
|
|
#define BORDER_L BORDER(3)
|
|
#define FLIP(i) ((i) ^ 2)
|
|
#define BORDER_MASK (BORDER_U|BORDER_R|BORDER_D|BORDER_L)
|
|
#define DISABLED(border) ((border) << 4)
|
|
#define UNDISABLED(border) ((border) >> 4)
|
|
|
|
static const int dx[4] = { 0, +1, 0, -1};
|
|
static const int dy[4] = {-1, 0, +1, 0};
|
|
static const int bitcount[16] = {0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4};
|
|
/* bitcount[x & BORDER_MASK] == number of enabled borders */
|
|
|
|
#define COMPUTE_J (-1)
|
|
|
|
static void connect(solver_ctx *ctx, int i, int j)
|
|
{
|
|
dsf_merge(ctx->dsf, i, j);
|
|
}
|
|
|
|
static bool connected(solver_ctx *ctx, int i, int j, int dir)
|
|
{
|
|
if (j == COMPUTE_J) j = i + dx[dir] + ctx->params->w*dy[dir];
|
|
return dsf_equivalent(ctx->dsf, i, j);
|
|
}
|
|
|
|
static void disconnect(solver_ctx *ctx, int i, int j, int dir)
|
|
{
|
|
if (j == COMPUTE_J) j = i + dx[dir] + ctx->params->w*dy[dir];
|
|
ctx->borders[i] |= BORDER(dir);
|
|
ctx->borders[j] |= BORDER(FLIP(dir));
|
|
}
|
|
|
|
static bool disconnected(solver_ctx *ctx, int i, int j, int dir)
|
|
{
|
|
assert (j == COMPUTE_J || j == i + dx[dir] + ctx->params->w*dy[dir]);
|
|
return ctx->borders[i] & BORDER(dir);
|
|
}
|
|
|
|
static bool maybe(solver_ctx *ctx, int i, int j, int dir)
|
|
{
|
|
assert (j == COMPUTE_J || j == i + dx[dir] + ctx->params->w*dy[dir]);
|
|
return !disconnected(ctx, i, j, dir) && !connected(ctx, i, j, dir);
|
|
/* the ordering is important: disconnected works for invalid
|
|
* squares (i.e. out of bounds), connected doesn't. */
|
|
}
|
|
|
|
static void solver_connected_clues_versus_region_size(solver_ctx *ctx)
|
|
{
|
|
int w = ctx->params->w, h = ctx->params->h, wh = w*h, i, dir;
|
|
|
|
/* If i is connected to j and i has borders with p of the
|
|
* remaining three squares and j with q of the remaining three
|
|
* squares, then the region has size at least 1+(3-p) + 1+(3-q).
|
|
* If p = q = 3 then the region has size exactly 2. */
|
|
|
|
for (i = 0; i < wh; ++i) {
|
|
if (ctx->clues[i] == EMPTY) continue;
|
|
for (dir = 0; dir < 4; ++dir) {
|
|
int j = i + dx[dir] + w*dy[dir];
|
|
if (disconnected(ctx, i, j, dir)) continue;
|
|
if (ctx->clues[j] == EMPTY) continue;
|
|
if ((8 - ctx->clues[i] - ctx->clues[j] > ctx->params->k) ||
|
|
(ctx->clues[i] == 3 && ctx->clues[j] == 3 &&
|
|
ctx->params->k != 2))
|
|
{
|
|
disconnect(ctx, i, j, dir);
|
|
/* changed = true, but this is a one-shot... */
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool solver_number_exhausted(solver_ctx *ctx)
|
|
{
|
|
int w = ctx->params->w, h = ctx->params->h, wh = w*h, i, dir, off;
|
|
bool changed = false;
|
|
|
|
for (i = 0; i < wh; ++i) {
|
|
if (ctx->clues[i] == EMPTY) continue;
|
|
|
|
if (bitcount[(ctx->borders[i] & BORDER_MASK)] == ctx->clues[i]) {
|
|
for (dir = 0; dir < 4; ++dir) {
|
|
int j = i + dx[dir] + w*dy[dir];
|
|
if (!maybe(ctx, i, j, dir)) continue;
|
|
connect(ctx, i, j);
|
|
changed = true;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
for (off = dir = 0; dir < 4; ++dir) {
|
|
int j = i + dx[dir] + w*dy[dir];
|
|
if (!disconnected(ctx, i, j, dir) && connected(ctx, i, j, dir))
|
|
++off; /* ^^^ bounds checking before ^^^^^ */
|
|
}
|
|
|
|
if (ctx->clues[i] == 4 - off)
|
|
for (dir = 0; dir < 4; ++dir) {
|
|
int j = i + dx[dir] + w*dy[dir];
|
|
if (!maybe(ctx, i, j, dir)) continue;
|
|
disconnect(ctx, i, j, dir);
|
|
changed = true;
|
|
}
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|
|
static bool solver_not_too_big(solver_ctx *ctx)
|
|
{
|
|
int w = ctx->params->w, h = ctx->params->h, wh = w*h, i, dir;
|
|
bool changed = false;
|
|
|
|
for (i = 0; i < wh; ++i) {
|
|
int size = dsf_size(ctx->dsf, i);
|
|
for (dir = 0; dir < 4; ++dir) {
|
|
int j = i + dx[dir] + w*dy[dir];
|
|
if (!maybe(ctx, i, j, dir)) continue;
|
|
if (size + dsf_size(ctx->dsf, j) <= ctx->params->k) continue;
|
|
disconnect(ctx, i, j, dir);
|
|
changed = true;
|
|
}
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|
|
static bool solver_not_too_small(solver_ctx *ctx)
|
|
{
|
|
int w = ctx->params->w, h = ctx->params->h, wh = w*h, i, dir;
|
|
int *outs, k = ctx->params->k, ci;
|
|
bool changed = false;
|
|
|
|
snewa(outs, wh);
|
|
setmem(outs, -1, wh);
|
|
|
|
for (i = 0; i < wh; ++i) {
|
|
ci = dsf_canonify(ctx->dsf, i);
|
|
if (dsf_size(ctx->dsf, ci) == k) continue;
|
|
for (dir = 0; dir < 4; ++dir) {
|
|
int j = i + dx[dir] + w*dy[dir];
|
|
if (!maybe(ctx, i, j, dir)) continue;
|
|
if (outs[ci] == -1) outs[ci] = dsf_canonify(ctx->dsf, j);
|
|
else if (outs[ci] != dsf_canonify(ctx->dsf, j)) outs[ci] = -2;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < wh; ++i) {
|
|
int j = outs[i];
|
|
if (i != dsf_canonify(ctx->dsf, i)) continue;
|
|
if (j < 0) continue;
|
|
connect(ctx, i, j); /* only one place for i to grow */
|
|
changed = true;
|
|
}
|
|
|
|
sfree(outs);
|
|
return changed;
|
|
}
|
|
|
|
static bool solver_no_dangling_edges(solver_ctx *ctx)
|
|
{
|
|
int w = ctx->params->w, h = ctx->params->h, r, c;
|
|
bool changed = false;
|
|
|
|
/* for each vertex */
|
|
for (r = 1; r < h; ++r)
|
|
for (c = 1; c < w; ++c) {
|
|
int i = r * w + c, j = i - w - 1, noline = 0, dir;
|
|
int squares[4], e = -1, f = -1, de = -1, df = -1;
|
|
|
|
/* feels hacky: I align these with BORDER_[U0 R1 D2 L3] */
|
|
squares[1] = squares[2] = j;
|
|
squares[0] = squares[3] = i;
|
|
|
|
/* for each edge adjacent to the vertex */
|
|
for (dir = 0; dir < 4; ++dir)
|
|
if (!connected(ctx, squares[dir], COMPUTE_J, dir)) {
|
|
df = dir;
|
|
f = squares[df];
|
|
if (e != -1) continue;
|
|
e = f;
|
|
de = df;
|
|
} else ++noline;
|
|
|
|
if (4 - noline == 1) {
|
|
assert (e != -1);
|
|
disconnect(ctx, e, COMPUTE_J, de);
|
|
changed = true;
|
|
continue;
|
|
}
|
|
|
|
if (4 - noline != 2) continue;
|
|
|
|
assert (e != -1);
|
|
assert (f != -1);
|
|
|
|
if (ctx->borders[e] & BORDER(de)) {
|
|
if (!(ctx->borders[f] & BORDER(df))) {
|
|
disconnect(ctx, f, COMPUTE_J, df);
|
|
changed = true;
|
|
}
|
|
} else if (ctx->borders[f] & BORDER(df)) {
|
|
disconnect(ctx, e, COMPUTE_J, de);
|
|
changed = true;
|
|
}
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|
|
static bool solver_equivalent_edges(solver_ctx *ctx)
|
|
{
|
|
int w = ctx->params->w, h = ctx->params->h, wh = w*h, i, dirj;
|
|
bool changed = false;
|
|
|
|
/* if a square is adjacent to two connected squares, the two
|
|
* borders (i,j) and (i,k) are either both on or both off. */
|
|
|
|
for (i = 0; i < wh; ++i) {
|
|
int n_on = 0, n_off = 0;
|
|
if (ctx->clues[i] < 1 || ctx->clues[i] > 3) continue;
|
|
|
|
if (ctx->clues[i] == 2 /* don't need it otherwise */)
|
|
for (dirj = 0; dirj < 4; ++dirj) {
|
|
int j = i + dx[dirj] + w*dy[dirj];
|
|
if (disconnected(ctx, i, j, dirj)) ++n_on;
|
|
else if (connected(ctx, i, j, dirj)) ++n_off;
|
|
}
|
|
|
|
for (dirj = 0; dirj < 4; ++dirj) {
|
|
int j = i + dx[dirj] + w*dy[dirj], dirk;
|
|
if (!maybe(ctx, i, j, dirj)) continue;
|
|
|
|
for (dirk = dirj + 1; dirk < 4; ++dirk) {
|
|
int k = i + dx[dirk] + w*dy[dirk];
|
|
if (!maybe(ctx, i, k, dirk)) continue;
|
|
if (!connected(ctx, j, k, -1)) continue;
|
|
|
|
if (n_on + 2 > ctx->clues[i]) {
|
|
connect(ctx, i, j);
|
|
connect(ctx, i, k);
|
|
changed = true;
|
|
} else if (n_off + 2 > 4 - ctx->clues[i]) {
|
|
disconnect(ctx, i, j, dirj);
|
|
disconnect(ctx, i, k, dirk);
|
|
changed = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|
|
/* build connected components in `dsf', along the lines of `borders'. */
|
|
static void build_dsf(int w, int h, borderflag *border, DSF *dsf, bool black)
|
|
{
|
|
int x, y;
|
|
|
|
for (y = 0; y < h; y++) {
|
|
for (x = 0; x < w; x++) {
|
|
if (x+1 < w && (black ? !(border[y*w+x] & BORDER_R) :
|
|
(border[y*w+x] & DISABLED(BORDER_R))))
|
|
dsf_merge(dsf, y*w+x, y*w+(x+1));
|
|
if (y+1 < h && (black ? !(border[y*w+x] & BORDER_D) :
|
|
(border[y*w+x] & DISABLED(BORDER_D))))
|
|
dsf_merge(dsf, y*w+x, (y+1)*w+x);
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool is_solved(const game_params *params, clue *clues,
|
|
borderflag *border)
|
|
{
|
|
int w = params->w, h = params->h, wh = w*h, k = params->k;
|
|
int i, x, y;
|
|
DSF *dsf = dsf_new(wh);
|
|
|
|
build_dsf(w, h, border, dsf, true);
|
|
|
|
/*
|
|
* A game is solved if:
|
|
*
|
|
* - the borders drawn on the grid divide it into connected
|
|
* components such that every square is in a component of the
|
|
* correct size
|
|
* - the borders also satisfy the clue set
|
|
*/
|
|
for (i = 0; i < wh; ++i) {
|
|
if (dsf_size(dsf, i) != k) goto error;
|
|
if (clues[i] == EMPTY) continue;
|
|
if (clues[i] != bitcount[border[i] & BORDER_MASK]) goto error;
|
|
}
|
|
|
|
/*
|
|
* ... and thirdly:
|
|
*
|
|
* - there are no *stray* borders, in that every border is
|
|
* actually part of the division between two components.
|
|
* Otherwise you could cheat by finding a subdivision which did
|
|
* not *exceed* any clue square's counter, and then adding a
|
|
* few extra edges.
|
|
*/
|
|
for (y = 0; y < h; y++) {
|
|
for (x = 0; x < w; x++) {
|
|
if (x+1 < w && (border[y*w+x] & BORDER_R) &&
|
|
dsf_equivalent(dsf, y*w+x, y*w+(x+1)))
|
|
goto error;
|
|
if (y+1 < h && (border[y*w+x] & BORDER_D) &&
|
|
dsf_equivalent(dsf, y*w+x, (y+1)*w+x))
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
dsf_free(dsf);
|
|
return true;
|
|
|
|
error:
|
|
dsf_free(dsf);
|
|
return false;
|
|
}
|
|
|
|
static bool solver(const game_params *params, clue *clues, borderflag *borders)
|
|
{
|
|
int w = params->w, h = params->h, wh = w*h;
|
|
bool changed;
|
|
solver_ctx ctx;
|
|
|
|
ctx.params = params;
|
|
ctx.clues = clues;
|
|
ctx.borders = borders;
|
|
ctx.dsf = dsf_new(wh);
|
|
|
|
solver_connected_clues_versus_region_size(&ctx); /* idempotent */
|
|
do {
|
|
changed = false;
|
|
changed |= solver_number_exhausted(&ctx);
|
|
changed |= solver_not_too_big(&ctx);
|
|
changed |= solver_not_too_small(&ctx);
|
|
changed |= solver_no_dangling_edges(&ctx);
|
|
changed |= solver_equivalent_edges(&ctx);
|
|
} while (changed);
|
|
|
|
dsf_free(ctx.dsf);
|
|
|
|
return is_solved(params, clues, borders);
|
|
}
|
|
|
|
/* --- Generator ---------------------------------------------------- */
|
|
|
|
static void init_borders(int w, int h, borderflag *borders)
|
|
{
|
|
int r, c;
|
|
setmem(borders, 0, w*h);
|
|
for (c = 0; c < w; ++c) {
|
|
borders[c] |= BORDER_U;
|
|
borders[w*h-1 - c] |= BORDER_D;
|
|
}
|
|
for (r = 0; r < h; ++r) {
|
|
borders[r*w] |= BORDER_L;
|
|
borders[w*h-1 - r*w] |= BORDER_R;
|
|
}
|
|
}
|
|
|
|
#define OUT_OF_BOUNDS(x, y, w, h) \
|
|
((x) < 0 || (x) >= (w) || (y) < 0 || (y) >= (h))
|
|
|
|
#define xshuffle(ptr, len, rs) shuffle((ptr), (len), sizeof (ptr)[0], (rs))
|
|
|
|
static char *new_game_desc(const game_params *params, random_state *rs,
|
|
char **aux, bool interactive)
|
|
{
|
|
int w = params->w, h = params->h, wh = w*h, k = params->k;
|
|
|
|
clue *numbers = snewn(wh + 1, clue);
|
|
borderflag *rim = snewn(wh, borderflag);
|
|
borderflag *scratch_borders = snewn(wh, borderflag);
|
|
|
|
char *soln = snewa(*aux, wh + 2);
|
|
int *shuf = snewn(wh, int);
|
|
DSF *dsf = NULL;
|
|
int i, r, c;
|
|
|
|
for (i = 0; i < wh; ++i) shuf[i] = i;
|
|
xshuffle(shuf, wh, rs);
|
|
|
|
init_borders(w, h, rim);
|
|
|
|
assert (!('@' & BORDER_MASK));
|
|
*soln++ = 'S';
|
|
soln[wh] = '\0';
|
|
|
|
do {
|
|
setmem(soln, '@', wh);
|
|
|
|
dsf_free(dsf);
|
|
dsf = divvy_rectangle(w, h, k, rs);
|
|
|
|
for (r = 0; r < h; ++r)
|
|
for (c = 0; c < w; ++c) {
|
|
int i = r * w + c, dir;
|
|
numbers[i] = 0;
|
|
for (dir = 0; dir < 4; ++dir) {
|
|
int rr = r + dy[dir], cc = c + dx[dir], ii = rr * w + cc;
|
|
if (OUT_OF_BOUNDS(cc, rr, w, h) ||
|
|
!dsf_equivalent(dsf, i, ii)) {
|
|
++numbers[i];
|
|
soln[i] |= BORDER(dir);
|
|
}
|
|
}
|
|
}
|
|
|
|
scopy(scratch_borders, rim, wh);
|
|
} while (!solver(params, numbers, scratch_borders));
|
|
|
|
for (i = 0; i < wh; ++i) {
|
|
int j = shuf[i];
|
|
clue copy = numbers[j];
|
|
|
|
scopy(scratch_borders, rim, wh);
|
|
numbers[j] = EMPTY; /* strip away unnecssary clues */
|
|
if (!solver(params, numbers, scratch_borders))
|
|
numbers[j] = copy;
|
|
}
|
|
|
|
numbers[wh] = '\0';
|
|
|
|
sfree(scratch_borders);
|
|
sfree(rim);
|
|
sfree(shuf);
|
|
dsf_free(dsf);
|
|
|
|
char *output = snewn(wh + 1, char), *p = output;
|
|
|
|
r = 0;
|
|
for (i = 0; i < wh; ++i) {
|
|
if (numbers[i] != EMPTY) {
|
|
while (r) {
|
|
while (r > 26) {
|
|
*p++ = 'z';
|
|
r -= 26;
|
|
}
|
|
*p++ = 'a'-1 + r;
|
|
r = 0;
|
|
}
|
|
*p++ = '0' + numbers[i];
|
|
} else ++r;
|
|
}
|
|
*p++ = '\0';
|
|
|
|
sfree(numbers);
|
|
return sresize(output, p - output, char);
|
|
}
|
|
|
|
static const char *validate_desc(const game_params *params, const char *desc)
|
|
{
|
|
|
|
int w = params->w, h = params->h, wh = w*h, squares = 0;
|
|
|
|
for (/* nop */; *desc; ++desc) {
|
|
if (islower((unsigned char)*desc)) {
|
|
squares += *desc - 'a' + 1;
|
|
} else if (isdigit((unsigned char)*desc)) {
|
|
if (*desc > '4') {
|
|
static char buf[] = "Invalid (too large) number: '5'";
|
|
assert (isdigit((unsigned char)buf[lenof(buf) - 3]));
|
|
buf[lenof(buf) - 3] = *desc; /* ... or 6, 7, 8, 9 :-) */
|
|
return buf;
|
|
}
|
|
++squares;
|
|
} else if (isprint((unsigned char)*desc)) {
|
|
static char buf[] = "Invalid character in data: '?'";
|
|
buf[lenof(buf) - 3] = *desc;
|
|
return buf;
|
|
} else return "Invalid (unprintable) character in data";
|
|
}
|
|
|
|
if (squares > wh) return "Data describes too many squares";
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static game_state *new_game(midend *me, const game_params *params,
|
|
const char *desc)
|
|
{
|
|
int w = params->w, h = params->h, wh = w*h, i;
|
|
game_state *state = snew(game_state);
|
|
|
|
state->shared = snew(shared_state);
|
|
state->shared->refcount = 1;
|
|
state->shared->params = *params; /* struct copy */
|
|
snewa(state->shared->clues, wh);
|
|
|
|
setmem(state->shared->clues, EMPTY, wh);
|
|
for (i = 0; *desc; ++desc) {
|
|
if (isdigit((unsigned char)*desc)) state->shared->clues[i++] = *desc - '0';
|
|
else if (isalpha((unsigned char)*desc)) i += *desc - 'a' + 1;
|
|
}
|
|
|
|
snewa(state->borders, wh);
|
|
init_borders(w, h, state->borders);
|
|
|
|
state->completed = (params->k == wh);
|
|
state->cheated = false;
|
|
|
|
return state;
|
|
}
|
|
|
|
static game_state *dup_game(const game_state *state)
|
|
{
|
|
int wh = state->shared->params.w * state->shared->params.h;
|
|
game_state *ret = snew(game_state);
|
|
|
|
ret->borders = dupmem(state->borders, wh);
|
|
|
|
ret->shared = state->shared;
|
|
++ret->shared->refcount;
|
|
|
|
ret->completed = state->completed;
|
|
ret->cheated = state->cheated;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void free_game(game_state *state)
|
|
{
|
|
if (--state->shared->refcount == 0) {
|
|
sfree(state->shared->clues);
|
|
sfree(state->shared);
|
|
}
|
|
sfree(state->borders);
|
|
sfree(state);
|
|
}
|
|
|
|
static char *solve_game(const game_state *state, const game_state *currstate,
|
|
const char *aux, const char **error)
|
|
{
|
|
int w = state->shared->params.w, h = state->shared->params.h, wh = w*h;
|
|
borderflag *move;
|
|
|
|
if (aux) return dupstr(aux);
|
|
|
|
snewa(move, wh + 2);
|
|
|
|
move[0] = 'S';
|
|
init_borders(w, h, move + 1);
|
|
move[wh + 1] = '\0';
|
|
|
|
if (solver(&state->shared->params, state->shared->clues, move + 1)) {
|
|
int i;
|
|
for (i = 0; i < wh; i++)
|
|
move[i+1] |= '@'; /* turn into sensible ASCII */
|
|
return (char *) move;
|
|
}
|
|
|
|
*error = "Sorry, I can't solve this puzzle";
|
|
sfree(move);
|
|
return NULL;
|
|
|
|
{
|
|
/* compile-time-assert (borderflag is-a-kind-of char).
|
|
*
|
|
* depends on zero-size arrays being disallowed. GCC says
|
|
* ISO C forbids this, pointing to [-Werror=edantic]. Also,
|
|
* it depends on type-checking of (obviously) dead code. */
|
|
borderflag b[sizeof (borderflag) == sizeof (char)];
|
|
char c = b[0]; b[0] = c;
|
|
/* we could at least in principle put this anywhere, but it
|
|
* seems silly to not put it where the assumption is used. */
|
|
}
|
|
}
|
|
|
|
static bool game_can_format_as_text_now(const game_params *params)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static char *game_text_format(const game_state *state)
|
|
{
|
|
int w = state->shared->params.w, h = state->shared->params.h, r, c;
|
|
int cw = 4, ch = 2, gw = cw*w + 2, gh = ch * h + 1, len = gw * gh;
|
|
char *board;
|
|
|
|
setmem(snewa(board, len + 1), ' ', len);
|
|
for (r = 0; r < h; ++r) {
|
|
for (c = 0; c < w; ++c) {
|
|
int cell = r*ch*gw + cw*c, center = cell + gw*ch/2 + cw/2;
|
|
int i = r * w + c, clue = state->shared->clues[i];
|
|
|
|
if (clue != EMPTY) board[center] = '0' + clue;
|
|
|
|
board[cell] = '+';
|
|
|
|
if (state->borders[i] & BORDER_U)
|
|
setmem(board + cell + 1, '-', cw - 1);
|
|
else if (state->borders[i] & DISABLED(BORDER_U))
|
|
board[cell + cw / 2] = 'x';
|
|
|
|
if (state->borders[i] & BORDER_L)
|
|
board[cell + gw] = '|';
|
|
else if (state->borders[i] & DISABLED(BORDER_L))
|
|
board[cell + gw] = 'x';
|
|
}
|
|
|
|
for (c = 0; c < ch; ++c) {
|
|
board[(r*ch + c)*gw + gw - 2] = c ? '|' : '+';
|
|
board[(r*ch + c)*gw + gw - 1] = '\n';
|
|
}
|
|
}
|
|
|
|
scopy(board + len - gw, board, gw);
|
|
board[len] = '\0';
|
|
|
|
return board;
|
|
}
|
|
|
|
struct game_ui {
|
|
int x, y;
|
|
bool show;
|
|
};
|
|
|
|
static game_ui *new_ui(const game_state *state)
|
|
{
|
|
game_ui *ui = snew(game_ui);
|
|
ui->x = ui->y = 0;
|
|
ui->show = getenv_bool("PUZZLES_SHOW_CURSOR", false);
|
|
return ui;
|
|
}
|
|
|
|
static void free_ui(game_ui *ui)
|
|
{
|
|
sfree(ui);
|
|
}
|
|
|
|
static void game_changed_state(game_ui *ui, const game_state *oldstate,
|
|
const game_state *newstate)
|
|
{
|
|
}
|
|
|
|
typedef unsigned short dsflags;
|
|
|
|
struct game_drawstate {
|
|
int tilesize;
|
|
dsflags *grid;
|
|
};
|
|
|
|
#define TILESIZE (ds->tilesize)
|
|
#define MARGIN (ds->tilesize / 2)
|
|
#define WIDTH (3*TILESIZE/32 > 1 ? 3*TILESIZE/32 : 1)
|
|
#define CENTER ((ds->tilesize / 2) + WIDTH/2)
|
|
|
|
#define FROMCOORD(x) (((x) - MARGIN) / TILESIZE)
|
|
|
|
enum {MAYBE_LEFT, MAYBE_RIGHT, ON_LEFT, ON_RIGHT, OFF_LEFT, OFF_RIGHT};
|
|
|
|
static char *interpret_move(const game_state *state, game_ui *ui,
|
|
const game_drawstate *ds, int x, int y, int button)
|
|
{
|
|
int w = state->shared->params.w, h = state->shared->params.h;
|
|
bool control = button & MOD_CTRL, shift = button & MOD_SHFT;
|
|
|
|
button = STRIP_BUTTON_MODIFIERS(button);
|
|
|
|
if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
|
|
int gx = FROMCOORD(x), gy = FROMCOORD(y), possible = BORDER_MASK;
|
|
int px = (x - MARGIN) % TILESIZE, py = (y - MARGIN) % TILESIZE;
|
|
int hx, hy, dir, i;
|
|
|
|
if (OUT_OF_BOUNDS(gx, gy, w, h)) return NULL;
|
|
|
|
ui->x = gx;
|
|
ui->y = gy;
|
|
|
|
/* find edge closest to click point */
|
|
possible &=~ (2*px < TILESIZE ? BORDER_R : BORDER_L);
|
|
possible &=~ (2*py < TILESIZE ? BORDER_D : BORDER_U);
|
|
px = min(px, TILESIZE - px);
|
|
py = min(py, TILESIZE - py);
|
|
possible &=~ (px < py ? (BORDER_U|BORDER_D) : (BORDER_L|BORDER_R));
|
|
|
|
for (dir = 0; dir < 4 && BORDER(dir) != possible; ++dir);
|
|
if (dir == 4) return NULL; /* there's not exactly one such edge */
|
|
|
|
hx = gx + dx[dir];
|
|
hy = gy + dy[dir];
|
|
|
|
if (OUT_OF_BOUNDS(hx, hy, w, h)) return NULL;
|
|
|
|
ui->show = false;
|
|
|
|
i = gy * w + gx;
|
|
switch ((button == RIGHT_BUTTON) |
|
|
((state->borders[i] & BORDER(dir)) >> dir << 1) |
|
|
((state->borders[i] & DISABLED(BORDER(dir))) >> dir >> 2)) {
|
|
|
|
case MAYBE_LEFT:
|
|
case ON_LEFT:
|
|
case ON_RIGHT:
|
|
return string(80, "F%d,%d,%dF%d,%d,%d",
|
|
gx, gy, BORDER(dir),
|
|
hx, hy, BORDER(FLIP(dir)));
|
|
|
|
case MAYBE_RIGHT:
|
|
case OFF_LEFT:
|
|
case OFF_RIGHT:
|
|
return string(80, "F%d,%d,%dF%d,%d,%d",
|
|
gx, gy, DISABLED(BORDER(dir)),
|
|
hx, hy, DISABLED(BORDER(FLIP(dir))));
|
|
}
|
|
}
|
|
|
|
if (IS_CURSOR_MOVE(button)) {
|
|
if (control || shift) {
|
|
borderflag flag = 0, newflag;
|
|
int dir, i = ui->y * w + ui->x;
|
|
ui->show = true;
|
|
x = ui->x;
|
|
y = ui->y;
|
|
move_cursor(button, &x, &y, w, h, false, NULL);
|
|
if (OUT_OF_BOUNDS(x, y, w, h)) return NULL;
|
|
|
|
for (dir = 0; dir < 4; ++dir)
|
|
if (dx[dir] == x - ui->x && dy[dir] == y - ui->y) break;
|
|
if (dir == 4) return NULL; /* how the ... ?! */
|
|
|
|
if (control) flag |= BORDER(dir);
|
|
if (shift) flag |= DISABLED(BORDER(dir));
|
|
|
|
newflag = state->borders[i] ^ flag;
|
|
if (newflag & BORDER(dir) && newflag & DISABLED(BORDER(dir)))
|
|
return NULL;
|
|
|
|
newflag = 0;
|
|
if (control) newflag |= BORDER(FLIP(dir));
|
|
if (shift) newflag |= DISABLED(BORDER(FLIP(dir)));
|
|
return string(80, "F%d,%d,%dF%d,%d,%d",
|
|
ui->x, ui->y, flag, x, y, newflag);
|
|
} else
|
|
return move_cursor(button, &ui->x, &ui->y, w, h, false, &ui->show);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static game_state *execute_move(const game_state *state, const char *move)
|
|
{
|
|
int w = state->shared->params.w, h = state->shared->params.h, wh = w * h;
|
|
game_state *ret = dup_game(state);
|
|
int nchars, x, y, flag, i;
|
|
|
|
if (*move == 'S') {
|
|
++move;
|
|
for (i = 0; i < wh && move[i]; ++i)
|
|
ret->borders[i] =
|
|
(move[i] & BORDER_MASK) | DISABLED(~move[i] & BORDER_MASK);
|
|
if (i < wh || move[i]) goto badmove;
|
|
ret->cheated = ret->completed = true;
|
|
return ret;
|
|
}
|
|
|
|
while (sscanf(move, "F%d,%d,%d%n", &x, &y, &flag, &nchars) == 3 &&
|
|
!OUT_OF_BOUNDS(x, y, w, h)) {
|
|
move += nchars;
|
|
for (i = 0; i < 4; i++)
|
|
if ((flag & BORDER(i)) &&
|
|
OUT_OF_BOUNDS(x+dx[i], y+dy[i], w, h))
|
|
/* No toggling the borders of the grid! */
|
|
goto badmove;
|
|
ret->borders[y*w + x] ^= flag;
|
|
}
|
|
|
|
if (*move) goto badmove;
|
|
|
|
if (!ret->completed)
|
|
ret->completed = is_solved(&ret->shared->params, ret->shared->clues,
|
|
ret->borders);
|
|
|
|
return ret;
|
|
|
|
badmove:
|
|
free_game(ret);
|
|
return NULL;
|
|
}
|
|
|
|
/* --- Drawing routines --------------------------------------------- */
|
|
|
|
static void game_compute_size(const game_params *params, int tilesize,
|
|
const game_ui *ui, int *x, int *y)
|
|
{
|
|
*x = (params->w + 1) * tilesize;
|
|
*y = (params->h + 1) * tilesize;
|
|
}
|
|
|
|
static void game_set_size(drawing *dr, game_drawstate *ds,
|
|
const game_params *params, int tilesize)
|
|
{
|
|
ds->tilesize = tilesize;
|
|
}
|
|
|
|
enum {
|
|
COL_BACKGROUND,
|
|
COL_FLASH,
|
|
COL_GRID,
|
|
COL_CLUE = COL_GRID,
|
|
COL_LINE_YES = COL_GRID,
|
|
COL_LINE_MAYBE,
|
|
COL_LINE_NO,
|
|
COL_ERROR,
|
|
|
|
NCOLOURS
|
|
};
|
|
|
|
#define COLOUR(i, r, g, b) \
|
|
((ret[3*(i)+0] = (r)), (ret[3*(i)+1] = (g)), (ret[3*(i)+2] = (b)))
|
|
#define DARKER 0.9F
|
|
|
|
static float *game_colours(frontend *fe, int *ncolours)
|
|
{
|
|
float *ret = snewn(3 * NCOLOURS, float);
|
|
|
|
game_mkhighlight(fe, ret, COL_BACKGROUND, -1, COL_FLASH);
|
|
|
|
COLOUR(COL_GRID, 0.0F, 0.0F, 0.0F); /* black */
|
|
COLOUR(COL_ERROR, 1.0F, 0.0F, 0.0F); /* red */
|
|
|
|
COLOUR(COL_LINE_MAYBE, /* yellow */
|
|
ret[COL_BACKGROUND*3 + 0] * DARKER,
|
|
ret[COL_BACKGROUND*3 + 1] * DARKER,
|
|
0.0F);
|
|
|
|
COLOUR(COL_LINE_NO,
|
|
ret[COL_BACKGROUND*3 + 0] * DARKER,
|
|
ret[COL_BACKGROUND*3 + 1] * DARKER,
|
|
ret[COL_BACKGROUND*3 + 2] * DARKER);
|
|
|
|
*ncolours = NCOLOURS;
|
|
return ret;
|
|
}
|
|
#undef COLOUR
|
|
|
|
#define BORDER_ERROR(x) ((x) << 8)
|
|
#define F_ERROR_U BORDER_ERROR(BORDER_U) /* BIT( 8) */
|
|
#define F_ERROR_R BORDER_ERROR(BORDER_R) /* BIT( 9) */
|
|
#define F_ERROR_D BORDER_ERROR(BORDER_D) /* BIT(10) */
|
|
#define F_ERROR_L BORDER_ERROR(BORDER_L) /* BIT(11) */
|
|
#define F_ERROR_CLUE BIT(12)
|
|
#define F_FLASH BIT(13)
|
|
#define F_CURSOR BIT(14)
|
|
|
|
static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state)
|
|
{
|
|
struct game_drawstate *ds = snew(struct game_drawstate);
|
|
|
|
ds->tilesize = 0;
|
|
ds->grid = NULL;
|
|
|
|
return ds;
|
|
}
|
|
|
|
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
|
|
{
|
|
sfree(ds->grid);
|
|
sfree(ds);
|
|
}
|
|
|
|
#define COLOUR(border) \
|
|
(flags & BORDER_ERROR((border)) ? COL_ERROR : \
|
|
flags & (border) ? COL_LINE_YES : \
|
|
flags & DISABLED((border)) ? COL_LINE_NO : \
|
|
COL_LINE_MAYBE)
|
|
|
|
static void draw_tile(drawing *dr, game_drawstate *ds, int r, int c,
|
|
dsflags flags, int clue)
|
|
{
|
|
int x = MARGIN + TILESIZE * c, y = MARGIN + TILESIZE * r;
|
|
|
|
clip(dr, x, y, TILESIZE + WIDTH, TILESIZE + WIDTH); /* { */
|
|
|
|
draw_rect(dr, x + WIDTH, y + WIDTH, TILESIZE - WIDTH, TILESIZE - WIDTH,
|
|
(flags & F_FLASH ? COL_FLASH : COL_BACKGROUND));
|
|
|
|
if (flags & F_CURSOR)
|
|
draw_rect_corners(dr, x + CENTER, y + CENTER, TILESIZE / 3, COL_GRID);
|
|
|
|
if (clue != EMPTY) {
|
|
char buf[2];
|
|
buf[0] = '0' + clue;
|
|
buf[1] = '\0';
|
|
draw_text(dr, x + CENTER, y + CENTER, FONT_VARIABLE,
|
|
TILESIZE / 2, ALIGN_VCENTRE | ALIGN_HCENTRE,
|
|
(flags & F_ERROR_CLUE ? COL_ERROR : COL_CLUE), buf);
|
|
}
|
|
|
|
|
|
#define ts TILESIZE
|
|
#define w WIDTH
|
|
draw_rect(dr, x + w, y, ts - w, w, COLOUR(BORDER_U));
|
|
draw_rect(dr, x + ts, y + w, w, ts - w, COLOUR(BORDER_R));
|
|
draw_rect(dr, x + w, y + ts, ts - w, w, COLOUR(BORDER_D));
|
|
draw_rect(dr, x, y + w, w, ts - w, COLOUR(BORDER_L));
|
|
#undef ts
|
|
#undef w
|
|
|
|
unclip(dr); /* } */
|
|
draw_update(dr, x, y, TILESIZE + WIDTH, TILESIZE + WIDTH);
|
|
}
|
|
|
|
#define FLASH_TIME 0.7F
|
|
|
|
static void game_redraw(drawing *dr, game_drawstate *ds,
|
|
const game_state *oldstate, const game_state *state,
|
|
int dir, const game_ui *ui,
|
|
float animtime, float flashtime)
|
|
{
|
|
int w = state->shared->params.w, h = state->shared->params.h, wh = w*h;
|
|
int r, c, flash = ((int) (flashtime * 5 / FLASH_TIME)) % 2;
|
|
DSF *black_border_dsf = dsf_new(wh), *yellow_border_dsf = dsf_new(wh);
|
|
int k = state->shared->params.k;
|
|
|
|
if (!ds->grid) {
|
|
char buf[40];
|
|
int bgw = (w+1) * ds->tilesize, bgh = (h+1) * ds->tilesize;
|
|
|
|
for (r = 0; r <= h; ++r)
|
|
for (c = 0; c <= w; ++c)
|
|
draw_rect(dr, MARGIN + TILESIZE * c, MARGIN + TILESIZE * r,
|
|
WIDTH, WIDTH, COL_GRID);
|
|
draw_update(dr, 0, 0, bgw, bgh);
|
|
|
|
snewa(ds->grid, wh);
|
|
setmem(ds->grid, ~0, wh);
|
|
|
|
sprintf(buf, "Region size: %d", state->shared->params.k);
|
|
status_bar(dr, buf);
|
|
}
|
|
|
|
build_dsf(w, h, state->borders, black_border_dsf, true);
|
|
build_dsf(w, h, state->borders, yellow_border_dsf, false);
|
|
|
|
for (r = 0; r < h; ++r)
|
|
for (c = 0; c < w; ++c) {
|
|
int i = r * w + c, clue = state->shared->clues[i], flags, dir;
|
|
int on = bitcount[state->borders[i] & BORDER_MASK];
|
|
int off = bitcount[(state->borders[i] >> 4) & BORDER_MASK];
|
|
|
|
flags = state->borders[i];
|
|
|
|
if (flash) flags |= F_FLASH;
|
|
|
|
if (clue != EMPTY && (on > clue || clue > 4 - off))
|
|
flags |= F_ERROR_CLUE;
|
|
|
|
if (ui->show && ui->x == c && ui->y == r)
|
|
flags |= F_CURSOR;
|
|
|
|
/* border errors */
|
|
for (dir = 0; dir < 4; ++dir) {
|
|
int rr = r + dy[dir], cc = c + dx[dir], ii = rr * w + cc;
|
|
|
|
if (OUT_OF_BOUNDS(cc, rr, w, h)) continue;
|
|
|
|
/* we draw each border twice, except the outermost
|
|
* big border, so we have to check for errors on
|
|
* both sides of each border.*/
|
|
if (/* region too large */
|
|
((dsf_size(yellow_border_dsf, i) > k ||
|
|
dsf_size(yellow_border_dsf, ii) > k) &&
|
|
(dsf_canonify(yellow_border_dsf, i) !=
|
|
dsf_canonify(yellow_border_dsf, ii)))
|
|
|
|
||
|
|
/* region too small */
|
|
((dsf_size(black_border_dsf, i) < k ||
|
|
dsf_size(black_border_dsf, ii) < k) &&
|
|
dsf_canonify(black_border_dsf, i) !=
|
|
dsf_canonify(black_border_dsf, ii))
|
|
|
|
||
|
|
/* dangling borders within a single region */
|
|
((state->borders[i] & BORDER(dir)) &&
|
|
/* we know it's a single region because there's a
|
|
* path crossing no border from i to ii... */
|
|
(dsf_canonify(yellow_border_dsf, i) ==
|
|
dsf_canonify(yellow_border_dsf, ii) ||
|
|
/* or because any such border would be an error */
|
|
(dsf_size(black_border_dsf, i) <= k &&
|
|
dsf_canonify(black_border_dsf, i) ==
|
|
dsf_canonify(black_border_dsf, ii)))))
|
|
|
|
flags |= BORDER_ERROR(BORDER(dir));
|
|
}
|
|
|
|
if (flags == ds->grid[i]) continue;
|
|
ds->grid[i] = flags;
|
|
draw_tile(dr, ds, r, c, ds->grid[i], clue);
|
|
}
|
|
|
|
dsf_free(black_border_dsf);
|
|
dsf_free(yellow_border_dsf);
|
|
}
|
|
|
|
static float game_anim_length(const game_state *oldstate,
|
|
const game_state *newstate,
|
|
int dir, game_ui *ui)
|
|
{
|
|
return 0.0F;
|
|
}
|
|
|
|
static float game_flash_length(const game_state *oldstate,
|
|
const game_state *newstate,
|
|
int dir, game_ui *ui)
|
|
{
|
|
if (newstate->completed && !newstate->cheated && !oldstate->completed)
|
|
return FLASH_TIME;
|
|
return 0.0F;
|
|
}
|
|
|
|
static void game_get_cursor_location(const game_ui *ui,
|
|
const game_drawstate *ds,
|
|
const game_state *state,
|
|
const game_params *params,
|
|
int *x, int *y, int *w, int *h)
|
|
{
|
|
if(ui->show) {
|
|
*x = MARGIN + TILESIZE * ui->x;
|
|
*y = MARGIN + TILESIZE * ui->y;
|
|
*w = *h = TILESIZE;
|
|
}
|
|
}
|
|
|
|
static int game_status(const game_state *state)
|
|
{
|
|
return state->completed ? +1 : 0;
|
|
}
|
|
|
|
static void game_print_size(const game_params *params, const game_ui *ui,
|
|
float *x, float *y)
|
|
{
|
|
int pw, ph;
|
|
|
|
game_compute_size(params, 700, ui, &pw, &ph); /* 7mm, like loopy */
|
|
|
|
*x = pw / 100.0F;
|
|
*y = ph / 100.0F;
|
|
}
|
|
|
|
static void print_line(drawing *dr, int x1, int y1, int x2, int y2,
|
|
int colour, bool full)
|
|
{
|
|
if (!full) {
|
|
int i, subdivisions = 8;
|
|
for (i = 1; i < subdivisions; ++i) {
|
|
int x = (x1 * (subdivisions - i) + x2 * i) / subdivisions;
|
|
int y = (y1 * (subdivisions - i) + y2 * i) / subdivisions;
|
|
draw_circle(dr, x, y, 3, colour, colour);
|
|
}
|
|
} else draw_line(dr, x1, y1, x2, y2, colour);
|
|
}
|
|
|
|
static void game_print(drawing *dr, const game_state *state, const game_ui *ui,
|
|
int tilesize)
|
|
{
|
|
int w = state->shared->params.w, h = state->shared->params.h;
|
|
int ink = print_mono_colour(dr, 0);
|
|
game_drawstate for_tilesize_macros, *ds = &for_tilesize_macros;
|
|
int r, c;
|
|
|
|
ds->tilesize = tilesize;
|
|
|
|
for (r = 0; r < h; ++r)
|
|
for (c = 0; c < w; ++c) {
|
|
int x = MARGIN + TILESIZE * c, y = MARGIN + TILESIZE * r;
|
|
int i = r * w + c, clue = state->shared->clues[i];
|
|
|
|
if (clue != EMPTY) {
|
|
char buf[2];
|
|
buf[0] = '0' + clue;
|
|
buf[1] = '\0';
|
|
draw_text(dr, x + CENTER, y + CENTER, FONT_VARIABLE,
|
|
TILESIZE / 2, ALIGN_VCENTRE | ALIGN_HCENTRE,
|
|
ink, buf);
|
|
}
|
|
|
|
#define ts TILESIZE
|
|
#define FULL(DIR) (state->borders[i] & (BORDER_ ## DIR))
|
|
print_line(dr, x, y, x + ts, y, ink, FULL(U));
|
|
print_line(dr, x + ts, y, x + ts, y + ts, ink, FULL(R));
|
|
print_line(dr, x, y + ts, x + ts, y + ts, ink, FULL(D));
|
|
print_line(dr, x, y, x, y + ts, ink, FULL(L));
|
|
#undef ts
|
|
#undef FULL
|
|
}
|
|
|
|
for (r = 1; r < h; ++r)
|
|
for (c = 1; c < w; ++c) {
|
|
int j = r * w + c, i = j - 1 - w;
|
|
int x = MARGIN + TILESIZE * c, y = MARGIN + TILESIZE * r;
|
|
if (state->borders[i] & (BORDER_D|BORDER_R)) continue;
|
|
if (state->borders[j] & (BORDER_U|BORDER_L)) continue;
|
|
draw_circle(dr, x, y, 3, ink, ink);
|
|
}
|
|
}
|
|
|
|
#ifdef COMBINED
|
|
#define thegame palisade
|
|
#endif
|
|
|
|
const struct game thegame = {
|
|
"Palisade", "games.palisade", "palisade",
|
|
default_params,
|
|
game_fetch_preset, NULL,
|
|
decode_params,
|
|
encode_params,
|
|
free_params,
|
|
dup_params,
|
|
true, game_configure, custom_params,
|
|
validate_params,
|
|
new_game_desc,
|
|
validate_desc,
|
|
new_game,
|
|
dup_game,
|
|
free_game,
|
|
true, solve_game,
|
|
true, game_can_format_as_text_now, game_text_format,
|
|
NULL, NULL, /* get_prefs, set_prefs */
|
|
new_ui,
|
|
free_ui,
|
|
NULL, /* encode_ui */
|
|
NULL, /* decode_ui */
|
|
NULL, /* game_request_keys */
|
|
game_changed_state,
|
|
NULL, /* current_key_label */
|
|
interpret_move,
|
|
execute_move,
|
|
48, game_compute_size, game_set_size,
|
|
game_colours,
|
|
game_new_drawstate,
|
|
game_free_drawstate,
|
|
game_redraw,
|
|
game_anim_length,
|
|
game_flash_length,
|
|
game_get_cursor_location,
|
|
game_status,
|
|
true, false, game_print_size, game_print,
|
|
true, /* wants_statusbar */
|
|
false, NULL, /* timing_state */
|
|
0, /* flags */
|
|
};
|