Files
puzzles/untangle.c
Simon Tatham af59dcf685 Substantial infrastructure upheaval. I've separated the drawing API
as seen by the back ends from the one implemented by the front end,
and shoved a piece of middleware (drawing.c) in between to permit
interchange of multiple kinds of the latter. I've also added a
number of functions to the drawing API to permit printing as well as
on-screen drawing, and retired print.py in favour of integrated
printing done by means of that API.

The immediate visible change is that print.py is dead, and each
puzzle now does its own printing: where you would previously have
typed `print.py solo 2x3', you now type `solo --print 2x3' and it
should work in much the same way.

Advantages of the new mechanism available right now:
 - Map is now printable, because the new print function can make use
   of the output from the existing game ID decoder rather than me
   having to replicate all those fiddly algorithms in Python.
 - the new print functions can cope with non-initial game states,
   which means each puzzle supporting --print also supports
   --with-solutions.
 - there's also a --scale option permitting users to adjust the size
   of the printed puzzles.

Advantages which will be available at some point:
 - the new API should permit me to implement native printing
   mechanisms on Windows and OS X.

[originally from svn r6190]
2005-08-18 17:50:14 +00:00

1468 lines
34 KiB
C

/*
* untangle.c: Game about planar graphs. You are given a graph
* represented by points and straight lines, with some lines
* crossing; your task is to drag the points into a configuration
* where none of the lines cross.
*
* Cloned from a Flash game called `Planarity', by John Tantalo.
* <http://home.cwru.edu/~jnt5/Planarity> at the time of writing
* this. The Flash game had a fixed set of levels; my added value,
* as usual, is automatic generation of random games to order.
*/
/*
* TODO:
*
* - Any way we can speed up redraws on GTK? Uck.
*
* - It would be nice if we could somehow auto-detect a real `long
* long' type on the host platform and use it in place of my
* hand-hacked int64s. It'd be faster and more reliable.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <ctype.h>
#include <math.h>
#include "puzzles.h"
#include "tree234.h"
#define CIRCLE_RADIUS 6
#define DRAG_THRESHOLD (CIRCLE_RADIUS * 2)
#define PREFERRED_TILESIZE 64
#define FLASH_TIME 0.30F
#define ANIM_TIME 0.13F
#define SOLVEANIM_TIME 0.50F
enum {
COL_BACKGROUND,
COL_LINE,
#ifdef SHOW_CROSSINGS
COL_CROSSEDLINE,
#endif
COL_OUTLINE,
COL_POINT,
COL_DRAGPOINT,
COL_NEIGHBOUR,
COL_FLASH1,
COL_FLASH2,
NCOLOURS
};
typedef struct point {
/*
* Points are stored using rational coordinates, with the same
* denominator for both coordinates.
*/
long x, y, d;
} point;
typedef struct edge {
/*
* This structure is implicitly associated with a particular
* point set, so all it has to do is to store two point
* indices. It is required to store them in the order (lower,
* higher), i.e. a < b always.
*/
int a, b;
} edge;
struct game_params {
int n; /* number of points */
};
struct graph {
int refcount; /* for deallocation */
tree234 *edges; /* stores `edge' structures */
};
struct game_state {
game_params params;
int w, h; /* extent of coordinate system only */
point *pts;
#ifdef SHOW_CROSSINGS
int *crosses; /* mark edges which are crossed */
#endif
struct graph *graph;
int completed, cheated, just_solved;
};
static int edgecmpC(const void *av, const void *bv)
{
const edge *a = (const edge *)av;
const edge *b = (const edge *)bv;
if (a->a < b->a)
return -1;
else if (a->a > b->a)
return +1;
else if (a->b < b->b)
return -1;
else if (a->b > b->b)
return +1;
return 0;
}
static int edgecmp(void *av, void *bv) { return edgecmpC(av, bv); }
static game_params *default_params(void)
{
game_params *ret = snew(game_params);
ret->n = 10;
return ret;
}
static int game_fetch_preset(int i, char **name, game_params **params)
{
game_params *ret;
int n;
char buf[80];
switch (i) {
case 0: n = 6; break;
case 1: n = 10; break;
case 2: n = 15; break;
case 3: n = 20; break;
case 4: n = 25; break;
default: return FALSE;
}
sprintf(buf, "%d points", n);
*name = dupstr(buf);
*params = ret = snew(game_params);
ret->n = n;
return TRUE;
}
static void free_params(game_params *params)
{
sfree(params);
}
static game_params *dup_params(game_params *params)
{
game_params *ret = snew(game_params);
*ret = *params; /* structure copy */
return ret;
}
static void decode_params(game_params *params, char const *string)
{
params->n = atoi(string);
}
static char *encode_params(game_params *params, int full)
{
char buf[80];
sprintf(buf, "%d", params->n);
return dupstr(buf);
}
static config_item *game_configure(game_params *params)
{
config_item *ret;
char buf[80];
ret = snewn(3, config_item);
ret[0].name = "Number of points";
ret[0].type = C_STRING;
sprintf(buf, "%d", params->n);
ret[0].sval = dupstr(buf);
ret[0].ival = 0;
ret[1].name = NULL;
ret[1].type = C_END;
ret[1].sval = NULL;
ret[1].ival = 0;
return ret;
}
static game_params *custom_params(config_item *cfg)
{
game_params *ret = snew(game_params);
ret->n = atoi(cfg[0].sval);
return ret;
}
static char *validate_params(game_params *params, int full)
{
if (params->n < 4)
return "Number of points must be at least four";
return NULL;
}
/* ----------------------------------------------------------------------
* Small number of 64-bit integer arithmetic operations, to prevent
* integer overflow at the very core of cross().
*/
typedef struct {
long hi;
unsigned long lo;
} int64;
#define greater64(i,j) ( (i).hi>(j).hi || ((i).hi==(j).hi && (i).lo>(j).lo))
#define sign64(i) ((i).hi < 0 ? -1 : (i).hi==0 && (i).lo==0 ? 0 : +1)
static int64 mulu32to64(unsigned long x, unsigned long y)
{
unsigned long a, b, c, d, t;
int64 ret;
a = (x & 0xFFFF) * (y & 0xFFFF);
b = (x & 0xFFFF) * (y >> 16);
c = (x >> 16) * (y & 0xFFFF);
d = (x >> 16) * (y >> 16);
ret.lo = a;
ret.hi = d + (b >> 16) + (c >> 16);
t = (b & 0xFFFF) << 16;
ret.lo += t;
if (ret.lo < t)
ret.hi++;
t = (c & 0xFFFF) << 16;
ret.lo += t;
if (ret.lo < t)
ret.hi++;
#ifdef DIAGNOSTIC_VIA_LONGLONG
assert(((unsigned long long)ret.hi << 32) + ret.lo ==
(unsigned long long)x * y);
#endif
return ret;
}
static int64 mul32to64(long x, long y)
{
int sign = +1;
int64 ret;
#ifdef DIAGNOSTIC_VIA_LONGLONG
long long realret = (long long)x * y;
#endif
if (x < 0)
x = -x, sign = -sign;
if (y < 0)
y = -y, sign = -sign;
ret = mulu32to64(x, y);
if (sign < 0) {
ret.hi = -ret.hi;
ret.lo = -ret.lo;
if (ret.lo)
ret.hi--;
}
#ifdef DIAGNOSTIC_VIA_LONGLONG
assert(((unsigned long long)ret.hi << 32) + ret.lo == realret);
#endif
return ret;
}
static int64 dotprod64(long a, long b, long p, long q)
{
int64 ab, pq;
ab = mul32to64(a, b);
pq = mul32to64(p, q);
ab.hi += pq.hi;
ab.lo += pq.lo;
if (ab.lo < pq.lo)
ab.hi++;
return ab;
}
/*
* Determine whether the line segments between a1 and a2, and
* between b1 and b2, intersect. We count it as an intersection if
* any of the endpoints lies _on_ the other line.
*/
static int cross(point a1, point a2, point b1, point b2)
{
long b1x, b1y, b2x, b2y, px, py;
int64 d1, d2, d3;
/*
* The condition for crossing is that b1 and b2 are on opposite
* sides of the line a1-a2, and vice versa. We determine this
* by taking the dot product of b1-a1 with a vector
* perpendicular to a2-a1, and similarly with b2-a1, and seeing
* if they have different signs.
*/
/*
* Construct the vector b1-a1. We don't have to worry too much
* about the denominator, because we're only going to check the
* sign of this vector; we just need to get the numerator
* right.
*/
b1x = b1.x * a1.d - a1.x * b1.d;
b1y = b1.y * a1.d - a1.y * b1.d;
/* Now construct b2-a1, and a vector perpendicular to a2-a1,
* in the same way. */
b2x = b2.x * a1.d - a1.x * b2.d;
b2y = b2.y * a1.d - a1.y * b2.d;
px = a1.y * a2.d - a2.y * a1.d;
py = a2.x * a1.d - a1.x * a2.d;
/* Take the dot products. Here we resort to 64-bit arithmetic. */
d1 = dotprod64(b1x, px, b1y, py);
d2 = dotprod64(b2x, px, b2y, py);
/* If they have the same non-zero sign, the lines do not cross. */
if ((sign64(d1) > 0 && sign64(d2) > 0) ||
(sign64(d1) < 0 && sign64(d2) < 0))
return FALSE;
/*
* If the dot products are both exactly zero, then the two line
* segments are collinear. At this point the intersection
* condition becomes whether or not they overlap within their
* line.
*/
if (sign64(d1) == 0 && sign64(d2) == 0) {
/* Construct the vector a2-a1. */
px = a2.x * a1.d - a1.x * a2.d;
py = a2.y * a1.d - a1.y * a2.d;
/* Determine the dot products of b1-a1 and b2-a1 with this. */
d1 = dotprod64(b1x, px, b1y, py);
d2 = dotprod64(b2x, px, b2y, py);
/* If they're both strictly negative, the lines do not cross. */
if (sign64(d1) < 0 && sign64(d2) < 0)
return FALSE;
/* Otherwise, take the dot product of a2-a1 with itself. If
* the other two dot products both exceed this, the lines do
* not cross. */
d3 = dotprod64(px, px, py, py);
if (greater64(d1, d3) && greater64(d2, d3))
return FALSE;
}
/*
* We've eliminated the only important special case, and we
* have determined that b1 and b2 are on opposite sides of the
* line a1-a2. Now do the same thing the other way round and
* we're done.
*/
b1x = a1.x * b1.d - b1.x * a1.d;
b1y = a1.y * b1.d - b1.y * a1.d;
b2x = a2.x * b1.d - b1.x * a2.d;
b2y = a2.y * b1.d - b1.y * a2.d;
px = b1.y * b2.d - b2.y * b1.d;
py = b2.x * b1.d - b1.x * b2.d;
d1 = dotprod64(b1x, px, b1y, py);
d2 = dotprod64(b2x, px, b2y, py);
if ((sign64(d1) > 0 && sign64(d2) > 0) ||
(sign64(d1) < 0 && sign64(d2) < 0))
return FALSE;
/*
* The lines must cross.
*/
return TRUE;
}
static unsigned long squarert(unsigned long n) {
unsigned long d, a, b, di;
d = n;
a = 0;
b = 1L << 30; /* largest available power of 4 */
do {
a >>= 1;
di = 2*a + b;
if (di <= d) {
d -= di;
a += b;
}
b >>= 2;
} while (b);
return a;
}
/*
* Our solutions are arranged on a square grid big enough that n
* points occupy about 1/POINTDENSITY of the grid.
*/
#define POINTDENSITY 3
#define MAXDEGREE 4
#define COORDLIMIT(n) squarert((n) * POINTDENSITY)
static void addedge(tree234 *edges, int a, int b)
{
edge *e = snew(edge);
assert(a != b);
e->a = min(a, b);
e->b = max(a, b);
add234(edges, e);
}
static int isedge(tree234 *edges, int a, int b)
{
edge e;
assert(a != b);
e.a = min(a, b);
e.b = max(a, b);
return find234(edges, &e, NULL) != NULL;
}
typedef struct vertex {
int param;
int vindex;
} vertex;
static int vertcmpC(const void *av, const void *bv)
{
const vertex *a = (vertex *)av;
const vertex *b = (vertex *)bv;
if (a->param < b->param)
return -1;
else if (a->param > b->param)
return +1;
else if (a->vindex < b->vindex)
return -1;
else if (a->vindex > b->vindex)
return +1;
return 0;
}
static int vertcmp(void *av, void *bv) { return vertcmpC(av, bv); }
/*
* Construct point coordinates for n points arranged in a circle,
* within the bounding box (0,0) to (w,w).
*/
static void make_circle(point *pts, int n, int w)
{
long d, r, c, i;
/*
* First, decide on a denominator. Although in principle it
* would be nice to set this really high so as to finely
* distinguish all the points on the circle, I'm going to set
* it at a fixed size to prevent integer overflow problems.
*/
d = PREFERRED_TILESIZE;
/*
* Leave a little space outside the circle.
*/
c = d * w / 2;
r = d * w * 3 / 7;
/*
* Place the points.
*/
for (i = 0; i < n; i++) {
double angle = i * 2 * PI / n;
double x = r * sin(angle), y = - r * cos(angle);
pts[i].x = (long)(c + x + 0.5);
pts[i].y = (long)(c + y + 0.5);
pts[i].d = d;
}
}
static char *new_game_desc(game_params *params, random_state *rs,
char **aux, int interactive)
{
int n = params->n, i;
long w, h, j, k, m;
point *pts, *pts2;
long *tmp;
tree234 *edges, *vertices;
edge *e, *e2;
vertex *v, *vs, *vlist;
char *ret;
w = h = COORDLIMIT(n);
/*
* Choose n points from this grid.
*/
pts = snewn(n, point);
tmp = snewn(w*h, long);
for (i = 0; i < w*h; i++)
tmp[i] = i;
shuffle(tmp, w*h, sizeof(*tmp), rs);
for (i = 0; i < n; i++) {
pts[i].x = tmp[i] % w;
pts[i].y = tmp[i] / w;
pts[i].d = 1;
}
sfree(tmp);
/*
* Now start adding edges between the points.
*
* At all times, we attempt to add an edge to the lowest-degree
* vertex we currently have, and we try the other vertices as
* candidate second endpoints in order of distance from this
* one. We stop as soon as we find an edge which
*
* (a) does not increase any vertex's degree beyond MAXDEGREE
* (b) does not cross any existing edges
* (c) does not intersect any actual point.
*/
vs = snewn(n, vertex);
vertices = newtree234(vertcmp);
for (i = 0; i < n; i++) {
v = vs + i;
v->param = 0; /* in this tree, param is the degree */
v->vindex = i;
add234(vertices, v);
}
edges = newtree234(edgecmp);
vlist = snewn(n, vertex);
while (1) {
int added = FALSE;
for (i = 0; i < n; i++) {
v = index234(vertices, i);
j = v->vindex;
if (v->param >= MAXDEGREE)
break; /* nothing left to add! */
/*
* Sort the other vertices into order of their distance
* from this one. Don't bother looking below i, because
* we've already tried those edges the other way round.
* Also here we rule out target vertices with too high
* a degree, and (of course) ones to which we already
* have an edge.
*/
m = 0;
for (k = i+1; k < n; k++) {
vertex *kv = index234(vertices, k);
int ki = kv->vindex;
int dx, dy;
if (kv->param >= MAXDEGREE || isedge(edges, ki, j))
continue;
vlist[m].vindex = ki;
dx = pts[ki].x - pts[j].x;
dy = pts[ki].y - pts[j].y;
vlist[m].param = dx*dx + dy*dy;
m++;
}
qsort(vlist, m, sizeof(*vlist), vertcmpC);
for (k = 0; k < m; k++) {
int p;
int ki = vlist[k].vindex;
/*
* Check to see whether this edge intersects any
* existing edge or point.
*/
for (p = 0; p < n; p++)
if (p != ki && p != j && cross(pts[ki], pts[j],
pts[p], pts[p]))
break;
if (p < n)
continue;
for (p = 0; (e = index234(edges, p)) != NULL; p++)
if (e->a != ki && e->a != j &&
e->b != ki && e->b != j &&
cross(pts[ki], pts[j], pts[e->a], pts[e->b]))
break;
if (e)
continue;
/*
* We're done! Add this edge, modify the degrees of
* the two vertices involved, and break.
*/
addedge(edges, j, ki);
added = TRUE;
del234(vertices, vs+j);
vs[j].param++;
add234(vertices, vs+j);
del234(vertices, vs+ki);
vs[ki].param++;
add234(vertices, vs+ki);
break;
}
if (k < m)
break;
}
if (!added)
break; /* we're done. */
}
/*
* That's our graph. Now shuffle the points, making sure that
* they come out with at least one crossed line when arranged
* in a circle (so that the puzzle isn't immediately solved!).
*/
tmp = snewn(n, long);
for (i = 0; i < n; i++)
tmp[i] = i;
pts2 = snewn(n, point);
make_circle(pts2, n, w);
while (1) {
shuffle(tmp, n, sizeof(*tmp), rs);
for (i = 0; (e = index234(edges, i)) != NULL; i++) {
for (j = i+1; (e2 = index234(edges, j)) != NULL; j++) {
if (e2->a == e->a || e2->a == e->b ||
e2->b == e->a || e2->b == e->b)
continue;
if (cross(pts2[tmp[e2->a]], pts2[tmp[e2->b]],
pts2[tmp[e->a]], pts2[tmp[e->b]]))
break;
}
if (e2)
break;
}
if (e)
break; /* we've found a crossing */
}
/*
* We're done. Now encode the graph in a string format. Let's
* use a comma-separated list of dash-separated vertex number
* pairs, numbered from zero. We'll sort the list to prevent
* side channels.
*/
ret = NULL;
{
char *sep;
char buf[80];
int retlen;
edge *ea;
retlen = 0;
m = count234(edges);
ea = snewn(m, edge);
for (i = 0; (e = index234(edges, i)) != NULL; i++) {
assert(i < m);
ea[i].a = min(tmp[e->a], tmp[e->b]);
ea[i].b = max(tmp[e->a], tmp[e->b]);
retlen += 1 + sprintf(buf, "%d-%d", ea[i].a, ea[i].b);
}
assert(i == m);
qsort(ea, m, sizeof(*ea), edgecmpC);
ret = snewn(retlen, char);
sep = "";
k = 0;
for (i = 0; i < m; i++) {
k += sprintf(ret + k, "%s%d-%d", sep, ea[i].a, ea[i].b);
sep = ",";
}
assert(k < retlen);
sfree(ea);
}
/*
* Encode the solution we started with as an aux_info string.
*/
{
char buf[80];
char *auxstr;
int auxlen;
auxlen = 2; /* leading 'S' and trailing '\0' */
for (i = 0; i < n; i++) {
j = tmp[i];
pts2[j] = pts[i];
if (pts2[j].d & 1) {
pts2[j].x *= 2;
pts2[j].y *= 2;
pts2[j].d *= 2;
}
pts2[j].x += pts2[j].d / 2;
pts2[j].y += pts2[j].d / 2;
auxlen += sprintf(buf, ";P%d:%ld,%ld/%ld", i,
pts2[j].x, pts2[j].y, pts2[j].d);
}
k = 0;
auxstr = snewn(auxlen, char);
auxstr[k++] = 'S';
for (i = 0; i < n; i++)
k += sprintf(auxstr+k, ";P%d:%ld,%ld/%ld", i,
pts2[i].x, pts2[i].y, pts2[i].d);
assert(k < auxlen);
*aux = auxstr;
}
sfree(pts2);
sfree(tmp);
sfree(vlist);
freetree234(vertices);
sfree(vs);
while ((e = delpos234(edges, 0)) != NULL)
sfree(e);
freetree234(edges);
sfree(pts);
return ret;
}
static char *validate_desc(game_params *params, char *desc)
{
int a, b;
while (*desc) {
a = atoi(desc);
if (a < 0 || a >= params->n)
return "Number out of range in game description";
while (*desc && isdigit((unsigned char)*desc)) desc++;
if (*desc != '-')
return "Expected '-' after number in game description";
desc++; /* eat dash */
b = atoi(desc);
if (b < 0 || b >= params->n)
return "Number out of range in game description";
while (*desc && isdigit((unsigned char)*desc)) desc++;
if (*desc) {
if (*desc != ',')
return "Expected ',' after number in game description";
desc++; /* eat comma */
}
}
return NULL;
}
static void mark_crossings(game_state *state)
{
int ok = TRUE;
int i, j;
edge *e, *e2;
#ifdef SHOW_CROSSINGS
for (i = 0; (e = index234(state->graph->edges, i)) != NULL; i++)
state->crosses[i] = FALSE;
#endif
/*
* Check correctness: for every pair of edges, see whether they
* cross.
*/
for (i = 0; (e = index234(state->graph->edges, i)) != NULL; i++) {
for (j = i+1; (e2 = index234(state->graph->edges, j)) != NULL; j++) {
if (e2->a == e->a || e2->a == e->b ||
e2->b == e->a || e2->b == e->b)
continue;
if (cross(state->pts[e2->a], state->pts[e2->b],
state->pts[e->a], state->pts[e->b])) {
ok = FALSE;
#ifdef SHOW_CROSSINGS
state->crosses[i] = state->crosses[j] = TRUE;
#else
goto done; /* multi-level break - sorry */
#endif
}
}
}
/*
* e == NULL if we've gone through all the edge pairs
* without finding a crossing.
*/
#ifndef SHOW_CROSSINGS
done:
#endif
if (ok)
state->completed = TRUE;
}
static game_state *new_game(midend *me, game_params *params, char *desc)
{
int n = params->n;
game_state *state = snew(game_state);
int a, b;
state->params = *params;
state->w = state->h = COORDLIMIT(n);
state->pts = snewn(n, point);
make_circle(state->pts, n, state->w);
state->graph = snew(struct graph);
state->graph->refcount = 1;
state->graph->edges = newtree234(edgecmp);
state->completed = state->cheated = state->just_solved = FALSE;
while (*desc) {
a = atoi(desc);
assert(a >= 0 && a < params->n);
while (*desc && isdigit((unsigned char)*desc)) desc++;
assert(*desc == '-');
desc++; /* eat dash */
b = atoi(desc);
assert(b >= 0 && b < params->n);
while (*desc && isdigit((unsigned char)*desc)) desc++;
if (*desc) {
assert(*desc == ',');
desc++; /* eat comma */
}
addedge(state->graph->edges, a, b);
}
#ifdef SHOW_CROSSINGS
state->crosses = snewn(count234(state->graph->edges), int);
mark_crossings(state); /* sets up `crosses' and `completed' */
#endif
return state;
}
static game_state *dup_game(game_state *state)
{
int n = state->params.n;
game_state *ret = snew(game_state);
ret->params = state->params;
ret->w = state->w;
ret->h = state->h;
ret->pts = snewn(n, point);
memcpy(ret->pts, state->pts, n * sizeof(point));
ret->graph = state->graph;
ret->graph->refcount++;
ret->completed = state->completed;
ret->cheated = state->cheated;
ret->just_solved = state->just_solved;
#ifdef SHOW_CROSSINGS
ret->crosses = snewn(count234(ret->graph->edges), int);
memcpy(ret->crosses, state->crosses,
count234(ret->graph->edges) * sizeof(int));
#endif
return ret;
}
static void free_game(game_state *state)
{
if (--state->graph->refcount <= 0) {
edge *e;
while ((e = delpos234(state->graph->edges, 0)) != NULL)
sfree(e);
freetree234(state->graph->edges);
sfree(state->graph);
}
sfree(state->pts);
sfree(state);
}
static char *solve_game(game_state *state, game_state *currstate,
char *aux, char **error)
{
int n = state->params.n;
int matrix[4];
point *pts;
int i, j, besti;
float bestd;
char buf[80], *ret;
int retlen, retsize;
if (!aux) {
*error = "Solution not known for this puzzle";
return NULL;
}
/*
* Decode the aux_info to get the original point positions.
*/
pts = snewn(n, point);
aux++; /* eat 'S' */
for (i = 0; i < n; i++) {
int p, k;
long x, y, d;
int ret = sscanf(aux, ";P%d:%ld,%ld/%ld%n", &p, &x, &y, &d, &k);
if (ret != 4 || p != i) {
*error = "Internal error: aux_info badly formatted";
sfree(pts);
return NULL;
}
pts[i].x = x;
pts[i].y = y;
pts[i].d = d;
aux += k;
}
/*
* Now go through eight possible symmetries of the point set.
* For each one, work out the sum of the Euclidean distances
* between the points' current positions and their new ones.
*
* We're squaring distances here, which means we're at risk of
* integer overflow. Fortunately, there's no real need to be
* massively careful about rounding errors, since this is a
* non-essential bit of the code; so I'll just work in floats
* internally.
*/
besti = -1;
bestd = 0.0F;
for (i = 0; i < 8; i++) {
float d;
matrix[0] = matrix[1] = matrix[2] = matrix[3] = 0;
matrix[i & 1] = (i & 2) ? +1 : -1;
matrix[3-(i&1)] = (i & 4) ? +1 : -1;
d = 0.0F;
for (j = 0; j < n; j++) {
float px = (float)pts[j].x / pts[j].d;
float py = (float)pts[j].y / pts[j].d;
float sx = (float)currstate->pts[j].x / currstate->pts[j].d;
float sy = (float)currstate->pts[j].y / currstate->pts[j].d;
float cx = (float)currstate->w / 2;
float cy = (float)currstate->h / 2;
float ox, oy, dx, dy;
px -= cx;
py -= cy;
ox = matrix[0] * px + matrix[1] * py;
oy = matrix[2] * px + matrix[3] * py;
ox += cx;
oy += cy;
dx = ox - sx;
dy = oy - sy;
d += dx*dx + dy*dy;
}
if (besti < 0 || bestd > d) {
besti = i;
bestd = d;
}
}
assert(besti >= 0);
/*
* Now we know which symmetry is closest to the points' current
* positions. Use it.
*/
matrix[0] = matrix[1] = matrix[2] = matrix[3] = 0;
matrix[besti & 1] = (besti & 2) ? +1 : -1;
matrix[3-(besti&1)] = (besti & 4) ? +1 : -1;
retsize = 256;
ret = snewn(retsize, char);
retlen = 0;
ret[retlen++] = 'S';
ret[retlen] = '\0';
for (i = 0; i < n; i++) {
float px = (float)pts[i].x / pts[i].d;
float py = (float)pts[i].y / pts[i].d;
float cx = (float)currstate->w / 2;
float cy = (float)currstate->h / 2;
float ox, oy;
int extra;
px -= cx;
py -= cy;
ox = matrix[0] * px + matrix[1] * py;
oy = matrix[2] * px + matrix[3] * py;
ox += cx;
oy += cy;
/*
* Use a fixed denominator of 2, because we know the
* original points were on an integer grid offset by 1/2.
*/
pts[i].d = 2;
ox *= pts[i].d;
oy *= pts[i].d;
pts[i].x = ox + 0.5;
pts[i].y = oy + 0.5;
extra = sprintf(buf, ";P%d:%ld,%ld/%ld", i,
pts[i].x, pts[i].y, pts[i].d);
if (retlen + extra >= retsize) {
retsize = retlen + extra + 256;
ret = sresize(ret, retsize, char);
}
strcpy(ret + retlen, buf);
retlen += extra;
}
sfree(pts);
return ret;
}
static char *game_text_format(game_state *state)
{
return NULL;
}
struct game_ui {
int dragpoint; /* point being dragged; -1 if none */
point newpoint; /* where it's been dragged to so far */
int just_dragged; /* reset in game_changed_state */
int just_moved; /* _set_ in game_changed_state */
float anim_length;
};
static game_ui *new_ui(game_state *state)
{
game_ui *ui = snew(game_ui);
ui->dragpoint = -1;
ui->just_moved = ui->just_dragged = FALSE;
return ui;
}
static void free_ui(game_ui *ui)
{
sfree(ui);
}
static char *encode_ui(game_ui *ui)
{
return NULL;
}
static void decode_ui(game_ui *ui, char *encoding)
{
}
static void game_changed_state(game_ui *ui, game_state *oldstate,
game_state *newstate)
{
ui->dragpoint = -1;
ui->just_moved = ui->just_dragged;
ui->just_dragged = FALSE;
}
struct game_drawstate {
long tilesize;
int bg, dragpoint;
long *x, *y;
};
static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
int x, int y, int button)
{
int n = state->params.n;
if (button == LEFT_BUTTON) {
int i, best;
long bestd;
/*
* Begin drag. We drag the vertex _nearest_ to the pointer,
* just in case one is nearly on top of another and we want
* to drag the latter. However, we drag nothing at all if
* the nearest vertex is outside DRAG_THRESHOLD.
*/
best = -1;
bestd = 0;
for (i = 0; i < n; i++) {
long px = state->pts[i].x * ds->tilesize / state->pts[i].d;
long py = state->pts[i].y * ds->tilesize / state->pts[i].d;
long dx = px - x;
long dy = py - y;
long d = dx*dx + dy*dy;
if (best == -1 || bestd > d) {
best = i;
bestd = d;
}
}
if (bestd <= DRAG_THRESHOLD * DRAG_THRESHOLD) {
ui->dragpoint = best;
ui->newpoint.x = x;
ui->newpoint.y = y;
ui->newpoint.d = ds->tilesize;
return "";
}
} else if (button == LEFT_DRAG && ui->dragpoint >= 0) {
ui->newpoint.x = x;
ui->newpoint.y = y;
ui->newpoint.d = ds->tilesize;
return "";
} else if (button == LEFT_RELEASE && ui->dragpoint >= 0) {
int p = ui->dragpoint;
char buf[80];
ui->dragpoint = -1; /* terminate drag, no matter what */
/*
* First, see if we're within range. The user can cancel a
* drag by dragging the point right off the window.
*/
if (ui->newpoint.x < 0 ||
ui->newpoint.x >= (long)state->w*ui->newpoint.d ||
ui->newpoint.y < 0 ||
ui->newpoint.y >= (long)state->h*ui->newpoint.d)
return "";
/*
* We aren't cancelling the drag. Construct a move string
* indicating where this point is going to.
*/
sprintf(buf, "P%d:%ld,%ld/%ld", p,
ui->newpoint.x, ui->newpoint.y, ui->newpoint.d);
ui->just_dragged = TRUE;
return dupstr(buf);
}
return NULL;
}
static game_state *execute_move(game_state *state, char *move)
{
int n = state->params.n;
int p, k;
long x, y, d;
game_state *ret = dup_game(state);
ret->just_solved = FALSE;
while (*move) {
if (*move == 'S') {
move++;
if (*move == ';') move++;
ret->cheated = ret->just_solved = TRUE;
}
if (*move == 'P' &&
sscanf(move+1, "%d:%ld,%ld/%ld%n", &p, &x, &y, &d, &k) == 4 &&
p >= 0 && p < n && d > 0) {
ret->pts[p].x = x;
ret->pts[p].y = y;
ret->pts[p].d = d;
move += k+1;
if (*move == ';') move++;
} else {
free_game(ret);
return NULL;
}
}
mark_crossings(ret);
return ret;
}
/* ----------------------------------------------------------------------
* Drawing routines.
*/
static void game_compute_size(game_params *params, int tilesize,
int *x, int *y)
{
*x = *y = COORDLIMIT(params->n) * tilesize;
}
static void game_set_size(drawing *dr, game_drawstate *ds,
game_params *params, int tilesize)
{
ds->tilesize = tilesize;
}
static float *game_colours(frontend *fe, game_state *state, int *ncolours)
{
float *ret = snewn(3 * NCOLOURS, float);
frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
ret[COL_LINE * 3 + 0] = 0.0F;
ret[COL_LINE * 3 + 1] = 0.0F;
ret[COL_LINE * 3 + 2] = 0.0F;
#ifdef SHOW_CROSSINGS
ret[COL_CROSSEDLINE * 3 + 0] = 1.0F;
ret[COL_CROSSEDLINE * 3 + 1] = 0.0F;
ret[COL_CROSSEDLINE * 3 + 2] = 0.0F;
#endif
ret[COL_OUTLINE * 3 + 0] = 0.0F;
ret[COL_OUTLINE * 3 + 1] = 0.0F;
ret[COL_OUTLINE * 3 + 2] = 0.0F;
ret[COL_POINT * 3 + 0] = 0.0F;
ret[COL_POINT * 3 + 1] = 0.0F;
ret[COL_POINT * 3 + 2] = 1.0F;
ret[COL_DRAGPOINT * 3 + 0] = 1.0F;
ret[COL_DRAGPOINT * 3 + 1] = 1.0F;
ret[COL_DRAGPOINT * 3 + 2] = 1.0F;
ret[COL_NEIGHBOUR * 3 + 0] = 1.0F;
ret[COL_NEIGHBOUR * 3 + 1] = 0.0F;
ret[COL_NEIGHBOUR * 3 + 2] = 0.0F;
ret[COL_FLASH1 * 3 + 0] = 0.5F;
ret[COL_FLASH1 * 3 + 1] = 0.5F;
ret[COL_FLASH1 * 3 + 2] = 0.5F;
ret[COL_FLASH2 * 3 + 0] = 1.0F;
ret[COL_FLASH2 * 3 + 1] = 1.0F;
ret[COL_FLASH2 * 3 + 2] = 1.0F;
*ncolours = NCOLOURS;
return ret;
}
static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
{
struct game_drawstate *ds = snew(struct game_drawstate);
int i;
ds->tilesize = 0;
ds->x = snewn(state->params.n, long);
ds->y = snewn(state->params.n, long);
for (i = 0; i < state->params.n; i++)
ds->x[i] = ds->y[i] = -1;
ds->bg = -1;
ds->dragpoint = -1;
return ds;
}
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
{
sfree(ds->y);
sfree(ds->x);
sfree(ds);
}
static point mix(point a, point b, float distance)
{
point ret;
ret.d = a.d * b.d;
ret.x = a.x * b.d + distance * (b.x * a.d - a.x * b.d);
ret.y = a.y * b.d + distance * (b.y * a.d - a.y * b.d);
return ret;
}
static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
game_state *state, int dir, game_ui *ui,
float animtime, float flashtime)
{
int w, h;
edge *e;
int i, j;
int bg, points_moved;
/*
* There's no terribly sensible way to do partial redraws of
* this game, so I'm going to have to resort to redrawing the
* whole thing every time.
*/
if (flashtime == 0)
bg = COL_BACKGROUND;
else if ((int)(flashtime * 4 / FLASH_TIME) % 2 == 0)
bg = COL_FLASH1;
else
bg = COL_FLASH2;
/*
* To prevent excessive spinning on redraw during a completion
* flash, we first check to see if _either_ the flash
* background colour has changed _or_ at least one point has
* moved _or_ a drag has begun or ended, and abandon the redraw
* if neither is the case.
*
* Also in this loop we work out the coordinates of all the
* points for this redraw.
*/
points_moved = FALSE;
for (i = 0; i < state->params.n; i++) {
point p = state->pts[i];
long x, y;
if (ui->dragpoint == i)
p = ui->newpoint;
if (oldstate)
p = mix(oldstate->pts[i], p, animtime / ui->anim_length);
x = p.x * ds->tilesize / p.d;
y = p.y * ds->tilesize / p.d;
if (ds->x[i] != x || ds->y[i] != y)
points_moved = TRUE;
ds->x[i] = x;
ds->y[i] = y;
}
if (ds->bg == bg && ds->dragpoint == ui->dragpoint && !points_moved)
return; /* nothing to do */
ds->dragpoint = ui->dragpoint;
ds->bg = bg;
game_compute_size(&state->params, ds->tilesize, &w, &h);
draw_rect(dr, 0, 0, w, h, bg);
/*
* Draw the edges.
*/
for (i = 0; (e = index234(state->graph->edges, i)) != NULL; i++) {
draw_line(dr, ds->x[e->a], ds->y[e->a], ds->x[e->b], ds->y[e->b],
#ifdef SHOW_CROSSINGS
(oldstate?oldstate:state)->crosses[i] ?
COL_CROSSEDLINE :
#endif
COL_LINE);
}
/*
* Draw the points.
*
* When dragging, we should not only vary the colours, but
* leave the point being dragged until last.
*/
for (j = 0; j < 3; j++) {
int thisc = (j == 0 ? COL_POINT :
j == 1 ? COL_NEIGHBOUR : COL_DRAGPOINT);
for (i = 0; i < state->params.n; i++) {
int c;
if (ui->dragpoint == i) {
c = COL_DRAGPOINT;
} else if (ui->dragpoint >= 0 &&
isedge(state->graph->edges, ui->dragpoint, i)) {
c = COL_NEIGHBOUR;
} else {
c = COL_POINT;
}
if (c == thisc) {
#ifdef VERTEX_NUMBERS
draw_circle(dr, ds->x[i], ds->y[i], DRAG_THRESHOLD, bg, bg);
{
char buf[80];
sprintf(buf, "%d", i);
draw_text(dr, ds->x[i], ds->y[i], FONT_VARIABLE,
DRAG_THRESHOLD*3/2,
ALIGN_VCENTRE|ALIGN_HCENTRE, c, buf);
}
#else
draw_circle(dr, ds->x[i], ds->y[i], CIRCLE_RADIUS,
c, COL_OUTLINE);
#endif
}
}
}
draw_update(dr, 0, 0, w, h);
}
static float game_anim_length(game_state *oldstate, game_state *newstate,
int dir, game_ui *ui)
{
if (ui->just_moved)
return 0.0F;
if ((dir < 0 ? oldstate : newstate)->just_solved)
ui->anim_length = SOLVEANIM_TIME;
else
ui->anim_length = ANIM_TIME;
return ui->anim_length;
}
static float game_flash_length(game_state *oldstate, game_state *newstate,
int dir, game_ui *ui)
{
if (!oldstate->completed && newstate->completed &&
!oldstate->cheated && !newstate->cheated)
return FLASH_TIME;
return 0.0F;
}
static int game_wants_statusbar(void)
{
return FALSE;
}
static int game_timing_state(game_state *state, game_ui *ui)
{
return TRUE;
}
static void game_print_size(game_params *params, float *x, float *y)
{
}
static void game_print(drawing *dr, game_state *state, int tilesize)
{
}
#ifdef COMBINED
#define thegame untangle
#endif
const struct game thegame = {
"Untangle", "games.untangle",
default_params,
game_fetch_preset,
decode_params,
encode_params,
free_params,
dup_params,
TRUE, game_configure, custom_params,
validate_params,
new_game_desc,
validate_desc,
new_game,
dup_game,
free_game,
TRUE, solve_game,
FALSE, game_text_format,
new_ui,
free_ui,
encode_ui,
decode_ui,
game_changed_state,
interpret_move,
execute_move,
PREFERRED_TILESIZE, game_compute_size, game_set_size,
game_colours,
game_new_drawstate,
game_free_drawstate,
game_redraw,
game_anim_length,
game_flash_length,
FALSE, FALSE, game_print_size, game_print,
game_wants_statusbar,
FALSE, game_timing_state,
SOLVE_ANIMATES, /* mouse_priorities */
};