Files
puzzles/solo.c
Simon Tatham 6ea61aa98e Unify the two solvers in Solo. nsolve has now had recursion
capability added to it, to be used only when all else fails, and is
simply called `solver'. This means that:

 - solving of 5x5 Trivial grids using the `Solve' function, which
   previously hung for ages because rsolve happened to take a wrong
   turning at the start, is now zippy
 - solosolver doesn't require the confusing -r and -n options
 - solosolver can show its working even for Unreasonable grids.

Unfortunately, the new unified solver still isn't suitable for grid
generation. After it proved to be so much faster at solving 5x5s, I
hoped to be able to substitute it for rsolve during generation and
gain additional speed in 5x5 generation too; but no luck, because
it's slower _per recursion level_, and although during solving it
makes up for this by needing very few levels, there is a lot of
_unavoidable_ recursion during generation, especially at 5x5. A
hybrid strategy which starts off with rsolve and switches to the
unified solver at a critical point proved unsatisfactory as well,
because the critical point changes depending on the vagaries of the
recursion and can't be pinpointed easily. So rsolve is still in
there, only renamed `gridgen' because that's now all it's good for.

[originally from svn r6077]
2005-07-06 18:36:20 +00:00

2746 lines
76 KiB
C

/*
* solo.c: the number-placing puzzle most popularly known as `Sudoku'.
*
* TODO:
*
* - reports from users are that `Trivial'-mode puzzles are still
* rather hard compared to newspapers' easy ones, so some better
* low-end difficulty grading would be nice
* + it's possible that really easy puzzles always have
* _several_ things you can do, so don't make you hunt too
* hard for the one deduction you can currently make
* + it's also possible that easy puzzles require fewer
* cross-eliminations: perhaps there's a higher incidence of
* things you can deduce by looking only at (say) rows,
* rather than things you have to check both rows and columns
* for
* + but really, what I need to do is find some really easy
* puzzles and _play_ them, to see what's actually easy about
* them
* + while I'm revamping this area, filling in the _last_
* number in a nearly-full row or column should certainly be
* permitted even at the lowest difficulty level.
* + also Owen noticed that `Basic' grids requiring numeric
* elimination are actually very hard, so I wonder if a
* difficulty gradation between that and positional-
* elimination-only might be in order
* + but it's not good to have _too_ many difficulty levels, or
* it'll take too long to randomly generate a given level.
*
* - it might still be nice to do some prioritisation on the
* removal of numbers from the grid
* + one possibility is to try to minimise the maximum number
* of filled squares in any block, which in particular ought
* to enforce never leaving a completely filled block in the
* puzzle as presented.
*
* - alternative interface modes
* + sudoku.com's Windows program has a palette of possible
* entries; you select a palette entry first and then click
* on the square you want it to go in, thus enabling
* mouse-only play. Useful for PDAs! I don't think it's
* actually incompatible with the current highlight-then-type
* approach: you _either_ highlight a palette entry and then
* click, _or_ you highlight a square and then type. At most
* one thing is ever highlighted at a time, so there's no way
* to confuse the two.
* + then again, I don't actually like sudoku.com's interface;
* it's too much like a paint package whereas I prefer to
* think of Solo as a text editor.
* + another PDA-friendly possibility is a drag interface:
* _drag_ numbers from the palette into the grid squares.
* Thought experiments suggest I'd prefer that to the
* sudoku.com approach, but I haven't actually tried it.
*/
/*
* Solo puzzles need to be square overall (since each row and each
* column must contain one of every digit), but they need not be
* subdivided the same way internally. I am going to adopt a
* convention whereby I _always_ refer to `r' as the number of rows
* of _big_ divisions, and `c' as the number of columns of _big_
* divisions. Thus, a 2c by 3r puzzle looks something like this:
*
* 4 5 1 | 2 6 3
* 6 3 2 | 5 4 1
* ------+------ (Of course, you can't subdivide it the other way
* 1 4 5 | 6 3 2 or you'll get clashes; observe that the 4 in the
* 3 2 6 | 4 1 5 top left would conflict with the 4 in the second
* ------+------ box down on the left-hand side.)
* 5 1 4 | 3 2 6
* 2 6 3 | 1 5 4
*
* The need for a strong naming convention should now be clear:
* each small box is two rows of digits by three columns, while the
* overall puzzle has three rows of small boxes by two columns. So
* I will (hopefully) consistently use `r' to denote the number of
* rows _of small boxes_ (here 3), which is also the number of
* columns of digits in each small box; and `c' vice versa (here
* 2).
*
* I'm also going to choose arbitrarily to list c first wherever
* possible: the above is a 2x3 puzzle, not a 3x2 one.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <ctype.h>
#include <math.h>
#ifdef STANDALONE_SOLVER
#include <stdarg.h>
int solver_show_working, solver_recurse_depth;
#endif
#include "puzzles.h"
/*
* To save space, I store digits internally as unsigned char. This
* imposes a hard limit of 255 on the order of the puzzle. Since
* even a 5x5 takes unacceptably long to generate, I don't see this
* as a serious limitation unless something _really_ impressive
* happens in computing technology; but here's a typedef anyway for
* general good practice.
*/
typedef unsigned char digit;
#define ORDER_MAX 255
#define PREFERRED_TILE_SIZE 32
#define TILE_SIZE (ds->tilesize)
#define BORDER (TILE_SIZE / 2)
#define FLASH_TIME 0.4F
enum { SYMM_NONE, SYMM_ROT2, SYMM_ROT4, SYMM_REF2, SYMM_REF2D, SYMM_REF4,
SYMM_REF4D, SYMM_REF8 };
enum { DIFF_BLOCK, DIFF_SIMPLE, DIFF_INTERSECT,
DIFF_SET, DIFF_RECURSIVE, DIFF_AMBIGUOUS, DIFF_IMPOSSIBLE };
enum {
COL_BACKGROUND,
COL_GRID,
COL_CLUE,
COL_USER,
COL_HIGHLIGHT,
COL_ERROR,
COL_PENCIL,
NCOLOURS
};
struct game_params {
int c, r, symm, diff;
};
struct game_state {
int c, r;
digit *grid;
unsigned char *pencil; /* c*r*c*r elements */
unsigned char *immutable; /* marks which digits are clues */
int completed, cheated;
};
static game_params *default_params(void)
{
game_params *ret = snew(game_params);
ret->c = ret->r = 3;
ret->symm = SYMM_ROT2; /* a plausible default */
ret->diff = DIFF_BLOCK; /* so is this */
return ret;
}
static void free_params(game_params *params)
{
sfree(params);
}
static game_params *dup_params(game_params *params)
{
game_params *ret = snew(game_params);
*ret = *params; /* structure copy */
return ret;
}
static int game_fetch_preset(int i, char **name, game_params **params)
{
static struct {
char *title;
game_params params;
} presets[] = {
{ "2x2 Trivial", { 2, 2, SYMM_ROT2, DIFF_BLOCK } },
{ "2x3 Basic", { 2, 3, SYMM_ROT2, DIFF_SIMPLE } },
{ "3x3 Trivial", { 3, 3, SYMM_ROT2, DIFF_BLOCK } },
{ "3x3 Basic", { 3, 3, SYMM_ROT2, DIFF_SIMPLE } },
{ "3x3 Intermediate", { 3, 3, SYMM_ROT2, DIFF_INTERSECT } },
{ "3x3 Advanced", { 3, 3, SYMM_ROT2, DIFF_SET } },
{ "3x3 Unreasonable", { 3, 3, SYMM_ROT2, DIFF_RECURSIVE } },
#ifndef SLOW_SYSTEM
{ "3x4 Basic", { 3, 4, SYMM_ROT2, DIFF_SIMPLE } },
{ "4x4 Basic", { 4, 4, SYMM_ROT2, DIFF_SIMPLE } },
#endif
};
if (i < 0 || i >= lenof(presets))
return FALSE;
*name = dupstr(presets[i].title);
*params = dup_params(&presets[i].params);
return TRUE;
}
static void decode_params(game_params *ret, char const *string)
{
ret->c = ret->r = atoi(string);
while (*string && isdigit((unsigned char)*string)) string++;
if (*string == 'x') {
string++;
ret->r = atoi(string);
while (*string && isdigit((unsigned char)*string)) string++;
}
while (*string) {
if (*string == 'r' || *string == 'm' || *string == 'a') {
int sn, sc, sd;
sc = *string++;
if (*string == 'd') {
sd = TRUE;
string++;
} else {
sd = FALSE;
}
sn = atoi(string);
while (*string && isdigit((unsigned char)*string)) string++;
if (sc == 'm' && sn == 8)
ret->symm = SYMM_REF8;
if (sc == 'm' && sn == 4)
ret->symm = sd ? SYMM_REF4D : SYMM_REF4;
if (sc == 'm' && sn == 2)
ret->symm = sd ? SYMM_REF2D : SYMM_REF2;
if (sc == 'r' && sn == 4)
ret->symm = SYMM_ROT4;
if (sc == 'r' && sn == 2)
ret->symm = SYMM_ROT2;
if (sc == 'a')
ret->symm = SYMM_NONE;
} else if (*string == 'd') {
string++;
if (*string == 't') /* trivial */
string++, ret->diff = DIFF_BLOCK;
else if (*string == 'b') /* basic */
string++, ret->diff = DIFF_SIMPLE;
else if (*string == 'i') /* intermediate */
string++, ret->diff = DIFF_INTERSECT;
else if (*string == 'a') /* advanced */
string++, ret->diff = DIFF_SET;
else if (*string == 'u') /* unreasonable */
string++, ret->diff = DIFF_RECURSIVE;
} else
string++; /* eat unknown character */
}
}
static char *encode_params(game_params *params, int full)
{
char str[80];
sprintf(str, "%dx%d", params->c, params->r);
if (full) {
switch (params->symm) {
case SYMM_REF8: strcat(str, "m8"); break;
case SYMM_REF4: strcat(str, "m4"); break;
case SYMM_REF4D: strcat(str, "md4"); break;
case SYMM_REF2: strcat(str, "m2"); break;
case SYMM_REF2D: strcat(str, "md2"); break;
case SYMM_ROT4: strcat(str, "r4"); break;
/* case SYMM_ROT2: strcat(str, "r2"); break; [default] */
case SYMM_NONE: strcat(str, "a"); break;
}
switch (params->diff) {
/* case DIFF_BLOCK: strcat(str, "dt"); break; [default] */
case DIFF_SIMPLE: strcat(str, "db"); break;
case DIFF_INTERSECT: strcat(str, "di"); break;
case DIFF_SET: strcat(str, "da"); break;
case DIFF_RECURSIVE: strcat(str, "du"); break;
}
}
return dupstr(str);
}
static config_item *game_configure(game_params *params)
{
config_item *ret;
char buf[80];
ret = snewn(5, config_item);
ret[0].name = "Columns of sub-blocks";
ret[0].type = C_STRING;
sprintf(buf, "%d", params->c);
ret[0].sval = dupstr(buf);
ret[0].ival = 0;
ret[1].name = "Rows of sub-blocks";
ret[1].type = C_STRING;
sprintf(buf, "%d", params->r);
ret[1].sval = dupstr(buf);
ret[1].ival = 0;
ret[2].name = "Symmetry";
ret[2].type = C_CHOICES;
ret[2].sval = ":None:2-way rotation:4-way rotation:2-way mirror:"
"2-way diagonal mirror:4-way mirror:4-way diagonal mirror:"
"8-way mirror";
ret[2].ival = params->symm;
ret[3].name = "Difficulty";
ret[3].type = C_CHOICES;
ret[3].sval = ":Trivial:Basic:Intermediate:Advanced:Unreasonable";
ret[3].ival = params->diff;
ret[4].name = NULL;
ret[4].type = C_END;
ret[4].sval = NULL;
ret[4].ival = 0;
return ret;
}
static game_params *custom_params(config_item *cfg)
{
game_params *ret = snew(game_params);
ret->c = atoi(cfg[0].sval);
ret->r = atoi(cfg[1].sval);
ret->symm = cfg[2].ival;
ret->diff = cfg[3].ival;
return ret;
}
static char *validate_params(game_params *params, int full)
{
if (params->c < 2 || params->r < 2)
return "Both dimensions must be at least 2";
if (params->c > ORDER_MAX || params->r > ORDER_MAX)
return "Dimensions greater than "STR(ORDER_MAX)" are not supported";
return NULL;
}
/* ----------------------------------------------------------------------
* Solver.
*
* This solver is used for several purposes:
* + to generate filled grids as the basis for new puzzles (by
* supplying no clue squares at all)
* + to check solubility of a grid as we gradually remove numbers
* from it
* + to solve an externally generated puzzle when the user selects
* `Solve'.
*
* It supports a variety of specific modes of reasoning. By
* enabling or disabling subsets of these modes we can arrange a
* range of difficulty levels.
*/
/*
* Modes of reasoning currently supported:
*
* - Positional elimination: a number must go in a particular
* square because all the other empty squares in a given
* row/col/blk are ruled out.
*
* - Numeric elimination: a square must have a particular number
* in because all the other numbers that could go in it are
* ruled out.
*
* - Intersectional analysis: given two domains which overlap
* (hence one must be a block, and the other can be a row or
* col), if the possible locations for a particular number in
* one of the domains can be narrowed down to the overlap, then
* that number can be ruled out everywhere but the overlap in
* the other domain too.
*
* - Set elimination: if there is a subset of the empty squares
* within a domain such that the union of the possible numbers
* in that subset has the same size as the subset itself, then
* those numbers can be ruled out everywhere else in the domain.
* (For example, if there are five empty squares and the
* possible numbers in each are 12, 23, 13, 134 and 1345, then
* the first three empty squares form such a subset: the numbers
* 1, 2 and 3 _must_ be in those three squares in some
* permutation, and hence we can deduce none of them can be in
* the fourth or fifth squares.)
* + You can also see this the other way round, concentrating
* on numbers rather than squares: if there is a subset of
* the unplaced numbers within a domain such that the union
* of all their possible positions has the same size as the
* subset itself, then all other numbers can be ruled out for
* those positions. However, it turns out that this is
* exactly equivalent to the first formulation at all times:
* there is a 1-1 correspondence between suitable subsets of
* the unplaced numbers and suitable subsets of the unfilled
* places, found by taking the _complement_ of the union of
* the numbers' possible positions (or the spaces' possible
* contents).
*
* - Recursion. If all else fails, we pick one of the currently
* most constrained empty squares and take a random guess at its
* contents, then continue solving on that basis and see if we
* get any further.
*/
/*
* Within this solver, I'm going to transform all y-coordinates by
* inverting the significance of the block number and the position
* within the block. That is, we will start with the top row of
* each block in order, then the second row of each block in order,
* etc.
*
* This transformation has the enormous advantage that it means
* every row, column _and_ block is described by an arithmetic
* progression of coordinates within the cubic array, so that I can
* use the same very simple function to do blockwise, row-wise and
* column-wise elimination.
*/
#define YTRANS(y) (((y)%c)*r+(y)/c)
#define YUNTRANS(y) (((y)%r)*c+(y)/r)
struct solver_usage {
int c, r, cr;
/*
* We set up a cubic array, indexed by x, y and digit; each
* element of this array is TRUE or FALSE according to whether
* or not that digit _could_ in principle go in that position.
*
* The way to index this array is cube[(x*cr+y)*cr+n-1].
* y-coordinates in here are transformed.
*/
unsigned char *cube;
/*
* This is the grid in which we write down our final
* deductions. y-coordinates in here are _not_ transformed.
*/
digit *grid;
/*
* Now we keep track, at a slightly higher level, of what we
* have yet to work out, to prevent doing the same deduction
* many times.
*/
/* row[y*cr+n-1] TRUE if digit n has been placed in row y */
unsigned char *row;
/* col[x*cr+n-1] TRUE if digit n has been placed in row x */
unsigned char *col;
/* blk[(y*c+x)*cr+n-1] TRUE if digit n has been placed in block (x,y) */
unsigned char *blk;
};
#define cubepos(x,y,n) (((x)*usage->cr+(y))*usage->cr+(n)-1)
#define cube(x,y,n) (usage->cube[cubepos(x,y,n)])
/*
* Function called when we are certain that a particular square has
* a particular number in it. The y-coordinate passed in here is
* transformed.
*/
static void solver_place(struct solver_usage *usage, int x, int y, int n)
{
int c = usage->c, r = usage->r, cr = usage->cr;
int i, j, bx, by;
assert(cube(x,y,n));
/*
* Rule out all other numbers in this square.
*/
for (i = 1; i <= cr; i++)
if (i != n)
cube(x,y,i) = FALSE;
/*
* Rule out this number in all other positions in the row.
*/
for (i = 0; i < cr; i++)
if (i != y)
cube(x,i,n) = FALSE;
/*
* Rule out this number in all other positions in the column.
*/
for (i = 0; i < cr; i++)
if (i != x)
cube(i,y,n) = FALSE;
/*
* Rule out this number in all other positions in the block.
*/
bx = (x/r)*r;
by = y % r;
for (i = 0; i < r; i++)
for (j = 0; j < c; j++)
if (bx+i != x || by+j*r != y)
cube(bx+i,by+j*r,n) = FALSE;
/*
* Enter the number in the result grid.
*/
usage->grid[YUNTRANS(y)*cr+x] = n;
/*
* Cross out this number from the list of numbers left to place
* in its row, its column and its block.
*/
usage->row[y*cr+n-1] = usage->col[x*cr+n-1] =
usage->blk[((y%r)*c+(x/r))*cr+n-1] = TRUE;
}
static int solver_elim(struct solver_usage *usage, int start, int step
#ifdef STANDALONE_SOLVER
, char *fmt, ...
#endif
)
{
int c = usage->c, r = usage->r, cr = c*r;
int fpos, m, i;
/*
* Count the number of set bits within this section of the
* cube.
*/
m = 0;
fpos = -1;
for (i = 0; i < cr; i++)
if (usage->cube[start+i*step]) {
fpos = start+i*step;
m++;
}
if (m == 1) {
int x, y, n;
assert(fpos >= 0);
n = 1 + fpos % cr;
y = fpos / cr;
x = y / cr;
y %= cr;
if (!usage->grid[YUNTRANS(y)*cr+x]) {
#ifdef STANDALONE_SOLVER
if (solver_show_working) {
printf("%*s", solver_recurse_depth*4, "");
va_list ap;
va_start(ap, fmt);
vprintf(fmt, ap);
va_end(ap);
printf(":\n%*s placing %d at (%d,%d)\n",
solver_recurse_depth*4, "", n, 1+x, 1+YUNTRANS(y));
}
#endif
solver_place(usage, x, y, n);
return +1;
}
} else if (m == 0) {
#ifdef STANDALONE_SOLVER
if (solver_show_working) {
printf("%*s", solver_recurse_depth*4, "");
va_list ap;
va_start(ap, fmt);
vprintf(fmt, ap);
va_end(ap);
printf(":\n%*s no possibilities available\n",
solver_recurse_depth*4, "");
}
#endif
return -1;
}
return 0;
}
static int solver_intersect(struct solver_usage *usage,
int start1, int step1, int start2, int step2
#ifdef STANDALONE_SOLVER
, char *fmt, ...
#endif
)
{
int c = usage->c, r = usage->r, cr = c*r;
int ret, i;
/*
* Loop over the first domain and see if there's any set bit
* not also in the second.
*/
for (i = 0; i < cr; i++) {
int p = start1+i*step1;
if (usage->cube[p] &&
!(p >= start2 && p < start2+cr*step2 &&
(p - start2) % step2 == 0))
return 0; /* there is, so we can't deduce */
}
/*
* We have determined that all set bits in the first domain are
* within its overlap with the second. So loop over the second
* domain and remove all set bits that aren't also in that
* overlap; return +1 iff we actually _did_ anything.
*/
ret = 0;
for (i = 0; i < cr; i++) {
int p = start2+i*step2;
if (usage->cube[p] &&
!(p >= start1 && p < start1+cr*step1 && (p - start1) % step1 == 0))
{
#ifdef STANDALONE_SOLVER
if (solver_show_working) {
int px, py, pn;
if (!ret) {
printf("%*s", solver_recurse_depth*4, "");
va_list ap;
va_start(ap, fmt);
vprintf(fmt, ap);
va_end(ap);
printf(":\n");
}
pn = 1 + p % cr;
py = p / cr;
px = py / cr;
py %= cr;
printf("%*s ruling out %d at (%d,%d)\n",
solver_recurse_depth*4, "", pn, 1+px, 1+YUNTRANS(py));
}
#endif
ret = +1; /* we did something */
usage->cube[p] = 0;
}
}
return ret;
}
struct solver_scratch {
unsigned char *grid, *rowidx, *colidx, *set;
};
static int solver_set(struct solver_usage *usage,
struct solver_scratch *scratch,
int start, int step1, int step2
#ifdef STANDALONE_SOLVER
, char *fmt, ...
#endif
)
{
int c = usage->c, r = usage->r, cr = c*r;
int i, j, n, count;
unsigned char *grid = scratch->grid;
unsigned char *rowidx = scratch->rowidx;
unsigned char *colidx = scratch->colidx;
unsigned char *set = scratch->set;
/*
* We are passed a cr-by-cr matrix of booleans. Our first job
* is to winnow it by finding any definite placements - i.e.
* any row with a solitary 1 - and discarding that row and the
* column containing the 1.
*/
memset(rowidx, TRUE, cr);
memset(colidx, TRUE, cr);
for (i = 0; i < cr; i++) {
int count = 0, first = -1;
for (j = 0; j < cr; j++)
if (usage->cube[start+i*step1+j*step2])
first = j, count++;
/*
* If count == 0, then there's a row with no 1s at all and
* the puzzle is internally inconsistent. However, we ought
* to have caught this already during the simpler reasoning
* methods, so we can safely fail an assertion if we reach
* this point here.
*/
assert(count > 0);
if (count == 1)
rowidx[i] = colidx[first] = FALSE;
}
/*
* Convert each of rowidx/colidx from a list of 0s and 1s to a
* list of the indices of the 1s.
*/
for (i = j = 0; i < cr; i++)
if (rowidx[i])
rowidx[j++] = i;
n = j;
for (i = j = 0; i < cr; i++)
if (colidx[i])
colidx[j++] = i;
assert(n == j);
/*
* And create the smaller matrix.
*/
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
grid[i*cr+j] = usage->cube[start+rowidx[i]*step1+colidx[j]*step2];
/*
* Having done that, we now have a matrix in which every row
* has at least two 1s in. Now we search to see if we can find
* a rectangle of zeroes (in the set-theoretic sense of
* `rectangle', i.e. a subset of rows crossed with a subset of
* columns) whose width and height add up to n.
*/
memset(set, 0, n);
count = 0;
while (1) {
/*
* We have a candidate set. If its size is <=1 or >=n-1
* then we move on immediately.
*/
if (count > 1 && count < n-1) {
/*
* The number of rows we need is n-count. See if we can
* find that many rows which each have a zero in all
* the positions listed in `set'.
*/
int rows = 0;
for (i = 0; i < n; i++) {
int ok = TRUE;
for (j = 0; j < n; j++)
if (set[j] && grid[i*cr+j]) {
ok = FALSE;
break;
}
if (ok)
rows++;
}
/*
* We expect never to be able to get _more_ than
* n-count suitable rows: this would imply that (for
* example) there are four numbers which between them
* have at most three possible positions, and hence it
* indicates a faulty deduction before this point or
* even a bogus clue.
*/
if (rows > n - count) {
#ifdef STANDALONE_SOLVER
if (solver_show_working) {
printf("%*s", solver_recurse_depth*4,
"");
va_list ap;
va_start(ap, fmt);
vprintf(fmt, ap);
va_end(ap);
printf(":\n%*s contradiction reached\n",
solver_recurse_depth*4, "");
}
#endif
return -1;
}
if (rows >= n - count) {
int progress = FALSE;
/*
* We've got one! Now, for each row which _doesn't_
* satisfy the criterion, eliminate all its set
* bits in the positions _not_ listed in `set'.
* Return +1 (meaning progress has been made) if we
* successfully eliminated anything at all.
*
* This involves referring back through
* rowidx/colidx in order to work out which actual
* positions in the cube to meddle with.
*/
for (i = 0; i < n; i++) {
int ok = TRUE;
for (j = 0; j < n; j++)
if (set[j] && grid[i*cr+j]) {
ok = FALSE;
break;
}
if (!ok) {
for (j = 0; j < n; j++)
if (!set[j] && grid[i*cr+j]) {
int fpos = (start+rowidx[i]*step1+
colidx[j]*step2);
#ifdef STANDALONE_SOLVER
if (solver_show_working) {
int px, py, pn;
if (!progress) {
printf("%*s", solver_recurse_depth*4,
"");
va_list ap;
va_start(ap, fmt);
vprintf(fmt, ap);
va_end(ap);
printf(":\n");
}
pn = 1 + fpos % cr;
py = fpos / cr;
px = py / cr;
py %= cr;
printf("%*s ruling out %d at (%d,%d)\n",
solver_recurse_depth*4, "",
pn, 1+px, 1+YUNTRANS(py));
}
#endif
progress = TRUE;
usage->cube[fpos] = FALSE;
}
}
}
if (progress) {
return +1;
}
}
}
/*
* Binary increment: change the rightmost 0 to a 1, and
* change all 1s to the right of it to 0s.
*/
i = n;
while (i > 0 && set[i-1])
set[--i] = 0, count--;
if (i > 0)
set[--i] = 1, count++;
else
break; /* done */
}
return 0;
}
static struct solver_scratch *solver_new_scratch(struct solver_usage *usage)
{
struct solver_scratch *scratch = snew(struct solver_scratch);
int cr = usage->cr;
scratch->grid = snewn(cr*cr, unsigned char);
scratch->rowidx = snewn(cr, unsigned char);
scratch->colidx = snewn(cr, unsigned char);
scratch->set = snewn(cr, unsigned char);
return scratch;
}
static void solver_free_scratch(struct solver_scratch *scratch)
{
sfree(scratch->set);
sfree(scratch->colidx);
sfree(scratch->rowidx);
sfree(scratch->grid);
sfree(scratch);
}
static int solver(int c, int r, digit *grid, random_state *rs, int maxdiff)
{
struct solver_usage *usage;
struct solver_scratch *scratch;
int cr = c*r;
int x, y, n, ret;
int diff = DIFF_BLOCK;
/*
* Set up a usage structure as a clean slate (everything
* possible).
*/
usage = snew(struct solver_usage);
usage->c = c;
usage->r = r;
usage->cr = cr;
usage->cube = snewn(cr*cr*cr, unsigned char);
usage->grid = grid; /* write straight back to the input */
memset(usage->cube, TRUE, cr*cr*cr);
usage->row = snewn(cr * cr, unsigned char);
usage->col = snewn(cr * cr, unsigned char);
usage->blk = snewn(cr * cr, unsigned char);
memset(usage->row, FALSE, cr * cr);
memset(usage->col, FALSE, cr * cr);
memset(usage->blk, FALSE, cr * cr);
scratch = solver_new_scratch(usage);
/*
* Place all the clue numbers we are given.
*/
for (x = 0; x < cr; x++)
for (y = 0; y < cr; y++)
if (grid[y*cr+x])
solver_place(usage, x, YTRANS(y), grid[y*cr+x]);
/*
* Now loop over the grid repeatedly trying all permitted modes
* of reasoning. The loop terminates if we complete an
* iteration without making any progress; we then return
* failure or success depending on whether the grid is full or
* not.
*/
while (1) {
/*
* I'd like to write `continue;' inside each of the
* following loops, so that the solver returns here after
* making some progress. However, I can't specify that I
* want to continue an outer loop rather than the innermost
* one, so I'm apologetically resorting to a goto.
*/
cont:
/*
* Blockwise positional elimination.
*/
for (x = 0; x < cr; x += r)
for (y = 0; y < r; y++)
for (n = 1; n <= cr; n++)
if (!usage->blk[(y*c+(x/r))*cr+n-1]) {
ret = solver_elim(usage, cubepos(x,y,n), r*cr
#ifdef STANDALONE_SOLVER
, "positional elimination,"
" %d in block (%d,%d)", n, 1+x/r, 1+y
#endif
);
if (ret < 0) {
diff = DIFF_IMPOSSIBLE;
goto got_result;
} else if (ret > 0) {
diff = max(diff, DIFF_BLOCK);
goto cont;
}
}
if (maxdiff <= DIFF_BLOCK)
break;
/*
* Row-wise positional elimination.
*/
for (y = 0; y < cr; y++)
for (n = 1; n <= cr; n++)
if (!usage->row[y*cr+n-1]) {
ret = solver_elim(usage, cubepos(0,y,n), cr*cr
#ifdef STANDALONE_SOLVER
, "positional elimination,"
" %d in row %d", n, 1+YUNTRANS(y)
#endif
);
if (ret < 0) {
diff = DIFF_IMPOSSIBLE;
goto got_result;
} else if (ret > 0) {
diff = max(diff, DIFF_SIMPLE);
goto cont;
}
}
/*
* Column-wise positional elimination.
*/
for (x = 0; x < cr; x++)
for (n = 1; n <= cr; n++)
if (!usage->col[x*cr+n-1]) {
ret = solver_elim(usage, cubepos(x,0,n), cr
#ifdef STANDALONE_SOLVER
, "positional elimination,"
" %d in column %d", n, 1+x
#endif
);
if (ret < 0) {
diff = DIFF_IMPOSSIBLE;
goto got_result;
} else if (ret > 0) {
diff = max(diff, DIFF_SIMPLE);
goto cont;
}
}
/*
* Numeric elimination.
*/
for (x = 0; x < cr; x++)
for (y = 0; y < cr; y++)
if (!usage->grid[YUNTRANS(y)*cr+x]) {
ret = solver_elim(usage, cubepos(x,y,1), 1
#ifdef STANDALONE_SOLVER
, "numeric elimination at (%d,%d)", 1+x,
1+YUNTRANS(y)
#endif
);
if (ret < 0) {
diff = DIFF_IMPOSSIBLE;
goto got_result;
} else if (ret > 0) {
diff = max(diff, DIFF_SIMPLE);
goto cont;
}
}
if (maxdiff <= DIFF_SIMPLE)
break;
/*
* Intersectional analysis, rows vs blocks.
*/
for (y = 0; y < cr; y++)
for (x = 0; x < cr; x += r)
for (n = 1; n <= cr; n++)
/*
* solver_intersect() never returns -1.
*/
if (!usage->row[y*cr+n-1] &&
!usage->blk[((y%r)*c+(x/r))*cr+n-1] &&
(solver_intersect(usage, cubepos(0,y,n), cr*cr,
cubepos(x,y%r,n), r*cr
#ifdef STANDALONE_SOLVER
, "intersectional analysis,"
" %d in row %d vs block (%d,%d)",
n, 1+YUNTRANS(y), 1+x/r, 1+y%r
#endif
) ||
solver_intersect(usage, cubepos(x,y%r,n), r*cr,
cubepos(0,y,n), cr*cr
#ifdef STANDALONE_SOLVER
, "intersectional analysis,"
" %d in block (%d,%d) vs row %d",
n, 1+x/r, 1+y%r, 1+YUNTRANS(y)
#endif
))) {
diff = max(diff, DIFF_INTERSECT);
goto cont;
}
/*
* Intersectional analysis, columns vs blocks.
*/
for (x = 0; x < cr; x++)
for (y = 0; y < r; y++)
for (n = 1; n <= cr; n++)
if (!usage->col[x*cr+n-1] &&
!usage->blk[(y*c+(x/r))*cr+n-1] &&
(solver_intersect(usage, cubepos(x,0,n), cr,
cubepos((x/r)*r,y,n), r*cr
#ifdef STANDALONE_SOLVER
, "intersectional analysis,"
" %d in column %d vs block (%d,%d)",
n, 1+x, 1+x/r, 1+y
#endif
) ||
solver_intersect(usage, cubepos((x/r)*r,y,n), r*cr,
cubepos(x,0,n), cr
#ifdef STANDALONE_SOLVER
, "intersectional analysis,"
" %d in block (%d,%d) vs column %d",
n, 1+x/r, 1+y, 1+x
#endif
))) {
diff = max(diff, DIFF_INTERSECT);
goto cont;
}
if (maxdiff <= DIFF_INTERSECT)
break;
/*
* Blockwise set elimination.
*/
for (x = 0; x < cr; x += r)
for (y = 0; y < r; y++) {
ret = solver_set(usage, scratch, cubepos(x,y,1), r*cr, 1
#ifdef STANDALONE_SOLVER
, "set elimination, block (%d,%d)", 1+x/r, 1+y
#endif
);
if (ret < 0) {
diff = DIFF_IMPOSSIBLE;
goto got_result;
} else if (ret > 0) {
diff = max(diff, DIFF_SET);
goto cont;
}
}
/*
* Row-wise set elimination.
*/
for (y = 0; y < cr; y++) {
ret = solver_set(usage, scratch, cubepos(0,y,1), cr*cr, 1
#ifdef STANDALONE_SOLVER
, "set elimination, row %d", 1+YUNTRANS(y)
#endif
);
if (ret < 0) {
diff = DIFF_IMPOSSIBLE;
goto got_result;
} else if (ret > 0) {
diff = max(diff, DIFF_SET);
goto cont;
}
}
/*
* Column-wise set elimination.
*/
for (x = 0; x < cr; x++) {
ret = solver_set(usage, scratch, cubepos(x,0,1), cr, 1
#ifdef STANDALONE_SOLVER
, "set elimination, column %d", 1+x
#endif
);
if (ret < 0) {
diff = DIFF_IMPOSSIBLE;
goto got_result;
} else if (ret > 0) {
diff = max(diff, DIFF_SET);
goto cont;
}
}
/*
* If we reach here, we have made no deductions in this
* iteration, so the algorithm terminates.
*/
break;
}
/*
* Last chance: if we haven't fully solved the puzzle yet, try
* recursing based on guesses for a particular square. We pick
* one of the most constrained empty squares we can find, which
* has the effect of pruning the search tree as much as
* possible.
*/
if (maxdiff >= DIFF_RECURSIVE) {
int best, bestcount, bestnumber;
best = -1;
bestcount = cr+1;
bestnumber = 0;
for (y = 0; y < cr; y++)
for (x = 0; x < cr; x++)
if (!grid[y*cr+x]) {
int count;
/*
* An unfilled square. Count the number of
* possible digits in it.
*/
count = 0;
for (n = 1; n <= cr; n++)
if (cube(x,YTRANS(y),n))
count++;
/*
* We should have found any impossibilities
* already, so this can safely be an assert.
*/
assert(count > 1);
if (count < bestcount) {
bestcount = count;
bestnumber = 0;
}
if (count == bestcount) {
bestnumber++;
if (bestnumber == 1 ||
(rs && random_upto(rs, bestnumber) == 0))
best = y*cr+x;
}
}
if (best != -1) {
int i, j;
digit *list, *ingrid, *outgrid;
diff = DIFF_IMPOSSIBLE; /* no solution found yet */
/*
* Attempt recursion.
*/
y = best / cr;
x = best % cr;
list = snewn(cr, digit);
ingrid = snewn(cr * cr, digit);
outgrid = snewn(cr * cr, digit);
memcpy(ingrid, grid, cr * cr);
/* Make a list of the possible digits. */
for (j = 0, n = 1; n <= cr; n++)
if (cube(x,YTRANS(y),n))
list[j++] = n;
#ifdef STANDALONE_SOLVER
if (solver_show_working) {
char *sep = "";
printf("%*srecursing on (%d,%d) [",
solver_recurse_depth*4, "", x, y);
for (i = 0; i < j; i++) {
printf("%s%d", sep, list[i]);
sep = " or ";
}
printf("]\n");
}
#endif
/* Now shuffle the list. */
if (rs) {
for (i = j; i > 1; i--) {
int p = random_upto(rs, i);
if (p != i-1) {
int t = list[p];
list[p] = list[i-1];
list[i-1] = t;
}
}
}
/*
* And step along the list, recursing back into the
* main solver at every stage.
*/
for (i = 0; i < j; i++) {
int ret;
memcpy(outgrid, ingrid, cr * cr);
outgrid[y*cr+x] = list[i];
#ifdef STANDALONE_SOLVER
if (solver_show_working)
printf("%*sguessing %d at (%d,%d)\n",
solver_recurse_depth*4, "", list[i], x, y);
solver_recurse_depth++;
#endif
ret = solver(c, r, outgrid, rs, maxdiff);
#ifdef STANDALONE_SOLVER
solver_recurse_depth--;
if (solver_show_working) {
printf("%*sretracting %d at (%d,%d)\n",
solver_recurse_depth*4, "", list[i], x, y);
}
#endif
/*
* If we have our first solution, copy it into the
* grid we will return.
*/
if (diff == DIFF_IMPOSSIBLE && ret != DIFF_IMPOSSIBLE)
memcpy(grid, outgrid, cr*cr);
if (ret == DIFF_AMBIGUOUS)
diff = DIFF_AMBIGUOUS;
else if (ret == DIFF_IMPOSSIBLE)
/* do not change our return value */;
else {
/* the recursion turned up exactly one solution */
if (diff == DIFF_IMPOSSIBLE)
diff = DIFF_RECURSIVE;
else
diff = DIFF_AMBIGUOUS;
}
/*
* As soon as we've found more than one solution,
* give up immediately.
*/
if (diff == DIFF_AMBIGUOUS)
break;
}
sfree(outgrid);
sfree(ingrid);
sfree(list);
}
} else {
/*
* We're forbidden to use recursion, so we just see whether
* our grid is fully solved, and return DIFF_IMPOSSIBLE
* otherwise.
*/
for (y = 0; y < cr; y++)
for (x = 0; x < cr; x++)
if (!grid[y*cr+x])
diff = DIFF_IMPOSSIBLE;
}
got_result:;
#ifdef STANDALONE_SOLVER
if (solver_show_working)
printf("%*s%s found\n",
solver_recurse_depth*4, "",
diff == DIFF_IMPOSSIBLE ? "no solution" :
diff == DIFF_AMBIGUOUS ? "multiple solutions" :
"one solution");
#endif
sfree(usage->cube);
sfree(usage->row);
sfree(usage->col);
sfree(usage->blk);
sfree(usage);
solver_free_scratch(scratch);
return diff;
}
/* ----------------------------------------------------------------------
* End of solver code.
*/
/* ----------------------------------------------------------------------
* Solo filled-grid generator.
*
* This grid generator works by essentially trying to solve a grid
* starting from no clues, and not worrying that there's more than
* one possible solution. Unfortunately, it isn't computationally
* feasible to do this by calling the above solver with an empty
* grid, because that one needs to allocate a lot of scratch space
* at every recursion level. Instead, I have a much simpler
* algorithm which I shamelessly copied from a Python solver
* written by Andrew Wilkinson (which is GPLed, but I've reused
* only ideas and no code). It mostly just does the obvious
* recursive thing: pick an empty square, put one of the possible
* digits in it, recurse until all squares are filled, backtrack
* and change some choices if necessary.
*
* The clever bit is that every time it chooses which square to
* fill in next, it does so by counting the number of _possible_
* numbers that can go in each square, and it prioritises so that
* it picks a square with the _lowest_ number of possibilities. The
* idea is that filling in lots of the obvious bits (particularly
* any squares with only one possibility) will cut down on the list
* of possibilities for other squares and hence reduce the enormous
* search space as much as possible as early as possible.
*/
/*
* Internal data structure used in gridgen to keep track of
* progress.
*/
struct gridgen_coord { int x, y, r; };
struct gridgen_usage {
int c, r, cr; /* cr == c*r */
/* grid is a copy of the input grid, modified as we go along */
digit *grid;
/* row[y*cr+n-1] TRUE if digit n has been placed in row y */
unsigned char *row;
/* col[x*cr+n-1] TRUE if digit n has been placed in row x */
unsigned char *col;
/* blk[(y*c+x)*cr+n-1] TRUE if digit n has been placed in block (x,y) */
unsigned char *blk;
/* This lists all the empty spaces remaining in the grid. */
struct gridgen_coord *spaces;
int nspaces;
/* If we need randomisation in the solve, this is our random state. */
random_state *rs;
};
/*
* The real recursive step in the generating function.
*/
static int gridgen_real(struct gridgen_usage *usage, digit *grid)
{
int c = usage->c, r = usage->r, cr = usage->cr;
int i, j, n, sx, sy, bestm, bestr, ret;
int *digits;
/*
* Firstly, check for completion! If there are no spaces left
* in the grid, we have a solution.
*/
if (usage->nspaces == 0) {
memcpy(grid, usage->grid, cr * cr);
return TRUE;
}
/*
* Otherwise, there must be at least one space. Find the most
* constrained space, using the `r' field as a tie-breaker.
*/
bestm = cr+1; /* so that any space will beat it */
bestr = 0;
i = sx = sy = -1;
for (j = 0; j < usage->nspaces; j++) {
int x = usage->spaces[j].x, y = usage->spaces[j].y;
int m;
/*
* Find the number of digits that could go in this space.
*/
m = 0;
for (n = 0; n < cr; n++)
if (!usage->row[y*cr+n] && !usage->col[x*cr+n] &&
!usage->blk[((y/c)*c+(x/r))*cr+n])
m++;
if (m < bestm || (m == bestm && usage->spaces[j].r < bestr)) {
bestm = m;
bestr = usage->spaces[j].r;
sx = x;
sy = y;
i = j;
}
}
/*
* Swap that square into the final place in the spaces array,
* so that decrementing nspaces will remove it from the list.
*/
if (i != usage->nspaces-1) {
struct gridgen_coord t;
t = usage->spaces[usage->nspaces-1];
usage->spaces[usage->nspaces-1] = usage->spaces[i];
usage->spaces[i] = t;
}
/*
* Now we've decided which square to start our recursion at,
* simply go through all possible values, shuffling them
* randomly first if necessary.
*/
digits = snewn(bestm, int);
j = 0;
for (n = 0; n < cr; n++)
if (!usage->row[sy*cr+n] && !usage->col[sx*cr+n] &&
!usage->blk[((sy/c)*c+(sx/r))*cr+n]) {
digits[j++] = n+1;
}
if (usage->rs) {
/* shuffle */
for (i = j; i > 1; i--) {
int p = random_upto(usage->rs, i);
if (p != i-1) {
int t = digits[p];
digits[p] = digits[i-1];
digits[i-1] = t;
}
}
}
/* And finally, go through the digit list and actually recurse. */
ret = FALSE;
for (i = 0; i < j; i++) {
n = digits[i];
/* Update the usage structure to reflect the placing of this digit. */
usage->row[sy*cr+n-1] = usage->col[sx*cr+n-1] =
usage->blk[((sy/c)*c+(sx/r))*cr+n-1] = TRUE;
usage->grid[sy*cr+sx] = n;
usage->nspaces--;
/* Call the solver recursively. Stop when we find a solution. */
if (gridgen_real(usage, grid))
ret = TRUE;
/* Revert the usage structure. */
usage->row[sy*cr+n-1] = usage->col[sx*cr+n-1] =
usage->blk[((sy/c)*c+(sx/r))*cr+n-1] = FALSE;
usage->grid[sy*cr+sx] = 0;
usage->nspaces++;
if (ret)
break;
}
sfree(digits);
return ret;
}
/*
* Entry point to generator. You give it dimensions and a starting
* grid, which is simply an array of cr*cr digits.
*/
static void gridgen(int c, int r, digit *grid, random_state *rs)
{
struct gridgen_usage *usage;
int x, y, cr = c*r;
/*
* Clear the grid to start with.
*/
memset(grid, 0, cr*cr);
/*
* Create a gridgen_usage structure.
*/
usage = snew(struct gridgen_usage);
usage->c = c;
usage->r = r;
usage->cr = cr;
usage->grid = snewn(cr * cr, digit);
memcpy(usage->grid, grid, cr * cr);
usage->row = snewn(cr * cr, unsigned char);
usage->col = snewn(cr * cr, unsigned char);
usage->blk = snewn(cr * cr, unsigned char);
memset(usage->row, FALSE, cr * cr);
memset(usage->col, FALSE, cr * cr);
memset(usage->blk, FALSE, cr * cr);
usage->spaces = snewn(cr * cr, struct gridgen_coord);
usage->nspaces = 0;
usage->rs = rs;
/*
* Initialise the list of grid spaces.
*/
for (y = 0; y < cr; y++) {
for (x = 0; x < cr; x++) {
usage->spaces[usage->nspaces].x = x;
usage->spaces[usage->nspaces].y = y;
usage->spaces[usage->nspaces].r = random_bits(rs, 31);
usage->nspaces++;
}
}
/*
* Run the real generator function.
*/
gridgen_real(usage, grid);
/*
* Clean up the usage structure now we have our answer.
*/
sfree(usage->spaces);
sfree(usage->blk);
sfree(usage->col);
sfree(usage->row);
sfree(usage->grid);
sfree(usage);
}
/* ----------------------------------------------------------------------
* End of grid generator code.
*/
/*
* Check whether a grid contains a valid complete puzzle.
*/
static int check_valid(int c, int r, digit *grid)
{
int cr = c*r;
unsigned char *used;
int x, y, n;
used = snewn(cr, unsigned char);
/*
* Check that each row contains precisely one of everything.
*/
for (y = 0; y < cr; y++) {
memset(used, FALSE, cr);
for (x = 0; x < cr; x++)
if (grid[y*cr+x] > 0 && grid[y*cr+x] <= cr)
used[grid[y*cr+x]-1] = TRUE;
for (n = 0; n < cr; n++)
if (!used[n]) {
sfree(used);
return FALSE;
}
}
/*
* Check that each column contains precisely one of everything.
*/
for (x = 0; x < cr; x++) {
memset(used, FALSE, cr);
for (y = 0; y < cr; y++)
if (grid[y*cr+x] > 0 && grid[y*cr+x] <= cr)
used[grid[y*cr+x]-1] = TRUE;
for (n = 0; n < cr; n++)
if (!used[n]) {
sfree(used);
return FALSE;
}
}
/*
* Check that each block contains precisely one of everything.
*/
for (x = 0; x < cr; x += r) {
for (y = 0; y < cr; y += c) {
int xx, yy;
memset(used, FALSE, cr);
for (xx = x; xx < x+r; xx++)
for (yy = 0; yy < y+c; yy++)
if (grid[yy*cr+xx] > 0 && grid[yy*cr+xx] <= cr)
used[grid[yy*cr+xx]-1] = TRUE;
for (n = 0; n < cr; n++)
if (!used[n]) {
sfree(used);
return FALSE;
}
}
}
sfree(used);
return TRUE;
}
static int symmetries(game_params *params, int x, int y, int *output, int s)
{
int c = params->c, r = params->r, cr = c*r;
int i = 0;
#define ADD(x,y) (*output++ = (x), *output++ = (y), i++)
ADD(x, y);
switch (s) {
case SYMM_NONE:
break; /* just x,y is all we need */
case SYMM_ROT2:
ADD(cr - 1 - x, cr - 1 - y);
break;
case SYMM_ROT4:
ADD(cr - 1 - y, x);
ADD(y, cr - 1 - x);
ADD(cr - 1 - x, cr - 1 - y);
break;
case SYMM_REF2:
ADD(cr - 1 - x, y);
break;
case SYMM_REF2D:
ADD(y, x);
break;
case SYMM_REF4:
ADD(cr - 1 - x, y);
ADD(x, cr - 1 - y);
ADD(cr - 1 - x, cr - 1 - y);
break;
case SYMM_REF4D:
ADD(y, x);
ADD(cr - 1 - x, cr - 1 - y);
ADD(cr - 1 - y, cr - 1 - x);
break;
case SYMM_REF8:
ADD(cr - 1 - x, y);
ADD(x, cr - 1 - y);
ADD(cr - 1 - x, cr - 1 - y);
ADD(y, x);
ADD(y, cr - 1 - x);
ADD(cr - 1 - y, x);
ADD(cr - 1 - y, cr - 1 - x);
break;
}
#undef ADD
return i;
}
static char *encode_solve_move(int cr, digit *grid)
{
int i, len;
char *ret, *p, *sep;
/*
* It's surprisingly easy to work out _exactly_ how long this
* string needs to be. To decimal-encode all the numbers from 1
* to n:
*
* - every number has a units digit; total is n.
* - all numbers above 9 have a tens digit; total is max(n-9,0).
* - all numbers above 99 have a hundreds digit; total is max(n-99,0).
* - and so on.
*/
len = 0;
for (i = 1; i <= cr; i *= 10)
len += max(cr - i + 1, 0);
len += cr; /* don't forget the commas */
len *= cr; /* there are cr rows of these */
/*
* Now len is one bigger than the total size of the
* comma-separated numbers (because we counted an
* additional leading comma). We need to have a leading S
* and a trailing NUL, so we're off by one in total.
*/
len++;
ret = snewn(len, char);
p = ret;
*p++ = 'S';
sep = "";
for (i = 0; i < cr*cr; i++) {
p += sprintf(p, "%s%d", sep, grid[i]);
sep = ",";
}
*p++ = '\0';
assert(p - ret == len);
return ret;
}
static char *new_game_desc(game_params *params, random_state *rs,
char **aux, int interactive)
{
int c = params->c, r = params->r, cr = c*r;
int area = cr*cr;
digit *grid, *grid2;
struct xy { int x, y; } *locs;
int nlocs;
char *desc;
int coords[16], ncoords;
int *symmclasses, nsymmclasses;
int maxdiff, recursing;
/*
* Adjust the maximum difficulty level to be consistent with
* the puzzle size: all 2x2 puzzles appear to be Trivial
* (DIFF_BLOCK) so we cannot hold out for even a Basic
* (DIFF_SIMPLE) one.
*/
maxdiff = params->diff;
if (c == 2 && r == 2)
maxdiff = DIFF_BLOCK;
grid = snewn(area, digit);
locs = snewn(area, struct xy);
grid2 = snewn(area, digit);
/*
* Find the set of equivalence classes of squares permitted
* by the selected symmetry. We do this by enumerating all
* the grid squares which have no symmetric companion
* sorting lower than themselves.
*/
nsymmclasses = 0;
symmclasses = snewn(cr * cr, int);
{
int x, y;
for (y = 0; y < cr; y++)
for (x = 0; x < cr; x++) {
int i = y*cr+x;
int j;
ncoords = symmetries(params, x, y, coords, params->symm);
for (j = 0; j < ncoords; j++)
if (coords[2*j+1]*cr+coords[2*j] < i)
break;
if (j == ncoords)
symmclasses[nsymmclasses++] = i;
}
}
/*
* Loop until we get a grid of the required difficulty. This is
* nasty, but it seems to be unpleasantly hard to generate
* difficult grids otherwise.
*/
do {
/*
* Generate a random solved state.
*/
gridgen(c, r, grid, rs);
assert(check_valid(c, r, grid));
/*
* Save the solved grid in aux.
*/
{
/*
* We might already have written *aux the last time we
* went round this loop, in which case we should free
* the old aux before overwriting it with the new one.
*/
if (*aux) {
sfree(*aux);
}
*aux = encode_solve_move(cr, grid);
}
/*
* Now we have a solved grid, start removing things from it
* while preserving solubility.
*/
recursing = FALSE;
while (1) {
int x, y, i, j;
/*
* Iterate over the grid and enumerate all the filled
* squares we could empty.
*/
nlocs = 0;
for (i = 0; i < nsymmclasses; i++) {
x = symmclasses[i] % cr;
y = symmclasses[i] / cr;
if (grid[y*cr+x]) {
locs[nlocs].x = x;
locs[nlocs].y = y;
nlocs++;
}
}
/*
* Now shuffle that list.
*/
for (i = nlocs; i > 1; i--) {
int p = random_upto(rs, i);
if (p != i-1) {
struct xy t = locs[p];
locs[p] = locs[i-1];
locs[i-1] = t;
}
}
/*
* Now loop over the shuffled list and, for each element,
* see whether removing that element (and its reflections)
* from the grid will still leave the grid soluble by
* solver.
*/
for (i = 0; i < nlocs; i++) {
int ret;
x = locs[i].x;
y = locs[i].y;
memcpy(grid2, grid, area);
ncoords = symmetries(params, x, y, coords, params->symm);
for (j = 0; j < ncoords; j++)
grid2[coords[2*j+1]*cr+coords[2*j]] = 0;
ret = solver(c, r, grid2, NULL, maxdiff);
if (ret != DIFF_IMPOSSIBLE && ret != DIFF_AMBIGUOUS) {
for (j = 0; j < ncoords; j++)
grid[coords[2*j+1]*cr+coords[2*j]] = 0;
break;
}
}
if (i == nlocs) {
/*
* There was nothing we could remove without
* destroying solvability. Give up.
*/
break;
}
}
memcpy(grid2, grid, area);
} while (solver(c, r, grid2, NULL, maxdiff) < maxdiff);
sfree(grid2);
sfree(locs);
sfree(symmclasses);
/*
* Now we have the grid as it will be presented to the user.
* Encode it in a game desc.
*/
{
char *p;
int run, i;
desc = snewn(5 * area, char);
p = desc;
run = 0;
for (i = 0; i <= area; i++) {
int n = (i < area ? grid[i] : -1);
if (!n)
run++;
else {
if (run) {
while (run > 0) {
int c = 'a' - 1 + run;
if (run > 26)
c = 'z';
*p++ = c;
run -= c - ('a' - 1);
}
} else {
/*
* If there's a number in the very top left or
* bottom right, there's no point putting an
* unnecessary _ before or after it.
*/
if (p > desc && n > 0)
*p++ = '_';
}
if (n > 0)
p += sprintf(p, "%d", n);
run = 0;
}
}
assert(p - desc < 5 * area);
*p++ = '\0';
desc = sresize(desc, p - desc, char);
}
sfree(grid);
return desc;
}
static char *validate_desc(game_params *params, char *desc)
{
int area = params->r * params->r * params->c * params->c;
int squares = 0;
while (*desc) {
int n = *desc++;
if (n >= 'a' && n <= 'z') {
squares += n - 'a' + 1;
} else if (n == '_') {
/* do nothing */;
} else if (n > '0' && n <= '9') {
squares++;
while (*desc >= '0' && *desc <= '9')
desc++;
} else
return "Invalid character in game description";
}
if (squares < area)
return "Not enough data to fill grid";
if (squares > area)
return "Too much data to fit in grid";
return NULL;
}
static game_state *new_game(midend_data *me, game_params *params, char *desc)
{
game_state *state = snew(game_state);
int c = params->c, r = params->r, cr = c*r, area = cr * cr;
int i;
state->c = params->c;
state->r = params->r;
state->grid = snewn(area, digit);
state->pencil = snewn(area * cr, unsigned char);
memset(state->pencil, 0, area * cr);
state->immutable = snewn(area, unsigned char);
memset(state->immutable, FALSE, area);
state->completed = state->cheated = FALSE;
i = 0;
while (*desc) {
int n = *desc++;
if (n >= 'a' && n <= 'z') {
int run = n - 'a' + 1;
assert(i + run <= area);
while (run-- > 0)
state->grid[i++] = 0;
} else if (n == '_') {
/* do nothing */;
} else if (n > '0' && n <= '9') {
assert(i < area);
state->immutable[i] = TRUE;
state->grid[i++] = atoi(desc-1);
while (*desc >= '0' && *desc <= '9')
desc++;
} else {
assert(!"We can't get here");
}
}
assert(i == area);
return state;
}
static game_state *dup_game(game_state *state)
{
game_state *ret = snew(game_state);
int c = state->c, r = state->r, cr = c*r, area = cr * cr;
ret->c = state->c;
ret->r = state->r;
ret->grid = snewn(area, digit);
memcpy(ret->grid, state->grid, area);
ret->pencil = snewn(area * cr, unsigned char);
memcpy(ret->pencil, state->pencil, area * cr);
ret->immutable = snewn(area, unsigned char);
memcpy(ret->immutable, state->immutable, area);
ret->completed = state->completed;
ret->cheated = state->cheated;
return ret;
}
static void free_game(game_state *state)
{
sfree(state->immutable);
sfree(state->pencil);
sfree(state->grid);
sfree(state);
}
static char *solve_game(game_state *state, game_state *currstate,
char *ai, char **error)
{
int c = state->c, r = state->r, cr = c*r;
char *ret;
digit *grid;
int solve_ret;
/*
* If we already have the solution in ai, save ourselves some
* time.
*/
if (ai)
return dupstr(ai);
grid = snewn(cr*cr, digit);
memcpy(grid, state->grid, cr*cr);
solve_ret = solver(c, r, grid, NULL, DIFF_RECURSIVE);
*error = NULL;
if (solve_ret == DIFF_IMPOSSIBLE)
*error = "No solution exists for this puzzle";
else if (solve_ret == DIFF_AMBIGUOUS)
*error = "Multiple solutions exist for this puzzle";
if (*error) {
sfree(grid);
return NULL;
}
ret = encode_solve_move(cr, grid);
sfree(grid);
return ret;
}
static char *grid_text_format(int c, int r, digit *grid)
{
int cr = c*r;
int x, y;
int maxlen;
char *ret, *p;
/*
* There are cr lines of digits, plus r-1 lines of block
* separators. Each line contains cr digits, cr-1 separating
* spaces, and c-1 two-character block separators. Thus, the
* total length of a line is 2*cr+2*c-3 (not counting the
* newline), and there are cr+r-1 of them.
*/
maxlen = (cr+r-1) * (2*cr+2*c-2);
ret = snewn(maxlen+1, char);
p = ret;
for (y = 0; y < cr; y++) {
for (x = 0; x < cr; x++) {
int ch = grid[y * cr + x];
if (ch == 0)
ch = ' ';
else if (ch <= 9)
ch = '0' + ch;
else
ch = 'a' + ch-10;
*p++ = ch;
if (x+1 < cr) {
*p++ = ' ';
if ((x+1) % r == 0) {
*p++ = '|';
*p++ = ' ';
}
}
}
*p++ = '\n';
if (y+1 < cr && (y+1) % c == 0) {
for (x = 0; x < cr; x++) {
*p++ = '-';
if (x+1 < cr) {
*p++ = '-';
if ((x+1) % r == 0) {
*p++ = '+';
*p++ = '-';
}
}
}
*p++ = '\n';
}
}
assert(p - ret == maxlen);
*p = '\0';
return ret;
}
static char *game_text_format(game_state *state)
{
return grid_text_format(state->c, state->r, state->grid);
}
struct game_ui {
/*
* These are the coordinates of the currently highlighted
* square on the grid, or -1,-1 if there isn't one. When there
* is, pressing a valid number or letter key or Space will
* enter that number or letter in the grid.
*/
int hx, hy;
/*
* This indicates whether the current highlight is a
* pencil-mark one or a real one.
*/
int hpencil;
};
static game_ui *new_ui(game_state *state)
{
game_ui *ui = snew(game_ui);
ui->hx = ui->hy = -1;
ui->hpencil = 0;
return ui;
}
static void free_ui(game_ui *ui)
{
sfree(ui);
}
static char *encode_ui(game_ui *ui)
{
return NULL;
}
static void decode_ui(game_ui *ui, char *encoding)
{
}
static void game_changed_state(game_ui *ui, game_state *oldstate,
game_state *newstate)
{
int c = newstate->c, r = newstate->r, cr = c*r;
/*
* We prevent pencil-mode highlighting of a filled square. So
* if the user has just filled in a square which we had a
* pencil-mode highlight in (by Undo, or by Redo, or by Solve),
* then we cancel the highlight.
*/
if (ui->hx >= 0 && ui->hy >= 0 && ui->hpencil &&
newstate->grid[ui->hy * cr + ui->hx] != 0) {
ui->hx = ui->hy = -1;
}
}
struct game_drawstate {
int started;
int c, r, cr;
int tilesize;
digit *grid;
unsigned char *pencil;
unsigned char *hl;
/* This is scratch space used within a single call to game_redraw. */
int *entered_items;
};
static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
int x, int y, int button)
{
int c = state->c, r = state->r, cr = c*r;
int tx, ty;
char buf[80];
button &= ~MOD_MASK;
tx = (x + TILE_SIZE - BORDER) / TILE_SIZE - 1;
ty = (y + TILE_SIZE - BORDER) / TILE_SIZE - 1;
if (tx >= 0 && tx < cr && ty >= 0 && ty < cr) {
if (button == LEFT_BUTTON) {
if (state->immutable[ty*cr+tx]) {
ui->hx = ui->hy = -1;
} else if (tx == ui->hx && ty == ui->hy && ui->hpencil == 0) {
ui->hx = ui->hy = -1;
} else {
ui->hx = tx;
ui->hy = ty;
ui->hpencil = 0;
}
return ""; /* UI activity occurred */
}
if (button == RIGHT_BUTTON) {
/*
* Pencil-mode highlighting for non filled squares.
*/
if (state->grid[ty*cr+tx] == 0) {
if (tx == ui->hx && ty == ui->hy && ui->hpencil) {
ui->hx = ui->hy = -1;
} else {
ui->hpencil = 1;
ui->hx = tx;
ui->hy = ty;
}
} else {
ui->hx = ui->hy = -1;
}
return ""; /* UI activity occurred */
}
}
if (ui->hx != -1 && ui->hy != -1 &&
((button >= '1' && button <= '9' && button - '0' <= cr) ||
(button >= 'a' && button <= 'z' && button - 'a' + 10 <= cr) ||
(button >= 'A' && button <= 'Z' && button - 'A' + 10 <= cr) ||
button == ' ')) {
int n = button - '0';
if (button >= 'A' && button <= 'Z')
n = button - 'A' + 10;
if (button >= 'a' && button <= 'z')
n = button - 'a' + 10;
if (button == ' ')
n = 0;
/*
* Can't overwrite this square. In principle this shouldn't
* happen anyway because we should never have even been
* able to highlight the square, but it never hurts to be
* careful.
*/
if (state->immutable[ui->hy*cr+ui->hx])
return NULL;
/*
* Can't make pencil marks in a filled square. In principle
* this shouldn't happen anyway because we should never
* have even been able to pencil-highlight the square, but
* it never hurts to be careful.
*/
if (ui->hpencil && state->grid[ui->hy*cr+ui->hx])
return NULL;
sprintf(buf, "%c%d,%d,%d",
(char)(ui->hpencil && n > 0 ? 'P' : 'R'), ui->hx, ui->hy, n);
ui->hx = ui->hy = -1;
return dupstr(buf);
}
return NULL;
}
static game_state *execute_move(game_state *from, char *move)
{
int c = from->c, r = from->r, cr = c*r;
game_state *ret;
int x, y, n;
if (move[0] == 'S') {
char *p;
ret = dup_game(from);
ret->completed = ret->cheated = TRUE;
p = move+1;
for (n = 0; n < cr*cr; n++) {
ret->grid[n] = atoi(p);
if (!*p || ret->grid[n] < 1 || ret->grid[n] > cr) {
free_game(ret);
return NULL;
}
while (*p && isdigit((unsigned char)*p)) p++;
if (*p == ',') p++;
}
return ret;
} else if ((move[0] == 'P' || move[0] == 'R') &&
sscanf(move+1, "%d,%d,%d", &x, &y, &n) == 3 &&
x >= 0 && x < cr && y >= 0 && y < cr && n >= 0 && n <= cr) {
ret = dup_game(from);
if (move[0] == 'P' && n > 0) {
int index = (y*cr+x) * cr + (n-1);
ret->pencil[index] = !ret->pencil[index];
} else {
ret->grid[y*cr+x] = n;
memset(ret->pencil + (y*cr+x)*cr, 0, cr);
/*
* We've made a real change to the grid. Check to see
* if the game has been completed.
*/
if (!ret->completed && check_valid(c, r, ret->grid)) {
ret->completed = TRUE;
}
}
return ret;
} else
return NULL; /* couldn't parse move string */
}
/* ----------------------------------------------------------------------
* Drawing routines.
*/
#define SIZE(cr) ((cr) * TILE_SIZE + 2*BORDER + 1)
#define GETTILESIZE(cr, w) ( (double)(w-1) / (double)(cr+1) )
static void game_compute_size(game_params *params, int tilesize,
int *x, int *y)
{
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
struct { int tilesize; } ads, *ds = &ads;
ads.tilesize = tilesize;
*x = SIZE(params->c * params->r);
*y = SIZE(params->c * params->r);
}
static void game_set_size(game_drawstate *ds, game_params *params,
int tilesize)
{
ds->tilesize = tilesize;
}
static float *game_colours(frontend *fe, game_state *state, int *ncolours)
{
float *ret = snewn(3 * NCOLOURS, float);
frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
ret[COL_GRID * 3 + 0] = 0.0F;
ret[COL_GRID * 3 + 1] = 0.0F;
ret[COL_GRID * 3 + 2] = 0.0F;
ret[COL_CLUE * 3 + 0] = 0.0F;
ret[COL_CLUE * 3 + 1] = 0.0F;
ret[COL_CLUE * 3 + 2] = 0.0F;
ret[COL_USER * 3 + 0] = 0.0F;
ret[COL_USER * 3 + 1] = 0.6F * ret[COL_BACKGROUND * 3 + 1];
ret[COL_USER * 3 + 2] = 0.0F;
ret[COL_HIGHLIGHT * 3 + 0] = 0.85F * ret[COL_BACKGROUND * 3 + 0];
ret[COL_HIGHLIGHT * 3 + 1] = 0.85F * ret[COL_BACKGROUND * 3 + 1];
ret[COL_HIGHLIGHT * 3 + 2] = 0.85F * ret[COL_BACKGROUND * 3 + 2];
ret[COL_ERROR * 3 + 0] = 1.0F;
ret[COL_ERROR * 3 + 1] = 0.0F;
ret[COL_ERROR * 3 + 2] = 0.0F;
ret[COL_PENCIL * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
ret[COL_PENCIL * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
ret[COL_PENCIL * 3 + 2] = ret[COL_BACKGROUND * 3 + 2];
*ncolours = NCOLOURS;
return ret;
}
static game_drawstate *game_new_drawstate(game_state *state)
{
struct game_drawstate *ds = snew(struct game_drawstate);
int c = state->c, r = state->r, cr = c*r;
ds->started = FALSE;
ds->c = c;
ds->r = r;
ds->cr = cr;
ds->grid = snewn(cr*cr, digit);
memset(ds->grid, 0, cr*cr);
ds->pencil = snewn(cr*cr*cr, digit);
memset(ds->pencil, 0, cr*cr*cr);
ds->hl = snewn(cr*cr, unsigned char);
memset(ds->hl, 0, cr*cr);
ds->entered_items = snewn(cr*cr, int);
ds->tilesize = 0; /* not decided yet */
return ds;
}
static void game_free_drawstate(game_drawstate *ds)
{
sfree(ds->hl);
sfree(ds->pencil);
sfree(ds->grid);
sfree(ds->entered_items);
sfree(ds);
}
static void draw_number(frontend *fe, game_drawstate *ds, game_state *state,
int x, int y, int hl)
{
int c = state->c, r = state->r, cr = c*r;
int tx, ty;
int cx, cy, cw, ch;
char str[2];
if (ds->grid[y*cr+x] == state->grid[y*cr+x] &&
ds->hl[y*cr+x] == hl &&
!memcmp(ds->pencil+(y*cr+x)*cr, state->pencil+(y*cr+x)*cr, cr))
return; /* no change required */
tx = BORDER + x * TILE_SIZE + 2;
ty = BORDER + y * TILE_SIZE + 2;
cx = tx;
cy = ty;
cw = TILE_SIZE-3;
ch = TILE_SIZE-3;
if (x % r)
cx--, cw++;
if ((x+1) % r)
cw++;
if (y % c)
cy--, ch++;
if ((y+1) % c)
ch++;
clip(fe, cx, cy, cw, ch);
/* background needs erasing */
draw_rect(fe, cx, cy, cw, ch, (hl & 15) == 1 ? COL_HIGHLIGHT : COL_BACKGROUND);
/* pencil-mode highlight */
if ((hl & 15) == 2) {
int coords[6];
coords[0] = cx;
coords[1] = cy;
coords[2] = cx+cw/2;
coords[3] = cy;
coords[4] = cx;
coords[5] = cy+ch/2;
draw_polygon(fe, coords, 3, COL_HIGHLIGHT, COL_HIGHLIGHT);
}
/* new number needs drawing? */
if (state->grid[y*cr+x]) {
str[1] = '\0';
str[0] = state->grid[y*cr+x] + '0';
if (str[0] > '9')
str[0] += 'a' - ('9'+1);
draw_text(fe, tx + TILE_SIZE/2, ty + TILE_SIZE/2,
FONT_VARIABLE, TILE_SIZE/2, ALIGN_VCENTRE | ALIGN_HCENTRE,
state->immutable[y*cr+x] ? COL_CLUE : (hl & 16) ? COL_ERROR : COL_USER, str);
} else {
int i, j, npencil;
int pw, ph, pmax, fontsize;
/* count the pencil marks required */
for (i = npencil = 0; i < cr; i++)
if (state->pencil[(y*cr+x)*cr+i])
npencil++;
/*
* It's not sensible to arrange pencil marks in the same
* layout as the squares within a block, because this leads
* to the font being too small. Instead, we arrange pencil
* marks in the nearest thing we can to a square layout,
* and we adjust the square layout depending on the number
* of pencil marks in the square.
*/
for (pw = 1; pw * pw < npencil; pw++);
if (pw < 3) pw = 3; /* otherwise it just looks _silly_ */
ph = (npencil + pw - 1) / pw;
if (ph < 2) ph = 2; /* likewise */
pmax = max(pw, ph);
fontsize = TILE_SIZE/(pmax*(11-pmax)/8);
for (i = j = 0; i < cr; i++)
if (state->pencil[(y*cr+x)*cr+i]) {
int dx = j % pw, dy = j / pw;
str[1] = '\0';
str[0] = i + '1';
if (str[0] > '9')
str[0] += 'a' - ('9'+1);
draw_text(fe, tx + (4*dx+3) * TILE_SIZE / (4*pw+2),
ty + (4*dy+3) * TILE_SIZE / (4*ph+2),
FONT_VARIABLE, fontsize,
ALIGN_VCENTRE | ALIGN_HCENTRE, COL_PENCIL, str);
j++;
}
}
unclip(fe);
draw_update(fe, cx, cy, cw, ch);
ds->grid[y*cr+x] = state->grid[y*cr+x];
memcpy(ds->pencil+(y*cr+x)*cr, state->pencil+(y*cr+x)*cr, cr);
ds->hl[y*cr+x] = hl;
}
static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
game_state *state, int dir, game_ui *ui,
float animtime, float flashtime)
{
int c = state->c, r = state->r, cr = c*r;
int x, y;
if (!ds->started) {
/*
* The initial contents of the window are not guaranteed
* and can vary with front ends. To be on the safe side,
* all games should start by drawing a big
* background-colour rectangle covering the whole window.
*/
draw_rect(fe, 0, 0, SIZE(cr), SIZE(cr), COL_BACKGROUND);
/*
* Draw the grid.
*/
for (x = 0; x <= cr; x++) {
int thick = (x % r ? 0 : 1);
draw_rect(fe, BORDER + x*TILE_SIZE - thick, BORDER-1,
1+2*thick, cr*TILE_SIZE+3, COL_GRID);
}
for (y = 0; y <= cr; y++) {
int thick = (y % c ? 0 : 1);
draw_rect(fe, BORDER-1, BORDER + y*TILE_SIZE - thick,
cr*TILE_SIZE+3, 1+2*thick, COL_GRID);
}
}
/*
* This array is used to keep track of rows, columns and boxes
* which contain a number more than once.
*/
for (x = 0; x < cr * cr; x++)
ds->entered_items[x] = 0;
for (x = 0; x < cr; x++)
for (y = 0; y < cr; y++) {
digit d = state->grid[y*cr+x];
if (d) {
int box = (x/r)+(y/c)*c;
ds->entered_items[x*cr+d-1] |= ((ds->entered_items[x*cr+d-1] & 1) << 1) | 1;
ds->entered_items[y*cr+d-1] |= ((ds->entered_items[y*cr+d-1] & 4) << 1) | 4;
ds->entered_items[box*cr+d-1] |= ((ds->entered_items[box*cr+d-1] & 16) << 1) | 16;
}
}
/*
* Draw any numbers which need redrawing.
*/
for (x = 0; x < cr; x++) {
for (y = 0; y < cr; y++) {
int highlight = 0;
digit d = state->grid[y*cr+x];
if (flashtime > 0 &&
(flashtime <= FLASH_TIME/3 ||
flashtime >= FLASH_TIME*2/3))
highlight = 1;
/* Highlight active input areas. */
if (x == ui->hx && y == ui->hy)
highlight = ui->hpencil ? 2 : 1;
/* Mark obvious errors (ie, numbers which occur more than once
* in a single row, column, or box). */
if (d && ((ds->entered_items[x*cr+d-1] & 2) ||
(ds->entered_items[y*cr+d-1] & 8) ||
(ds->entered_items[((x/r)+(y/c)*c)*cr+d-1] & 32)))
highlight |= 16;
draw_number(fe, ds, state, x, y, highlight);
}
}
/*
* Update the _entire_ grid if necessary.
*/
if (!ds->started) {
draw_update(fe, 0, 0, SIZE(cr), SIZE(cr));
ds->started = TRUE;
}
}
static float game_anim_length(game_state *oldstate, game_state *newstate,
int dir, game_ui *ui)
{
return 0.0F;
}
static float game_flash_length(game_state *oldstate, game_state *newstate,
int dir, game_ui *ui)
{
if (!oldstate->completed && newstate->completed &&
!oldstate->cheated && !newstate->cheated)
return FLASH_TIME;
return 0.0F;
}
static int game_wants_statusbar(void)
{
return FALSE;
}
static int game_timing_state(game_state *state)
{
return TRUE;
}
#ifdef COMBINED
#define thegame solo
#endif
const struct game thegame = {
"Solo", "games.solo",
default_params,
game_fetch_preset,
decode_params,
encode_params,
free_params,
dup_params,
TRUE, game_configure, custom_params,
validate_params,
new_game_desc,
validate_desc,
new_game,
dup_game,
free_game,
TRUE, solve_game,
TRUE, game_text_format,
new_ui,
free_ui,
encode_ui,
decode_ui,
game_changed_state,
interpret_move,
execute_move,
PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
game_colours,
game_new_drawstate,
game_free_drawstate,
game_redraw,
game_anim_length,
game_flash_length,
game_wants_statusbar,
FALSE, game_timing_state,
0, /* mouse_priorities */
};
#ifdef STANDALONE_SOLVER
/*
* gcc -DSTANDALONE_SOLVER -o solosolver solo.c malloc.c
*/
void frontend_default_colour(frontend *fe, float *output) {}
void draw_text(frontend *fe, int x, int y, int fonttype, int fontsize,
int align, int colour, char *text) {}
void draw_rect(frontend *fe, int x, int y, int w, int h, int colour) {}
void draw_line(frontend *fe, int x1, int y1, int x2, int y2, int colour) {}
void draw_polygon(frontend *fe, int *coords, int npoints,
int fillcolour, int outlinecolour) {}
void clip(frontend *fe, int x, int y, int w, int h) {}
void unclip(frontend *fe) {}
void start_draw(frontend *fe) {}
void draw_update(frontend *fe, int x, int y, int w, int h) {}
void end_draw(frontend *fe) {}
unsigned long random_bits(random_state *state, int bits)
{ assert(!"Shouldn't get randomness"); return 0; }
unsigned long random_upto(random_state *state, unsigned long limit)
{ assert(!"Shouldn't get randomness"); return 0; }
void fatal(char *fmt, ...)
{
va_list ap;
fprintf(stderr, "fatal error: ");
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
fprintf(stderr, "\n");
exit(1);
}
int main(int argc, char **argv)
{
game_params *p;
game_state *s;
char *id = NULL, *desc, *err;
int grade = FALSE;
int ret;
while (--argc > 0) {
char *p = *++argv;
if (!strcmp(p, "-v")) {
solver_show_working = TRUE;
} else if (!strcmp(p, "-g")) {
grade = TRUE;
} else if (*p == '-') {
fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
return 1;
} else {
id = p;
}
}
if (!id) {
fprintf(stderr, "usage: %s [-g | -v] <game_id>\n", argv[0]);
return 1;
}
desc = strchr(id, ':');
if (!desc) {
fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
return 1;
}
*desc++ = '\0';
p = default_params();
decode_params(p, id);
err = validate_desc(p, desc);
if (err) {
fprintf(stderr, "%s: %s\n", argv[0], err);
return 1;
}
s = new_game(NULL, p, desc);
ret = solver(p->c, p->r, s->grid, NULL, DIFF_RECURSIVE);
if (grade) {
printf("Difficulty rating: %s\n",
ret==DIFF_BLOCK ? "Trivial (blockwise positional elimination only)":
ret==DIFF_SIMPLE ? "Basic (row/column/number elimination required)":
ret==DIFF_INTERSECT ? "Intermediate (intersectional analysis required)":
ret==DIFF_SET ? "Advanced (set elimination required)":
ret==DIFF_RECURSIVE ? "Unreasonable (guesswork and backtracking required)":
ret==DIFF_AMBIGUOUS ? "Ambiguous (multiple solutions exist)":
ret==DIFF_IMPOSSIBLE ? "Impossible (no solution exists)":
"INTERNAL ERROR: unrecognised difficulty code");
} else {
printf("%s\n", grid_text_format(p->c, p->r, s->grid));
}
return 0;
}
#endif