mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-20 07:31:30 -07:00
Files
1889 lines
56 KiB
C
1889 lines
56 KiB
C
/*
|
|
* netslide.c: cross between Net and Sixteen, courtesy of Richard
|
|
* Boulton.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <ctype.h>
|
|
#include <limits.h>
|
|
#ifdef NO_TGMATH_H
|
|
# include <math.h>
|
|
#else
|
|
# include <tgmath.h>
|
|
#endif
|
|
|
|
#include "puzzles.h"
|
|
#include "tree234.h"
|
|
|
|
#define MATMUL(xr,yr,m,x,y) do { \
|
|
float rx, ry, xx = (x), yy = (y), *mat = (m); \
|
|
rx = mat[0] * xx + mat[2] * yy; \
|
|
ry = mat[1] * xx + mat[3] * yy; \
|
|
(xr) = rx; (yr) = ry; \
|
|
} while (0)
|
|
|
|
/* Direction and other bitfields */
|
|
#define R 0x01
|
|
#define U 0x02
|
|
#define L 0x04
|
|
#define D 0x08
|
|
#define FLASHING 0x10
|
|
#define ACTIVE 0x20
|
|
/* Corner flags go in the barriers array */
|
|
#define RU 0x10
|
|
#define UL 0x20
|
|
#define LD 0x40
|
|
#define DR 0x80
|
|
|
|
/* Get tile at given coordinate */
|
|
#define T(state, x, y) ( (y) * (state)->width + (x) )
|
|
|
|
/* Rotations: Anticlockwise, Clockwise, Flip, general rotate */
|
|
#define A(x) ( (((x) & 0x07) << 1) | (((x) & 0x08) >> 3) )
|
|
#define C(x) ( (((x) & 0x0E) >> 1) | (((x) & 0x01) << 3) )
|
|
#define F(x) ( (((x) & 0x0C) >> 2) | (((x) & 0x03) << 2) )
|
|
#define ROT(x, n) ( ((n)&3) == 0 ? (x) : \
|
|
((n)&3) == 1 ? A(x) : \
|
|
((n)&3) == 2 ? F(x) : C(x) )
|
|
|
|
/* X and Y displacements */
|
|
#define X(x) ( (x) == R ? +1 : (x) == L ? -1 : 0 )
|
|
#define Y(x) ( (x) == D ? +1 : (x) == U ? -1 : 0 )
|
|
|
|
/* Bit count */
|
|
#define COUNT(x) ( (((x) & 0x08) >> 3) + (((x) & 0x04) >> 2) + \
|
|
(((x) & 0x02) >> 1) + ((x) & 0x01) )
|
|
|
|
#define PREFERRED_TILE_SIZE 48
|
|
#define TILE_SIZE (ds->tilesize)
|
|
#define BORDER TILE_SIZE
|
|
#define TILE_BORDER 1
|
|
#define WINDOW_OFFSET 0
|
|
|
|
#define ANIM_TIME 0.13F
|
|
#define FLASH_FRAME 0.07F
|
|
|
|
enum {
|
|
COL_BACKGROUND,
|
|
COL_FLASHING,
|
|
COL_BORDER,
|
|
COL_WIRE,
|
|
COL_ENDPOINT,
|
|
COL_POWERED,
|
|
COL_BARRIER,
|
|
COL_LOWLIGHT,
|
|
COL_TEXT,
|
|
NCOLOURS
|
|
};
|
|
|
|
struct game_params {
|
|
int width;
|
|
int height;
|
|
bool wrapping;
|
|
float barrier_probability;
|
|
int movetarget;
|
|
};
|
|
|
|
struct game_state {
|
|
int width, height, cx, cy, completed;
|
|
bool wrapping, used_solve;
|
|
int move_count, movetarget;
|
|
|
|
/* position (row or col number, starting at 0) of last move. */
|
|
int last_move_row, last_move_col;
|
|
|
|
/* direction of last move: +1 or -1 */
|
|
int last_move_dir;
|
|
|
|
unsigned char *tiles;
|
|
unsigned char *barriers;
|
|
};
|
|
|
|
#define OFFSET(x2,y2,x1,y1,dir,state) \
|
|
( (x2) = ((x1) + (state)->width + X((dir))) % (state)->width, \
|
|
(y2) = ((y1) + (state)->height + Y((dir))) % (state)->height)
|
|
|
|
#define index(state, a, x, y) ( a[(y) * (state)->width + (x)] )
|
|
#define tile(state, x, y) index(state, (state)->tiles, x, y)
|
|
#define barrier(state, x, y) index(state, (state)->barriers, x, y)
|
|
|
|
struct xyd {
|
|
int x, y, direction;
|
|
};
|
|
|
|
static int xyd_cmp(void *av, void *bv) {
|
|
struct xyd *a = (struct xyd *)av;
|
|
struct xyd *b = (struct xyd *)bv;
|
|
if (a->x < b->x)
|
|
return -1;
|
|
if (a->x > b->x)
|
|
return +1;
|
|
if (a->y < b->y)
|
|
return -1;
|
|
if (a->y > b->y)
|
|
return +1;
|
|
if (a->direction < b->direction)
|
|
return -1;
|
|
if (a->direction > b->direction)
|
|
return +1;
|
|
return 0;
|
|
}
|
|
|
|
static struct xyd *new_xyd(int x, int y, int direction)
|
|
{
|
|
struct xyd *xyd = snew(struct xyd);
|
|
xyd->x = x;
|
|
xyd->y = y;
|
|
xyd->direction = direction;
|
|
return xyd;
|
|
}
|
|
|
|
static void slide_col(game_state *state, int dir, int col);
|
|
static void slide_col_int(int w, int h, unsigned char *tiles, int dir, int col);
|
|
static void slide_row(game_state *state, int dir, int row);
|
|
static void slide_row_int(int w, int h, unsigned char *tiles, int dir, int row);
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Manage game parameters.
|
|
*/
|
|
static game_params *default_params(void)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->width = 3;
|
|
ret->height = 3;
|
|
ret->wrapping = false;
|
|
ret->barrier_probability = 1.0;
|
|
ret->movetarget = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct { int x, y, wrap, bprob; const char* desc; }
|
|
netslide_presets[] = {
|
|
{3, 3, false, 1, " easy"},
|
|
{3, 3, false, 0, " medium"},
|
|
{3, 3, true, 0, " hard"},
|
|
{4, 4, false, 1, " easy"},
|
|
{4, 4, false, 0, " medium"},
|
|
{4, 4, true, 0, " hard"},
|
|
{5, 5, false, 1, " easy"},
|
|
{5, 5, false, 0, " medium"},
|
|
{5, 5, true, 0, " hard"},
|
|
};
|
|
|
|
static bool game_fetch_preset(int i, char **name, game_params **params)
|
|
{
|
|
game_params *ret;
|
|
char str[80];
|
|
|
|
if (i < 0 || i >= lenof(netslide_presets))
|
|
return false;
|
|
|
|
ret = snew(game_params);
|
|
ret->width = netslide_presets[i].x;
|
|
ret->height = netslide_presets[i].y;
|
|
ret->wrapping = netslide_presets[i].wrap;
|
|
ret->barrier_probability = (float)netslide_presets[i].bprob;
|
|
ret->movetarget = 0;
|
|
|
|
sprintf(str, "%dx%d%s", ret->width, ret->height, netslide_presets[i].desc);
|
|
|
|
*name = dupstr(str);
|
|
*params = ret;
|
|
return true;
|
|
}
|
|
|
|
static void free_params(game_params *params)
|
|
{
|
|
sfree(params);
|
|
}
|
|
|
|
static game_params *dup_params(const game_params *params)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
*ret = *params; /* structure copy */
|
|
return ret;
|
|
}
|
|
|
|
static void decode_params(game_params *ret, char const *string)
|
|
{
|
|
char const *p = string;
|
|
|
|
ret->wrapping = false;
|
|
ret->barrier_probability = 0.0;
|
|
ret->movetarget = 0;
|
|
|
|
ret->width = atoi(p);
|
|
while (*p && isdigit((unsigned char)*p)) p++;
|
|
if (*p == 'x') {
|
|
p++;
|
|
ret->height = atoi(p);
|
|
while (*p && isdigit((unsigned char)*p)) p++;
|
|
ret->wrapping = (*p == 'w');
|
|
if (ret->wrapping)
|
|
p++;
|
|
if (*p == 'b') {
|
|
ret->barrier_probability = (float)atof(++p);
|
|
while (*p && (isdigit((unsigned char)*p) || *p == '.')) p++;
|
|
}
|
|
if (*p == 'm') {
|
|
ret->movetarget = atoi(++p);
|
|
}
|
|
} else {
|
|
ret->height = ret->width;
|
|
}
|
|
}
|
|
|
|
static char *encode_params(const game_params *params, bool full)
|
|
{
|
|
char ret[400];
|
|
int len;
|
|
|
|
len = sprintf(ret, "%dx%d", params->width, params->height);
|
|
if (params->wrapping)
|
|
ret[len++] = 'w';
|
|
if (full && params->barrier_probability)
|
|
len += sprintf(ret+len, "b%g", params->barrier_probability);
|
|
/* Shuffle limit is part of the limited parameters, because we have to
|
|
* provide the target move count. */
|
|
if (params->movetarget)
|
|
len += sprintf(ret+len, "m%d", params->movetarget);
|
|
assert(len < lenof(ret));
|
|
ret[len] = '\0';
|
|
|
|
return dupstr(ret);
|
|
}
|
|
|
|
static config_item *game_configure(const game_params *params)
|
|
{
|
|
config_item *ret;
|
|
char buf[80];
|
|
|
|
ret = snewn(6, config_item);
|
|
|
|
ret[0].name = "Width";
|
|
ret[0].type = C_STRING;
|
|
sprintf(buf, "%d", params->width);
|
|
ret[0].u.string.sval = dupstr(buf);
|
|
|
|
ret[1].name = "Height";
|
|
ret[1].type = C_STRING;
|
|
sprintf(buf, "%d", params->height);
|
|
ret[1].u.string.sval = dupstr(buf);
|
|
|
|
ret[2].name = "Walls wrap around";
|
|
ret[2].type = C_BOOLEAN;
|
|
ret[2].u.boolean.bval = params->wrapping;
|
|
|
|
ret[3].name = "Barrier probability";
|
|
ret[3].type = C_STRING;
|
|
sprintf(buf, "%g", params->barrier_probability);
|
|
ret[3].u.string.sval = dupstr(buf);
|
|
|
|
ret[4].name = "Number of shuffling moves";
|
|
ret[4].type = C_STRING;
|
|
sprintf(buf, "%d", params->movetarget);
|
|
ret[4].u.string.sval = dupstr(buf);
|
|
|
|
ret[5].name = NULL;
|
|
ret[5].type = C_END;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static game_params *custom_params(const config_item *cfg)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->width = atoi(cfg[0].u.string.sval);
|
|
ret->height = atoi(cfg[1].u.string.sval);
|
|
ret->wrapping = cfg[2].u.boolean.bval;
|
|
ret->barrier_probability = (float)atof(cfg[3].u.string.sval);
|
|
ret->movetarget = atoi(cfg[4].u.string.sval);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const char *validate_params(const game_params *params, bool full)
|
|
{
|
|
if (params->width <= 1 || params->height <= 1)
|
|
return "Width and height must both be greater than one";
|
|
if (params->width > INT_MAX / params->height)
|
|
return "Width times height must not be unreasonably large";
|
|
if (params->barrier_probability < 0)
|
|
return "Barrier probability may not be negative";
|
|
if (params->barrier_probability > 1)
|
|
return "Barrier probability may not be greater than 1";
|
|
if (params->movetarget < 0)
|
|
return "Number of shuffling moves may not be negative";
|
|
return NULL;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Randomly select a new game description.
|
|
*/
|
|
|
|
static char *new_game_desc(const game_params *params, random_state *rs,
|
|
char **aux, bool interactive)
|
|
{
|
|
tree234 *possibilities, *barriertree;
|
|
int w, h, x, y, cx, cy, nbarriers;
|
|
unsigned char *tiles, *barriers;
|
|
char *desc, *p;
|
|
|
|
w = params->width;
|
|
h = params->height;
|
|
|
|
tiles = snewn(w * h, unsigned char);
|
|
memset(tiles, 0, w * h);
|
|
barriers = snewn(w * h, unsigned char);
|
|
memset(barriers, 0, w * h);
|
|
|
|
cx = w / 2;
|
|
cy = h / 2;
|
|
|
|
/*
|
|
* Construct the unshuffled grid.
|
|
*
|
|
* To do this, we simply start at the centre point, repeatedly
|
|
* choose a random possibility out of the available ways to
|
|
* extend a used square into an unused one, and do it. After
|
|
* extending the third line out of a square, we remove the
|
|
* fourth from the possibilities list to avoid any full-cross
|
|
* squares (which would make the game too easy because they
|
|
* only have one orientation).
|
|
*
|
|
* The slightly worrying thing is the avoidance of full-cross
|
|
* squares. Can this cause our unsophisticated construction
|
|
* algorithm to paint itself into a corner, by getting into a
|
|
* situation where there are some unreached squares and the
|
|
* only way to reach any of them is to extend a T-piece into a
|
|
* full cross?
|
|
*
|
|
* Answer: no it can't, and here's a proof.
|
|
*
|
|
* Any contiguous group of such unreachable squares must be
|
|
* surrounded on _all_ sides by T-pieces pointing away from the
|
|
* group. (If not, then there is a square which can be extended
|
|
* into one of the `unreachable' ones, and so it wasn't
|
|
* unreachable after all.) In particular, this implies that
|
|
* each contiguous group of unreachable squares must be
|
|
* rectangular in shape (any deviation from that yields a
|
|
* non-T-piece next to an `unreachable' square).
|
|
*
|
|
* So we have a rectangle of unreachable squares, with T-pieces
|
|
* forming a solid border around the rectangle. The corners of
|
|
* that border must be connected (since every tile connects all
|
|
* the lines arriving in it), and therefore the border must
|
|
* form a closed loop around the rectangle.
|
|
*
|
|
* But this can't have happened in the first place, since we
|
|
* _know_ we've avoided creating closed loops! Hence, no such
|
|
* situation can ever arise, and the naive grid construction
|
|
* algorithm will guaranteeably result in a complete grid
|
|
* containing no unreached squares, no full crosses _and_ no
|
|
* closed loops. []
|
|
*/
|
|
possibilities = newtree234(xyd_cmp);
|
|
|
|
if (cx+1 < w)
|
|
add234(possibilities, new_xyd(cx, cy, R));
|
|
if (cy-1 >= 0)
|
|
add234(possibilities, new_xyd(cx, cy, U));
|
|
if (cx-1 >= 0)
|
|
add234(possibilities, new_xyd(cx, cy, L));
|
|
if (cy+1 < h)
|
|
add234(possibilities, new_xyd(cx, cy, D));
|
|
|
|
while (count234(possibilities) > 0) {
|
|
int i;
|
|
struct xyd *xyd;
|
|
int x1, y1, d1, x2, y2, d2, d;
|
|
|
|
/*
|
|
* Extract a randomly chosen possibility from the list.
|
|
*/
|
|
i = random_upto(rs, count234(possibilities));
|
|
xyd = delpos234(possibilities, i);
|
|
x1 = xyd->x;
|
|
y1 = xyd->y;
|
|
d1 = xyd->direction;
|
|
sfree(xyd);
|
|
|
|
OFFSET(x2, y2, x1, y1, d1, params);
|
|
d2 = F(d1);
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
printf("picked (%d,%d,%c) <-> (%d,%d,%c)\n",
|
|
x1, y1, "0RU3L567D9abcdef"[d1], x2, y2, "0RU3L567D9abcdef"[d2]);
|
|
#endif
|
|
|
|
/*
|
|
* Make the connection. (We should be moving to an as yet
|
|
* unused tile.)
|
|
*/
|
|
index(params, tiles, x1, y1) |= d1;
|
|
assert(index(params, tiles, x2, y2) == 0);
|
|
index(params, tiles, x2, y2) |= d2;
|
|
|
|
/*
|
|
* If we have created a T-piece, remove its last
|
|
* possibility.
|
|
*/
|
|
if (COUNT(index(params, tiles, x1, y1)) == 3) {
|
|
struct xyd xyd1, *xydp;
|
|
|
|
xyd1.x = x1;
|
|
xyd1.y = y1;
|
|
xyd1.direction = 0x0F ^ index(params, tiles, x1, y1);
|
|
|
|
xydp = find234(possibilities, &xyd1, NULL);
|
|
|
|
if (xydp) {
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
printf("T-piece; removing (%d,%d,%c)\n",
|
|
xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
|
|
#endif
|
|
del234(possibilities, xydp);
|
|
sfree(xydp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Remove all other possibilities that were pointing at the
|
|
* tile we've just moved into.
|
|
*/
|
|
for (d = 1; d < 0x10; d <<= 1) {
|
|
int x3, y3, d3;
|
|
struct xyd xyd1, *xydp;
|
|
|
|
OFFSET(x3, y3, x2, y2, d, params);
|
|
d3 = F(d);
|
|
|
|
xyd1.x = x3;
|
|
xyd1.y = y3;
|
|
xyd1.direction = d3;
|
|
|
|
xydp = find234(possibilities, &xyd1, NULL);
|
|
|
|
if (xydp) {
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
printf("Loop avoidance; removing (%d,%d,%c)\n",
|
|
xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
|
|
#endif
|
|
del234(possibilities, xydp);
|
|
sfree(xydp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Add new possibilities to the list for moving _out_ of
|
|
* the tile we have just moved into.
|
|
*/
|
|
for (d = 1; d < 0x10; d <<= 1) {
|
|
int x3, y3;
|
|
|
|
if (d == d2)
|
|
continue; /* we've got this one already */
|
|
|
|
if (!params->wrapping) {
|
|
if (d == U && y2 == 0)
|
|
continue;
|
|
if (d == D && y2 == h-1)
|
|
continue;
|
|
if (d == L && x2 == 0)
|
|
continue;
|
|
if (d == R && x2 == w-1)
|
|
continue;
|
|
}
|
|
|
|
OFFSET(x3, y3, x2, y2, d, params);
|
|
|
|
if (index(params, tiles, x3, y3))
|
|
continue; /* this would create a loop */
|
|
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
printf("New frontier; adding (%d,%d,%c)\n",
|
|
x2, y2, "0RU3L567D9abcdef"[d]);
|
|
#endif
|
|
add234(possibilities, new_xyd(x2, y2, d));
|
|
}
|
|
}
|
|
/* Having done that, we should have no possibilities remaining. */
|
|
assert(count234(possibilities) == 0);
|
|
freetree234(possibilities);
|
|
|
|
/*
|
|
* Now compute a list of the possible barrier locations.
|
|
*/
|
|
barriertree = newtree234(xyd_cmp);
|
|
for (y = 0; y < h; y++) {
|
|
for (x = 0; x < w; x++) {
|
|
|
|
if (!(index(params, tiles, x, y) & R) &&
|
|
(params->wrapping || x < w-1))
|
|
add234(barriertree, new_xyd(x, y, R));
|
|
if (!(index(params, tiles, x, y) & D) &&
|
|
(params->wrapping || y < h-1))
|
|
add234(barriertree, new_xyd(x, y, D));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Save the unshuffled grid in aux.
|
|
*/
|
|
{
|
|
char *solution;
|
|
int i;
|
|
|
|
/*
|
|
* String format is exactly the same as a solve move, so we
|
|
* can just dupstr this in solve_game().
|
|
*/
|
|
|
|
solution = snewn(w * h + 2, char);
|
|
solution[0] = 'S';
|
|
for (i = 0; i < w * h; i++)
|
|
solution[i+1] = "0123456789abcdef"[tiles[i] & 0xF];
|
|
solution[w*h+1] = '\0';
|
|
|
|
*aux = solution;
|
|
}
|
|
|
|
/*
|
|
* Now shuffle the grid.
|
|
* FIXME - this simply does a set of random moves to shuffle the pieces,
|
|
* although we make a token effort to avoid boring cases by avoiding moves
|
|
* that directly undo the previous one, or that repeat so often as to
|
|
* turn into fewer moves.
|
|
*
|
|
* A better way would be to number all the pieces, generate a placement
|
|
* for all the numbers as for "sixteen", observing parity constraints if
|
|
* neccessary, and then place the pieces according to their numbering.
|
|
* BUT - I'm not sure if this will work, since we disallow movement of
|
|
* the middle row and column.
|
|
*/
|
|
{
|
|
int i;
|
|
int cols = w - 1;
|
|
int rows = h - 1;
|
|
int moves = params->movetarget;
|
|
int prevdir = -1, prevrowcol = -1, nrepeats = 0;
|
|
if (!moves) moves = cols * rows * 2;
|
|
for (i = 0; i < moves; /* incremented conditionally */) {
|
|
/* Choose a direction: 0,1,2,3 = up, right, down, left. */
|
|
int dir = random_upto(rs, 4);
|
|
int rowcol;
|
|
if (dir % 2 == 0) {
|
|
int col = random_upto(rs, cols);
|
|
if (col >= cx) col += 1; /* avoid centre */
|
|
if (col == prevrowcol) {
|
|
if (dir == 2-prevdir)
|
|
continue; /* undoes last move */
|
|
else if (dir == prevdir && (nrepeats+1)*2 > h)
|
|
continue; /* makes fewer moves */
|
|
}
|
|
slide_col_int(w, h, tiles, 1 - dir, col);
|
|
rowcol = col;
|
|
} else {
|
|
int row = random_upto(rs, rows);
|
|
if (row >= cy) row += 1; /* avoid centre */
|
|
if (row == prevrowcol) {
|
|
if (dir == 4-prevdir)
|
|
continue; /* undoes last move */
|
|
else if (dir == prevdir && (nrepeats+1)*2 > w)
|
|
continue; /* makes fewer moves */
|
|
}
|
|
slide_row_int(w, h, tiles, 2 - dir, row);
|
|
rowcol = row;
|
|
}
|
|
if (dir == prevdir && rowcol == prevrowcol)
|
|
nrepeats++;
|
|
else
|
|
nrepeats = 1;
|
|
prevdir = dir;
|
|
prevrowcol = rowcol;
|
|
i++; /* if we got here, the move was accepted */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* And now choose barrier locations. (We carefully do this
|
|
* _after_ shuffling, so that changing the barrier rate in the
|
|
* params while keeping the random seed the same will give the
|
|
* same shuffled grid and _only_ change the barrier locations.
|
|
* Also the way we choose barrier locations, by repeatedly
|
|
* choosing one possibility from the list until we have enough,
|
|
* is designed to ensure that raising the barrier rate while
|
|
* keeping the seed the same will provide a superset of the
|
|
* previous barrier set - i.e. if you ask for 10 barriers, and
|
|
* then decide that's still too hard and ask for 20, you'll get
|
|
* the original 10 plus 10 more, rather than getting 20 new
|
|
* ones and the chance of remembering your first 10.)
|
|
*/
|
|
nbarriers = (int)(params->barrier_probability * count234(barriertree));
|
|
assert(nbarriers >= 0 && nbarriers <= count234(barriertree));
|
|
|
|
while (nbarriers > 0) {
|
|
int i;
|
|
struct xyd *xyd;
|
|
int x1, y1, d1, x2, y2, d2;
|
|
|
|
/*
|
|
* Extract a randomly chosen barrier from the list.
|
|
*/
|
|
i = random_upto(rs, count234(barriertree));
|
|
xyd = delpos234(barriertree, i);
|
|
|
|
assert(xyd != NULL);
|
|
|
|
x1 = xyd->x;
|
|
y1 = xyd->y;
|
|
d1 = xyd->direction;
|
|
sfree(xyd);
|
|
|
|
OFFSET(x2, y2, x1, y1, d1, params);
|
|
d2 = F(d1);
|
|
|
|
index(params, barriers, x1, y1) |= d1;
|
|
index(params, barriers, x2, y2) |= d2;
|
|
|
|
nbarriers--;
|
|
}
|
|
|
|
/*
|
|
* Clean up the rest of the barrier list.
|
|
*/
|
|
{
|
|
struct xyd *xyd;
|
|
|
|
while ( (xyd = delpos234(barriertree, 0)) != NULL)
|
|
sfree(xyd);
|
|
|
|
freetree234(barriertree);
|
|
}
|
|
|
|
/*
|
|
* Finally, encode the grid into a string game description.
|
|
*
|
|
* My syntax is extremely simple: each square is encoded as a
|
|
* hex digit in which bit 0 means a connection on the right,
|
|
* bit 1 means up, bit 2 left and bit 3 down. (i.e. the same
|
|
* encoding as used internally). Each digit is followed by
|
|
* optional barrier indicators: `v' means a vertical barrier to
|
|
* the right of it, and `h' means a horizontal barrier below
|
|
* it.
|
|
*/
|
|
desc = snewn(w * h * 3 + 1, char);
|
|
p = desc;
|
|
for (y = 0; y < h; y++) {
|
|
for (x = 0; x < w; x++) {
|
|
*p++ = "0123456789abcdef"[index(params, tiles, x, y)];
|
|
if ((params->wrapping || x < w-1) &&
|
|
(index(params, barriers, x, y) & R))
|
|
*p++ = 'v';
|
|
if ((params->wrapping || y < h-1) &&
|
|
(index(params, barriers, x, y) & D))
|
|
*p++ = 'h';
|
|
}
|
|
}
|
|
assert(p - desc <= w*h*3);
|
|
*p = '\0';
|
|
|
|
sfree(tiles);
|
|
sfree(barriers);
|
|
|
|
return desc;
|
|
}
|
|
|
|
static const char *validate_desc(const game_params *params, const char *desc)
|
|
{
|
|
int w = params->width, h = params->height;
|
|
int i;
|
|
|
|
for (i = 0; i < w*h; i++) {
|
|
if (*desc >= '0' && *desc <= '9')
|
|
/* OK */;
|
|
else if (*desc >= 'a' && *desc <= 'f')
|
|
/* OK */;
|
|
else if (*desc >= 'A' && *desc <= 'F')
|
|
/* OK */;
|
|
else if (!*desc)
|
|
return "Game description shorter than expected";
|
|
else
|
|
return "Game description contained unexpected character";
|
|
desc++;
|
|
while (*desc == 'h' || *desc == 'v')
|
|
desc++;
|
|
}
|
|
if (*desc)
|
|
return "Game description longer than expected";
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Construct an initial game state, given a description and parameters.
|
|
*/
|
|
|
|
static game_state *new_game(midend *me, const game_params *params,
|
|
const char *desc)
|
|
{
|
|
game_state *state;
|
|
int w, h, x, y;
|
|
|
|
assert(params->width > 0 && params->height > 0);
|
|
assert(params->width > 1 || params->height > 1);
|
|
|
|
/*
|
|
* Create a blank game state.
|
|
*/
|
|
state = snew(game_state);
|
|
w = state->width = params->width;
|
|
h = state->height = params->height;
|
|
state->cx = state->width / 2;
|
|
state->cy = state->height / 2;
|
|
state->wrapping = params->wrapping;
|
|
state->movetarget = params->movetarget;
|
|
state->completed = 0;
|
|
state->used_solve = false;
|
|
state->move_count = 0;
|
|
state->last_move_row = -1;
|
|
state->last_move_col = -1;
|
|
state->last_move_dir = 0;
|
|
state->tiles = snewn(state->width * state->height, unsigned char);
|
|
memset(state->tiles, 0, state->width * state->height);
|
|
state->barriers = snewn(state->width * state->height, unsigned char);
|
|
memset(state->barriers, 0, state->width * state->height);
|
|
|
|
|
|
/*
|
|
* Parse the game description into the grid.
|
|
*/
|
|
for (y = 0; y < h; y++) {
|
|
for (x = 0; x < w; x++) {
|
|
if (*desc >= '0' && *desc <= '9')
|
|
tile(state, x, y) = *desc - '0';
|
|
else if (*desc >= 'a' && *desc <= 'f')
|
|
tile(state, x, y) = *desc - 'a' + 10;
|
|
else if (*desc >= 'A' && *desc <= 'F')
|
|
tile(state, x, y) = *desc - 'A' + 10;
|
|
if (*desc)
|
|
desc++;
|
|
while (*desc == 'h' || *desc == 'v') {
|
|
int x2, y2, d1, d2;
|
|
if (*desc == 'v')
|
|
d1 = R;
|
|
else
|
|
d1 = D;
|
|
|
|
OFFSET(x2, y2, x, y, d1, state);
|
|
d2 = F(d1);
|
|
|
|
barrier(state, x, y) |= d1;
|
|
barrier(state, x2, y2) |= d2;
|
|
|
|
desc++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set up border barriers if this is a non-wrapping game.
|
|
*/
|
|
if (!state->wrapping) {
|
|
for (x = 0; x < state->width; x++) {
|
|
barrier(state, x, 0) |= U;
|
|
barrier(state, x, state->height-1) |= D;
|
|
}
|
|
for (y = 0; y < state->height; y++) {
|
|
barrier(state, 0, y) |= L;
|
|
barrier(state, state->width-1, y) |= R;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set up the barrier corner flags, for drawing barriers
|
|
* prettily when they meet.
|
|
*/
|
|
for (y = 0; y < state->height; y++) {
|
|
for (x = 0; x < state->width; x++) {
|
|
int dir;
|
|
|
|
for (dir = 1; dir < 0x10; dir <<= 1) {
|
|
int dir2 = A(dir);
|
|
int x1, y1, x2, y2, x3, y3;
|
|
bool corner = false;
|
|
|
|
if (!(barrier(state, x, y) & dir))
|
|
continue;
|
|
|
|
if (barrier(state, x, y) & dir2)
|
|
corner = true;
|
|
|
|
x1 = x + X(dir), y1 = y + Y(dir);
|
|
if (x1 >= 0 && x1 < state->width &&
|
|
y1 >= 0 && y1 < state->height &&
|
|
(barrier(state, x1, y1) & dir2))
|
|
corner = true;
|
|
|
|
x2 = x + X(dir2), y2 = y + Y(dir2);
|
|
if (x2 >= 0 && x2 < state->width &&
|
|
y2 >= 0 && y2 < state->height &&
|
|
(barrier(state, x2, y2) & dir))
|
|
corner = true;
|
|
|
|
if (corner) {
|
|
barrier(state, x, y) |= (dir << 4);
|
|
if (x1 >= 0 && x1 < state->width &&
|
|
y1 >= 0 && y1 < state->height)
|
|
barrier(state, x1, y1) |= (A(dir) << 4);
|
|
if (x2 >= 0 && x2 < state->width &&
|
|
y2 >= 0 && y2 < state->height)
|
|
barrier(state, x2, y2) |= (C(dir) << 4);
|
|
x3 = x + X(dir) + X(dir2), y3 = y + Y(dir) + Y(dir2);
|
|
if (x3 >= 0 && x3 < state->width &&
|
|
y3 >= 0 && y3 < state->height)
|
|
barrier(state, x3, y3) |= (F(dir) << 4);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return state;
|
|
}
|
|
|
|
static game_state *dup_game(const game_state *state)
|
|
{
|
|
game_state *ret;
|
|
|
|
ret = snew(game_state);
|
|
ret->width = state->width;
|
|
ret->height = state->height;
|
|
ret->cx = state->cx;
|
|
ret->cy = state->cy;
|
|
ret->wrapping = state->wrapping;
|
|
ret->movetarget = state->movetarget;
|
|
ret->completed = state->completed;
|
|
ret->used_solve = state->used_solve;
|
|
ret->move_count = state->move_count;
|
|
ret->last_move_row = state->last_move_row;
|
|
ret->last_move_col = state->last_move_col;
|
|
ret->last_move_dir = state->last_move_dir;
|
|
ret->tiles = snewn(state->width * state->height, unsigned char);
|
|
memcpy(ret->tiles, state->tiles, state->width * state->height);
|
|
ret->barriers = snewn(state->width * state->height, unsigned char);
|
|
memcpy(ret->barriers, state->barriers, state->width * state->height);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void free_game(game_state *state)
|
|
{
|
|
sfree(state->tiles);
|
|
sfree(state->barriers);
|
|
sfree(state);
|
|
}
|
|
|
|
static char *solve_game(const game_state *state, const game_state *currstate,
|
|
const char *aux, const char **error)
|
|
{
|
|
if (!aux) {
|
|
*error = "Solution not known for this puzzle";
|
|
return NULL;
|
|
}
|
|
|
|
return dupstr(aux);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Utility routine.
|
|
*/
|
|
|
|
/*
|
|
* Compute which squares are reachable from the centre square, as a
|
|
* quick visual aid to determining how close the game is to
|
|
* completion. This is also a simple way to tell if the game _is_
|
|
* completed - just call this function and see whether every square
|
|
* is marked active.
|
|
*
|
|
* squares in the moving_row and moving_col are always inactive - this
|
|
* is so that "current" doesn't appear to jump across moving lines.
|
|
*/
|
|
static unsigned char *compute_active(const game_state *state,
|
|
int moving_row, int moving_col)
|
|
{
|
|
unsigned char *active;
|
|
tree234 *todo;
|
|
struct xyd *xyd;
|
|
|
|
active = snewn(state->width * state->height, unsigned char);
|
|
memset(active, 0, state->width * state->height);
|
|
|
|
/*
|
|
* We only store (x,y) pairs in todo, but it's easier to reuse
|
|
* xyd_cmp and just store direction 0 every time.
|
|
*/
|
|
todo = newtree234(xyd_cmp);
|
|
index(state, active, state->cx, state->cy) = ACTIVE;
|
|
add234(todo, new_xyd(state->cx, state->cy, 0));
|
|
|
|
while ( (xyd = delpos234(todo, 0)) != NULL) {
|
|
int x1, y1, d1, x2, y2, d2;
|
|
|
|
x1 = xyd->x;
|
|
y1 = xyd->y;
|
|
sfree(xyd);
|
|
|
|
for (d1 = 1; d1 < 0x10; d1 <<= 1) {
|
|
OFFSET(x2, y2, x1, y1, d1, state);
|
|
d2 = F(d1);
|
|
|
|
/*
|
|
* If the next tile in this direction is connected to
|
|
* us, and there isn't a barrier in the way, and it
|
|
* isn't already marked active, then mark it active and
|
|
* add it to the to-examine list.
|
|
*/
|
|
if ((x2 != moving_col && y2 != moving_row) &&
|
|
(tile(state, x1, y1) & d1) &&
|
|
(tile(state, x2, y2) & d2) &&
|
|
!(barrier(state, x1, y1) & d1) &&
|
|
!index(state, active, x2, y2)) {
|
|
index(state, active, x2, y2) = ACTIVE;
|
|
add234(todo, new_xyd(x2, y2, 0));
|
|
}
|
|
}
|
|
}
|
|
/* Now we expect the todo list to have shrunk to zero size. */
|
|
assert(count234(todo) == 0);
|
|
freetree234(todo);
|
|
|
|
return active;
|
|
}
|
|
|
|
struct game_ui {
|
|
int cur_x, cur_y;
|
|
bool cur_visible;
|
|
};
|
|
|
|
static game_ui *new_ui(const game_state *state)
|
|
{
|
|
game_ui *ui = snew(game_ui);
|
|
ui->cur_x = 0;
|
|
ui->cur_y = -1;
|
|
ui->cur_visible = getenv_bool("PUZZLES_SHOW_CURSOR", false);
|
|
|
|
return ui;
|
|
}
|
|
|
|
static void free_ui(game_ui *ui)
|
|
{
|
|
sfree(ui);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Process a move.
|
|
*/
|
|
|
|
static void slide_row_int(int w, int h, unsigned char *tiles, int dir, int row)
|
|
{
|
|
int x = dir > 0 ? -1 : w;
|
|
int tx = x + dir;
|
|
int n = w - 1;
|
|
unsigned char endtile;
|
|
assert(0 <= tx && tx < w);
|
|
endtile = tiles[row * w + tx];
|
|
do {
|
|
x = tx;
|
|
tx = (x + dir + w) % w;
|
|
tiles[row * w + x] = tiles[row * w + tx];
|
|
} while (--n > 0);
|
|
tiles[row * w + tx] = endtile;
|
|
}
|
|
|
|
static void slide_col_int(int w, int h, unsigned char *tiles, int dir, int col)
|
|
{
|
|
int y = dir > 0 ? -1 : h;
|
|
int ty = y + dir;
|
|
int n = h - 1;
|
|
unsigned char endtile;
|
|
assert(0 <= ty && ty < h);
|
|
endtile = tiles[ty * w + col];
|
|
do {
|
|
y = ty;
|
|
ty = (y + dir + h) % h;
|
|
tiles[y * w + col] = tiles[ty * w + col];
|
|
} while (--n > 0);
|
|
tiles[ty * w + col] = endtile;
|
|
}
|
|
|
|
static void slide_row(game_state *state, int dir, int row)
|
|
{
|
|
slide_row_int(state->width, state->height, state->tiles, dir, row);
|
|
}
|
|
|
|
static void slide_col(game_state *state, int dir, int col)
|
|
{
|
|
slide_col_int(state->width, state->height, state->tiles, dir, col);
|
|
}
|
|
|
|
static void game_changed_state(game_ui *ui, const game_state *oldstate,
|
|
const game_state *newstate)
|
|
{
|
|
}
|
|
|
|
struct game_drawstate {
|
|
bool started;
|
|
int width, height;
|
|
int tilesize;
|
|
unsigned char *visible;
|
|
int cur_x, cur_y;
|
|
};
|
|
|
|
static const char *current_key_label(const game_ui *ui,
|
|
const game_state *state, int button)
|
|
{
|
|
if (IS_CURSOR_SELECT(button) && ui->cur_visible)
|
|
return "Slide";
|
|
return "";
|
|
}
|
|
|
|
static char *interpret_move(const game_state *state, game_ui *ui,
|
|
const game_drawstate *ds,
|
|
int x, int y, int button)
|
|
{
|
|
int cx, cy;
|
|
int dx, dy;
|
|
char buf[80];
|
|
|
|
button = STRIP_BUTTON_MODIFIERS(button);
|
|
|
|
if (IS_CURSOR_MOVE(button)) {
|
|
int cpos, diff = 0;
|
|
cpos = c2pos(state->width, state->height, ui->cur_x, ui->cur_y);
|
|
diff = c2diff(state->width, state->height, ui->cur_x, ui->cur_y, button);
|
|
|
|
if (diff != 0) {
|
|
do { /* we might have to do this more than once to skip missing arrows */
|
|
cpos += diff;
|
|
pos2c(state->width, state->height, cpos, &ui->cur_x, &ui->cur_y);
|
|
} while (ui->cur_x == state->cx || ui->cur_y == state->cy);
|
|
}
|
|
|
|
ui->cur_visible = true;
|
|
return MOVE_UI_UPDATE;
|
|
}
|
|
|
|
if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
|
|
cx = (x - (BORDER + WINDOW_OFFSET + TILE_BORDER) + 2*TILE_SIZE) / TILE_SIZE - 2;
|
|
cy = (y - (BORDER + WINDOW_OFFSET + TILE_BORDER) + 2*TILE_SIZE) / TILE_SIZE - 2;
|
|
ui->cur_visible = false;
|
|
} else if (IS_CURSOR_SELECT(button)) {
|
|
if (ui->cur_visible) {
|
|
cx = ui->cur_x;
|
|
cy = ui->cur_y;
|
|
} else {
|
|
/* 'click' when cursor is invisible just makes cursor visible. */
|
|
ui->cur_visible = true;
|
|
return MOVE_UI_UPDATE;
|
|
}
|
|
} else
|
|
return NULL;
|
|
|
|
if (cy >= 0 && cy < state->height && cy != state->cy)
|
|
{
|
|
if (cx == -1) dx = +1;
|
|
else if (cx == state->width) dx = -1;
|
|
else return NULL;
|
|
dy = 0;
|
|
}
|
|
else if (cx >= 0 && cx < state->width && cx != state->cx)
|
|
{
|
|
if (cy == -1) dy = +1;
|
|
else if (cy == state->height) dy = -1;
|
|
else return NULL;
|
|
dx = 0;
|
|
}
|
|
else
|
|
return NULL;
|
|
|
|
/* reverse direction if right hand button is pressed */
|
|
if (button == RIGHT_BUTTON)
|
|
{
|
|
dx = -dx;
|
|
dy = -dy;
|
|
}
|
|
|
|
if (dx == 0)
|
|
sprintf(buf, "C%d,%d", cx, dy);
|
|
else
|
|
sprintf(buf, "R%d,%d", cy, dx);
|
|
return dupstr(buf);
|
|
}
|
|
|
|
static game_state *execute_move(const game_state *from, const char *move)
|
|
{
|
|
game_state *ret;
|
|
int c, d;
|
|
bool col;
|
|
|
|
if ((move[0] == 'C' || move[0] == 'R') &&
|
|
sscanf(move+1, "%d,%d", &c, &d) == 2 &&
|
|
c >= 0 && c < (move[0] == 'C' ? from->width : from->height) &&
|
|
d <= (move[0] == 'C' ? from->height : from->width) &&
|
|
d >= -(move[0] == 'C' ? from->height : from->width) && d != 0) {
|
|
col = (move[0] == 'C');
|
|
} else if (move[0] == 'S' &&
|
|
strlen(move) == from->width * from->height + 1) {
|
|
int i;
|
|
ret = dup_game(from);
|
|
ret->used_solve = true;
|
|
ret->completed = ret->move_count = 1;
|
|
|
|
for (i = 0; i < from->width * from->height; i++) {
|
|
c = move[i+1];
|
|
if (c >= '0' && c <= '9')
|
|
c -= '0';
|
|
else if (c >= 'A' && c <= 'F')
|
|
c -= 'A' - 10;
|
|
else if (c >= 'a' && c <= 'f')
|
|
c -= 'a' - 10;
|
|
else {
|
|
free_game(ret);
|
|
return NULL;
|
|
}
|
|
ret->tiles[i] = c;
|
|
}
|
|
return ret;
|
|
} else
|
|
return NULL; /* can't parse move string */
|
|
|
|
ret = dup_game(from);
|
|
|
|
if (col)
|
|
slide_col(ret, d, c);
|
|
else
|
|
slide_row(ret, d, c);
|
|
|
|
ret->move_count++;
|
|
ret->last_move_row = col ? -1 : c;
|
|
ret->last_move_col = col ? c : -1;
|
|
ret->last_move_dir = d;
|
|
|
|
/*
|
|
* See if the game has been completed.
|
|
*/
|
|
if (!ret->completed) {
|
|
unsigned char *active = compute_active(ret, -1, -1);
|
|
int x1, y1;
|
|
bool complete = true;
|
|
|
|
for (x1 = 0; x1 < ret->width; x1++)
|
|
for (y1 = 0; y1 < ret->height; y1++)
|
|
if (!index(ret, active, x1, y1)) {
|
|
complete = false;
|
|
goto break_label; /* break out of two loops at once */
|
|
}
|
|
break_label:
|
|
|
|
sfree(active);
|
|
|
|
if (complete)
|
|
ret->completed = ret->move_count;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Routines for drawing the game position on the screen.
|
|
*/
|
|
|
|
static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state)
|
|
{
|
|
game_drawstate *ds = snew(game_drawstate);
|
|
|
|
ds->started = false;
|
|
ds->width = state->width;
|
|
ds->height = state->height;
|
|
ds->visible = snewn(state->width * state->height, unsigned char);
|
|
ds->tilesize = 0; /* not decided yet */
|
|
memset(ds->visible, 0xFF, state->width * state->height);
|
|
ds->cur_x = ds->cur_y = -1;
|
|
|
|
return ds;
|
|
}
|
|
|
|
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
|
|
{
|
|
sfree(ds->visible);
|
|
sfree(ds);
|
|
}
|
|
|
|
static void game_compute_size(const game_params *params, int tilesize,
|
|
const game_ui *ui, int *x, int *y)
|
|
{
|
|
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
|
|
struct { int tilesize; } ads, *ds = &ads;
|
|
ads.tilesize = tilesize;
|
|
|
|
*x = BORDER * 2 + WINDOW_OFFSET * 2 + TILE_SIZE * params->width + TILE_BORDER;
|
|
*y = BORDER * 2 + WINDOW_OFFSET * 2 + TILE_SIZE * params->height + TILE_BORDER;
|
|
}
|
|
|
|
static void game_set_size(drawing *dr, game_drawstate *ds,
|
|
const game_params *params, int tilesize)
|
|
{
|
|
ds->tilesize = tilesize;
|
|
}
|
|
|
|
static float *game_colours(frontend *fe, int *ncolours)
|
|
{
|
|
float *ret;
|
|
|
|
ret = snewn(NCOLOURS * 3, float);
|
|
*ncolours = NCOLOURS;
|
|
|
|
/*
|
|
* Basic background colour is whatever the front end thinks is
|
|
* a sensible default.
|
|
*/
|
|
frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
|
|
|
|
/*
|
|
* Wires are black.
|
|
*/
|
|
ret[COL_WIRE * 3 + 0] = 0.0F;
|
|
ret[COL_WIRE * 3 + 1] = 0.0F;
|
|
ret[COL_WIRE * 3 + 2] = 0.0F;
|
|
|
|
/*
|
|
* Powered wires and powered endpoints are cyan.
|
|
*/
|
|
ret[COL_POWERED * 3 + 0] = 0.0F;
|
|
ret[COL_POWERED * 3 + 1] = 1.0F;
|
|
ret[COL_POWERED * 3 + 2] = 1.0F;
|
|
|
|
/*
|
|
* Barriers are red.
|
|
*/
|
|
ret[COL_BARRIER * 3 + 0] = 1.0F;
|
|
ret[COL_BARRIER * 3 + 1] = 0.0F;
|
|
ret[COL_BARRIER * 3 + 2] = 0.0F;
|
|
|
|
/*
|
|
* Unpowered endpoints are blue.
|
|
*/
|
|
ret[COL_ENDPOINT * 3 + 0] = 0.0F;
|
|
ret[COL_ENDPOINT * 3 + 1] = 0.0F;
|
|
ret[COL_ENDPOINT * 3 + 2] = 1.0F;
|
|
|
|
/*
|
|
* Tile borders are a darker grey than the background.
|
|
*/
|
|
ret[COL_BORDER * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
|
|
ret[COL_BORDER * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
|
|
ret[COL_BORDER * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2];
|
|
|
|
/*
|
|
* Flashing tiles are a grey in between those two.
|
|
*/
|
|
ret[COL_FLASHING * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0];
|
|
ret[COL_FLASHING * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1];
|
|
ret[COL_FLASHING * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2];
|
|
|
|
ret[COL_LOWLIGHT * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 0.8F;
|
|
ret[COL_LOWLIGHT * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.8F;
|
|
ret[COL_LOWLIGHT * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 0.8F;
|
|
ret[COL_TEXT * 3 + 0] = 0.0;
|
|
ret[COL_TEXT * 3 + 1] = 0.0;
|
|
ret[COL_TEXT * 3 + 2] = 0.0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void draw_filled_line(drawing *dr, int x1, int y1, int x2, int y2,
|
|
int colour)
|
|
{
|
|
draw_line(dr, x1-1, y1, x2-1, y2, COL_WIRE);
|
|
draw_line(dr, x1+1, y1, x2+1, y2, COL_WIRE);
|
|
draw_line(dr, x1, y1-1, x2, y2-1, COL_WIRE);
|
|
draw_line(dr, x1, y1+1, x2, y2+1, COL_WIRE);
|
|
draw_line(dr, x1, y1, x2, y2, colour);
|
|
}
|
|
|
|
static void draw_rect_coords(drawing *dr, int x1, int y1, int x2, int y2,
|
|
int colour)
|
|
{
|
|
int mx = (x1 < x2 ? x1 : x2);
|
|
int my = (y1 < y2 ? y1 : y2);
|
|
int dx = (x2 + x1 - 2*mx + 1);
|
|
int dy = (y2 + y1 - 2*my + 1);
|
|
|
|
draw_rect(dr, mx, my, dx, dy, colour);
|
|
}
|
|
|
|
static void draw_barrier_corner(drawing *dr, game_drawstate *ds,
|
|
int x, int y, int dir, int phase)
|
|
{
|
|
int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x;
|
|
int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y;
|
|
int x1, y1, dx, dy, dir2;
|
|
|
|
dir >>= 4;
|
|
|
|
dir2 = A(dir);
|
|
dx = X(dir) + X(dir2);
|
|
dy = Y(dir) + Y(dir2);
|
|
x1 = (dx > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
|
|
y1 = (dy > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
|
|
|
|
if (phase == 0) {
|
|
draw_rect_coords(dr, bx+x1, by+y1,
|
|
bx+x1-TILE_BORDER*dx, by+y1-(TILE_BORDER-1)*dy,
|
|
COL_WIRE);
|
|
draw_rect_coords(dr, bx+x1, by+y1,
|
|
bx+x1-(TILE_BORDER-1)*dx, by+y1-TILE_BORDER*dy,
|
|
COL_WIRE);
|
|
} else {
|
|
draw_rect_coords(dr, bx+x1, by+y1,
|
|
bx+x1-(TILE_BORDER-1)*dx, by+y1-(TILE_BORDER-1)*dy,
|
|
COL_BARRIER);
|
|
}
|
|
}
|
|
|
|
static void draw_barrier(drawing *dr, game_drawstate *ds,
|
|
int x, int y, int dir, int phase)
|
|
{
|
|
int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x;
|
|
int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y;
|
|
int x1, y1, w, h;
|
|
|
|
x1 = (X(dir) > 0 ? TILE_SIZE : X(dir) == 0 ? TILE_BORDER : 0);
|
|
y1 = (Y(dir) > 0 ? TILE_SIZE : Y(dir) == 0 ? TILE_BORDER : 0);
|
|
w = (X(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
|
|
h = (Y(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
|
|
|
|
if (phase == 0) {
|
|
draw_rect(dr, bx+x1-X(dir), by+y1-Y(dir), w, h, COL_WIRE);
|
|
} else {
|
|
draw_rect(dr, bx+x1, by+y1, w, h, COL_BARRIER);
|
|
}
|
|
}
|
|
|
|
static void draw_tile(drawing *dr, game_drawstate *ds, const game_state *state,
|
|
int x, int y, int tile, float xshift, float yshift)
|
|
{
|
|
int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x + (int)(xshift * TILE_SIZE);
|
|
int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y + (int)(yshift * TILE_SIZE);
|
|
float cx, cy, ex, ey;
|
|
int dir, col;
|
|
|
|
/*
|
|
* When we draw a single tile, we must draw everything up to
|
|
* and including the borders around the tile. This means that
|
|
* if the neighbouring tiles have connections to those borders,
|
|
* we must draw those connections on the borders themselves.
|
|
*
|
|
* This would be terribly fiddly if we ever had to draw a tile
|
|
* while its neighbour was in mid-rotate, because we'd have to
|
|
* arrange to _know_ that the neighbour was being rotated and
|
|
* hence had an anomalous effect on the redraw of this tile.
|
|
* Fortunately, the drawing algorithm avoids ever calling us in
|
|
* this circumstance: we're either drawing lots of straight
|
|
* tiles at game start or after a move is complete, or we're
|
|
* repeatedly drawing only the rotating tile. So no problem.
|
|
*/
|
|
|
|
/*
|
|
* So. First blank the tile out completely: draw a big
|
|
* rectangle in border colour, and a smaller rectangle in
|
|
* background colour to fill it in.
|
|
*/
|
|
draw_rect(dr, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER,
|
|
COL_BORDER);
|
|
draw_rect(dr, bx+TILE_BORDER, by+TILE_BORDER,
|
|
TILE_SIZE-TILE_BORDER, TILE_SIZE-TILE_BORDER,
|
|
tile & FLASHING ? COL_FLASHING : COL_BACKGROUND);
|
|
|
|
/*
|
|
* Draw the wires.
|
|
*/
|
|
cx = cy = TILE_BORDER + (TILE_SIZE-TILE_BORDER) / 2.0F - 0.5F;
|
|
col = (tile & ACTIVE ? COL_POWERED : COL_WIRE);
|
|
for (dir = 1; dir < 0x10; dir <<= 1) {
|
|
if (tile & dir) {
|
|
ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
|
|
ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
|
|
draw_filled_line(dr, bx+(int)cx, by+(int)cy,
|
|
bx+(int)(cx+ex), by+(int)(cy+ey),
|
|
COL_WIRE);
|
|
}
|
|
}
|
|
for (dir = 1; dir < 0x10; dir <<= 1) {
|
|
if (tile & dir) {
|
|
ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
|
|
ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
|
|
draw_line(dr, bx+(int)cx, by+(int)cy,
|
|
bx+(int)(cx+ex), by+(int)(cy+ey), col);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Draw the box in the middle. We do this in blue if the tile
|
|
* is an unpowered endpoint, in cyan if the tile is a powered
|
|
* endpoint, in black if the tile is the centrepiece, and
|
|
* otherwise not at all.
|
|
*/
|
|
col = -1;
|
|
if (x == state->cx && y == state->cy)
|
|
col = COL_WIRE;
|
|
else if (COUNT(tile) == 1) {
|
|
col = (tile & ACTIVE ? COL_POWERED : COL_ENDPOINT);
|
|
}
|
|
if (col >= 0) {
|
|
int i, points[8];
|
|
|
|
points[0] = +1; points[1] = +1;
|
|
points[2] = +1; points[3] = -1;
|
|
points[4] = -1; points[5] = -1;
|
|
points[6] = -1; points[7] = +1;
|
|
|
|
for (i = 0; i < 8; i += 2) {
|
|
ex = (TILE_SIZE * 0.24F) * points[i];
|
|
ey = (TILE_SIZE * 0.24F) * points[i+1];
|
|
points[i] = bx+(int)(cx+ex);
|
|
points[i+1] = by+(int)(cy+ey);
|
|
}
|
|
|
|
draw_polygon(dr, points, 4, col, COL_WIRE);
|
|
}
|
|
|
|
/*
|
|
* Draw the points on the border if other tiles are connected
|
|
* to us.
|
|
*/
|
|
for (dir = 1; dir < 0x10; dir <<= 1) {
|
|
int dx, dy, px, py, lx, ly, vx, vy, ox, oy;
|
|
|
|
dx = X(dir);
|
|
dy = Y(dir);
|
|
|
|
ox = x + dx;
|
|
oy = y + dy;
|
|
|
|
if (ox < 0 || ox >= state->width || oy < 0 || oy >= state->height)
|
|
continue;
|
|
|
|
if (!(tile(state, ox, oy) & F(dir)))
|
|
continue;
|
|
|
|
px = bx + (int)(dx>0 ? TILE_SIZE + TILE_BORDER - 1 : dx<0 ? 0 : cx);
|
|
py = by + (int)(dy>0 ? TILE_SIZE + TILE_BORDER - 1 : dy<0 ? 0 : cy);
|
|
lx = dx * (TILE_BORDER-1);
|
|
ly = dy * (TILE_BORDER-1);
|
|
vx = (dy ? 1 : 0);
|
|
vy = (dx ? 1 : 0);
|
|
|
|
if (xshift == 0.0F && yshift == 0.0F && (tile & dir)) {
|
|
/*
|
|
* If we are fully connected to the other tile, we must
|
|
* draw right across the tile border. (We can use our
|
|
* own ACTIVE state to determine what colour to do this
|
|
* in: if we are fully connected to the other tile then
|
|
* the two ACTIVE states will be the same.)
|
|
*/
|
|
draw_rect_coords(dr, px-vx, py-vy, px+lx+vx, py+ly+vy, COL_WIRE);
|
|
draw_rect_coords(dr, px, py, px+lx, py+ly,
|
|
(tile & ACTIVE) ? COL_POWERED : COL_WIRE);
|
|
} else {
|
|
/*
|
|
* The other tile extends into our border, but isn't
|
|
* actually connected to us. Just draw a single black
|
|
* dot.
|
|
*/
|
|
draw_rect_coords(dr, px, py, px, py, COL_WIRE);
|
|
}
|
|
}
|
|
|
|
draw_update(dr, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
|
|
}
|
|
|
|
static void draw_tile_barriers(drawing *dr, game_drawstate *ds,
|
|
const game_state *state, int x, int y)
|
|
{
|
|
int phase;
|
|
int dir;
|
|
int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x;
|
|
int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y;
|
|
/*
|
|
* Draw barrier corners, and then barriers.
|
|
*/
|
|
for (phase = 0; phase < 2; phase++) {
|
|
for (dir = 1; dir < 0x10; dir <<= 1)
|
|
if (barrier(state, x, y) & (dir << 4))
|
|
draw_barrier_corner(dr, ds, x, y, dir << 4, phase);
|
|
for (dir = 1; dir < 0x10; dir <<= 1)
|
|
if (barrier(state, x, y) & dir)
|
|
draw_barrier(dr, ds, x, y, dir, phase);
|
|
}
|
|
|
|
draw_update(dr, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
|
|
}
|
|
|
|
static void draw_arrow(drawing *dr, game_drawstate *ds,
|
|
int x, int y, int xdx, int xdy, bool cur)
|
|
{
|
|
int coords[14];
|
|
int ydy = -xdx, ydx = xdy;
|
|
|
|
x = x * TILE_SIZE + BORDER + WINDOW_OFFSET;
|
|
y = y * TILE_SIZE + BORDER + WINDOW_OFFSET;
|
|
|
|
#define POINT(n, xx, yy) ( \
|
|
coords[2*(n)+0] = x + (xx)*xdx + (yy)*ydx, \
|
|
coords[2*(n)+1] = y + (xx)*xdy + (yy)*ydy)
|
|
|
|
POINT(0, TILE_SIZE / 2, 3 * TILE_SIZE / 4); /* top of arrow */
|
|
POINT(1, 3 * TILE_SIZE / 4, TILE_SIZE / 2); /* right corner */
|
|
POINT(2, 5 * TILE_SIZE / 8, TILE_SIZE / 2); /* right concave */
|
|
POINT(3, 5 * TILE_SIZE / 8, TILE_SIZE / 4); /* bottom right */
|
|
POINT(4, 3 * TILE_SIZE / 8, TILE_SIZE / 4); /* bottom left */
|
|
POINT(5, 3 * TILE_SIZE / 8, TILE_SIZE / 2); /* left concave */
|
|
POINT(6, TILE_SIZE / 4, TILE_SIZE / 2); /* left corner */
|
|
|
|
draw_polygon(dr, coords, 7, cur ? COL_POWERED : COL_LOWLIGHT, COL_TEXT);
|
|
}
|
|
|
|
static void draw_arrow_for_cursor(drawing *dr, game_drawstate *ds,
|
|
int cur_x, int cur_y, bool cur)
|
|
{
|
|
if (cur_x == -1 && cur_y == -1)
|
|
return; /* 'no cursur here */
|
|
else if (cur_x == -1) /* LH column. */
|
|
draw_arrow(dr, ds, 0, cur_y+1, 0, -1, cur);
|
|
else if (cur_x == ds->width) /* RH column */
|
|
draw_arrow(dr, ds, ds->width, cur_y, 0, +1, cur);
|
|
else if (cur_y == -1) /* Top row */
|
|
draw_arrow(dr, ds, cur_x, 0, +1, 0, cur);
|
|
else if (cur_y == ds->height) /* Bottom row */
|
|
draw_arrow(dr, ds, cur_x+1, ds->height, -1, 0, cur);
|
|
else
|
|
assert(!"Invalid cursor position");
|
|
|
|
draw_update(dr,
|
|
cur_x * TILE_SIZE + BORDER + WINDOW_OFFSET,
|
|
cur_y * TILE_SIZE + BORDER + WINDOW_OFFSET,
|
|
TILE_SIZE, TILE_SIZE);
|
|
}
|
|
|
|
static void game_redraw(drawing *dr, game_drawstate *ds,
|
|
const game_state *oldstate, const game_state *state,
|
|
int dir, const game_ui *ui,
|
|
float t, float ft)
|
|
{
|
|
int x, y, frame;
|
|
unsigned char *active;
|
|
float xshift = 0.0;
|
|
float yshift = 0.0;
|
|
int cur_x = -1, cur_y = -1;
|
|
|
|
/*
|
|
* Draw the exterior barrier lines if this is our first call.
|
|
*/
|
|
if (!ds->started) {
|
|
int phase;
|
|
|
|
ds->started = true;
|
|
|
|
for (phase = 0; phase < 2; phase++) {
|
|
|
|
for (x = 0; x < ds->width; x++) {
|
|
if (barrier(state, x, 0) & UL)
|
|
draw_barrier_corner(dr, ds, x, -1, LD, phase);
|
|
if (barrier(state, x, 0) & RU)
|
|
draw_barrier_corner(dr, ds, x, -1, DR, phase);
|
|
if (barrier(state, x, 0) & U)
|
|
draw_barrier(dr, ds, x, -1, D, phase);
|
|
if (barrier(state, x, ds->height-1) & DR)
|
|
draw_barrier_corner(dr, ds, x, ds->height, RU, phase);
|
|
if (barrier(state, x, ds->height-1) & LD)
|
|
draw_barrier_corner(dr, ds, x, ds->height, UL, phase);
|
|
if (barrier(state, x, ds->height-1) & D)
|
|
draw_barrier(dr, ds, x, ds->height, U, phase);
|
|
}
|
|
|
|
for (y = 0; y < ds->height; y++) {
|
|
if (barrier(state, 0, y) & UL)
|
|
draw_barrier_corner(dr, ds, -1, y, RU, phase);
|
|
if (barrier(state, 0, y) & LD)
|
|
draw_barrier_corner(dr, ds, -1, y, DR, phase);
|
|
if (barrier(state, 0, y) & L)
|
|
draw_barrier(dr, ds, -1, y, R, phase);
|
|
if (barrier(state, ds->width-1, y) & RU)
|
|
draw_barrier_corner(dr, ds, ds->width, y, UL, phase);
|
|
if (barrier(state, ds->width-1, y) & DR)
|
|
draw_barrier_corner(dr, ds, ds->width, y, LD, phase);
|
|
if (barrier(state, ds->width-1, y) & R)
|
|
draw_barrier(dr, ds, ds->width, y, L, phase);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Arrows for making moves.
|
|
*/
|
|
for (x = 0; x < ds->width; x++) {
|
|
if (x == state->cx) continue;
|
|
draw_arrow(dr, ds, x, 0, +1, 0, false);
|
|
draw_arrow(dr, ds, x+1, ds->height, -1, 0, false);
|
|
}
|
|
for (y = 0; y < ds->height; y++) {
|
|
if (y == state->cy) continue;
|
|
draw_arrow(dr, ds, ds->width, y, 0, +1, false);
|
|
draw_arrow(dr, ds, 0, y+1, 0, -1, false);
|
|
}
|
|
}
|
|
if (ui->cur_visible) {
|
|
cur_x = ui->cur_x; cur_y = ui->cur_y;
|
|
}
|
|
if (cur_x != ds->cur_x || cur_y != ds->cur_y) {
|
|
/* Cursor has changed; redraw two (prev and curr) arrows. */
|
|
assert(cur_x != state->cx && cur_y != state->cy);
|
|
|
|
draw_arrow_for_cursor(dr, ds, cur_x, cur_y, true);
|
|
draw_arrow_for_cursor(dr, ds, ds->cur_x, ds->cur_y, false);
|
|
ds->cur_x = cur_x; ds->cur_y = cur_y;
|
|
}
|
|
|
|
/* Check if this is an undo. If so, we will need to run any animation
|
|
* backwards.
|
|
*/
|
|
if (oldstate && oldstate->move_count > state->move_count) {
|
|
const game_state * tmpstate = state;
|
|
state = oldstate;
|
|
oldstate = tmpstate;
|
|
t = ANIM_TIME - t;
|
|
}
|
|
|
|
if (oldstate && (t < ANIM_TIME)) {
|
|
/*
|
|
* We're animating a slide, of row/column number
|
|
* state->last_move_pos, in direction
|
|
* state->last_move_dir
|
|
*/
|
|
xshift = state->last_move_row == -1 ? 0.0F :
|
|
(1 - t / ANIM_TIME) * state->last_move_dir;
|
|
yshift = state->last_move_col == -1 ? 0.0F :
|
|
(1 - t / ANIM_TIME) * state->last_move_dir;
|
|
}
|
|
|
|
frame = -1;
|
|
if (ft > 0) {
|
|
/*
|
|
* We're animating a completion flash. Find which frame
|
|
* we're at.
|
|
*/
|
|
frame = (int)(ft / FLASH_FRAME);
|
|
}
|
|
|
|
/*
|
|
* Draw any tile which differs from the way it was last drawn.
|
|
*/
|
|
if (xshift != 0.0F || yshift != 0.0F) {
|
|
active = compute_active(state,
|
|
state->last_move_row, state->last_move_col);
|
|
} else {
|
|
active = compute_active(state, -1, -1);
|
|
}
|
|
|
|
clip(dr,
|
|
BORDER + WINDOW_OFFSET, BORDER + WINDOW_OFFSET,
|
|
TILE_SIZE * state->width + TILE_BORDER,
|
|
TILE_SIZE * state->height + TILE_BORDER);
|
|
|
|
for (x = 0; x < ds->width; x++)
|
|
for (y = 0; y < ds->height; y++) {
|
|
unsigned char c = tile(state, x, y) | index(state, active, x, y);
|
|
|
|
/*
|
|
* In a completion flash, we adjust the FLASHING bit
|
|
* depending on our distance from the centre point and
|
|
* the frame number.
|
|
*/
|
|
if (frame >= 0) {
|
|
int xdist, ydist, dist;
|
|
xdist = (x < state->cx ? state->cx - x : x - state->cx);
|
|
ydist = (y < state->cy ? state->cy - y : y - state->cy);
|
|
dist = (xdist > ydist ? xdist : ydist);
|
|
|
|
if (frame >= dist && frame < dist+4) {
|
|
int flash = (frame - dist) & 1;
|
|
flash = flash ? FLASHING : 0;
|
|
c = (c &~ FLASHING) | flash;
|
|
}
|
|
}
|
|
|
|
if (index(state, ds->visible, x, y) != c ||
|
|
index(state, ds->visible, x, y) == 0xFF ||
|
|
(x == state->last_move_col || y == state->last_move_row))
|
|
{
|
|
float xs = (y == state->last_move_row ? xshift : (float)0.0);
|
|
float ys = (x == state->last_move_col ? yshift : (float)0.0);
|
|
|
|
draw_tile(dr, ds, state, x, y, c, xs, ys);
|
|
if (xs < 0 && x == 0)
|
|
draw_tile(dr, ds, state, state->width, y, c, xs, ys);
|
|
else if (xs > 0 && x == state->width - 1)
|
|
draw_tile(dr, ds, state, -1, y, c, xs, ys);
|
|
else if (ys < 0 && y == 0)
|
|
draw_tile(dr, ds, state, x, state->height, c, xs, ys);
|
|
else if (ys > 0 && y == state->height - 1)
|
|
draw_tile(dr, ds, state, x, -1, c, xs, ys);
|
|
|
|
if (x == state->last_move_col || y == state->last_move_row)
|
|
index(state, ds->visible, x, y) = 0xFF;
|
|
else
|
|
index(state, ds->visible, x, y) = c;
|
|
}
|
|
}
|
|
|
|
for (x = 0; x < ds->width; x++)
|
|
for (y = 0; y < ds->height; y++)
|
|
draw_tile_barriers(dr, ds, state, x, y);
|
|
|
|
unclip(dr);
|
|
|
|
/*
|
|
* Update the status bar.
|
|
*/
|
|
{
|
|
char statusbuf[256];
|
|
int i, n, a;
|
|
|
|
n = state->width * state->height;
|
|
for (i = a = 0; i < n; i++)
|
|
if (active[i])
|
|
a++;
|
|
|
|
if (state->used_solve)
|
|
sprintf(statusbuf, "Moves since auto-solve: %d",
|
|
state->move_count - state->completed);
|
|
else
|
|
sprintf(statusbuf, "%sMoves: %d",
|
|
(state->completed ? "COMPLETED! " : ""),
|
|
(state->completed ? state->completed : state->move_count));
|
|
|
|
if (state->movetarget)
|
|
sprintf(statusbuf + strlen(statusbuf), " (target %d)",
|
|
state->movetarget);
|
|
|
|
sprintf(statusbuf + strlen(statusbuf), " Active: %d/%d", a, n);
|
|
|
|
status_bar(dr, statusbuf);
|
|
}
|
|
|
|
sfree(active);
|
|
}
|
|
|
|
static float game_anim_length(const game_state *oldstate,
|
|
const game_state *newstate, int dir, game_ui *ui)
|
|
{
|
|
return ANIM_TIME;
|
|
}
|
|
|
|
static float game_flash_length(const game_state *oldstate,
|
|
const game_state *newstate, int dir, game_ui *ui)
|
|
{
|
|
/*
|
|
* If the game has just been completed, we display a completion
|
|
* flash.
|
|
*/
|
|
if (!oldstate->completed && newstate->completed &&
|
|
!oldstate->used_solve && !newstate->used_solve) {
|
|
int size;
|
|
size = 0;
|
|
if (size < newstate->cx+1)
|
|
size = newstate->cx+1;
|
|
if (size < newstate->cy+1)
|
|
size = newstate->cy+1;
|
|
if (size < newstate->width - newstate->cx)
|
|
size = newstate->width - newstate->cx;
|
|
if (size < newstate->height - newstate->cy)
|
|
size = newstate->height - newstate->cy;
|
|
return FLASH_FRAME * (size+4);
|
|
}
|
|
|
|
return 0.0F;
|
|
}
|
|
|
|
static void game_get_cursor_location(const game_ui *ui,
|
|
const game_drawstate *ds,
|
|
const game_state *state,
|
|
const game_params *params,
|
|
int *x, int *y, int *w, int *h)
|
|
{
|
|
if(ui->cur_visible) {
|
|
*x = BORDER + WINDOW_OFFSET + TILE_SIZE * ui->cur_x;
|
|
*y = BORDER + WINDOW_OFFSET + TILE_SIZE * ui->cur_y;
|
|
|
|
*w = *h = TILE_SIZE;
|
|
}
|
|
}
|
|
|
|
static int game_status(const game_state *state)
|
|
{
|
|
return state->completed ? +1 : 0;
|
|
}
|
|
|
|
#ifdef COMBINED
|
|
#define thegame netslide
|
|
#endif
|
|
|
|
const struct game thegame = {
|
|
"Netslide", "games.netslide", "netslide",
|
|
default_params,
|
|
game_fetch_preset, NULL,
|
|
decode_params,
|
|
encode_params,
|
|
free_params,
|
|
dup_params,
|
|
true, game_configure, custom_params,
|
|
validate_params,
|
|
new_game_desc,
|
|
validate_desc,
|
|
new_game,
|
|
dup_game,
|
|
free_game,
|
|
true, solve_game,
|
|
false, NULL, NULL, /* can_format_as_text_now, text_format */
|
|
NULL, NULL, /* get_prefs, set_prefs */
|
|
new_ui,
|
|
free_ui,
|
|
NULL, /* encode_ui */
|
|
NULL, /* decode_ui */
|
|
NULL, /* game_request_keys */
|
|
game_changed_state,
|
|
current_key_label,
|
|
interpret_move,
|
|
execute_move,
|
|
PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
|
|
game_colours,
|
|
game_new_drawstate,
|
|
game_free_drawstate,
|
|
game_redraw,
|
|
game_anim_length,
|
|
game_flash_length,
|
|
game_get_cursor_location,
|
|
game_status,
|
|
false, false, NULL, NULL, /* print_size, print */
|
|
true, /* wants_statusbar */
|
|
false, NULL, /* timing_state */
|
|
0, /* flags */
|
|
};
|
|
|
|
/* vim: set shiftwidth=4 tabstop=8: */
|