Files
puzzles/range.c
Hauke Rehr dc2407ed0c Use semantic enum entry names for pref indices
[Commit message added by SGT: this makes it easier to allocate indices
in the config_item array, and keep them in sync between get_prefs and
set_prefs for each game.]
2025-02-15 15:23:01 +00:00

1891 lines
57 KiB
C

/*
* range.c: implementation of the Nikoli game 'Kurodoko' / 'Kuromasu'.
*/
/*
* Puzzle rules: the player is given a WxH grid of white squares, some
* of which contain numbers. The goal is to paint some of the squares
* black, such that:
*
* - no cell (err, cell = square) with a number is painted black
* - no black cells have an adjacent (horz/vert) black cell
* - the white cells are all connected (through other white cells)
* - if a cell contains a number n, let h and v be the lengths of the
* maximal horizontal and vertical white sequences containing that
* cell. Then n must equal h + v - 1.
*/
/* example instance with its encoding and textual representation, both
* solved and unsolved (made by thegame.solve and thegame.text_format)
*
* +--+--+--+--+--+--+--+
* | | | | | 7| | |
* +--+--+--+--+--+--+--+
* | 3| | | | | | 8|
* +--+--+--+--+--+--+--+
* | | | | | | 5| |
* +--+--+--+--+--+--+--+
* | | | 7| | 7| | |
* +--+--+--+--+--+--+--+
* | |13| | | | | |
* +--+--+--+--+--+--+--+
* | 4| | | | | | 8|
* +--+--+--+--+--+--+--+
* | | | 4| | | | |
* +--+--+--+--+--+--+--+
*
* 7x7:d7b3e8e5c7a7c13e4d8b4d
*
* +--+--+--+--+--+--+--+
* |..|..|..|..| 7|..|..|
* +--+--+--+--+--+--+--+
* | 3|..|##|..|##|..| 8|
* +--+--+--+--+--+--+--+
* |##|..|..|##|..| 5|..|
* +--+--+--+--+--+--+--+
* |..|..| 7|..| 7|##|..|
* +--+--+--+--+--+--+--+
* |..|13|..|..|..|..|..|
* +--+--+--+--+--+--+--+
* | 4|..|##|..|##|..| 8|
* +--+--+--+--+--+--+--+
* |##|..| 4|..|..|##|..|
* +--+--+--+--+--+--+--+
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <ctype.h>
#ifdef NO_TGMATH_H
# include <math.h>
#else
# include <tgmath.h>
#endif
#include "puzzles.h"
#include <stdarg.h>
#define setmember(obj, field) ( (obj) . field = field )
static char *nfmtstr(int n, const char *fmt, ...) {
va_list va;
char *ret = snewn(n+1, char);
va_start(va, fmt);
vsprintf(ret, fmt, va);
va_end(va);
return ret;
}
#define SWAP(type, lvar1, lvar2) do { \
type tmp = (lvar1); \
(lvar1) = (lvar2); \
(lvar2) = tmp; \
} while (0)
/* ----------------------------------------------------------------------
* Game parameters, presets, states
*/
typedef signed char puzzle_size;
struct game_params {
puzzle_size w;
puzzle_size h;
};
enum {
PREF_MOUSE_BUTTON_ORDER,
N_PREF_ITEMS
};
struct game_state {
struct game_params params;
bool has_cheated, was_solved;
puzzle_size *grid;
};
#define DEFAULT_PRESET 0
static struct game_params range_presets[] = {{9, 6}, {12, 8}, {13, 9}, {16, 11}};
/* rationale: I want all four combinations of {odd/even, odd/even}, as
* they play out differently with respect to two-way symmetry. I also
* want them to be generated relatively fast yet still be large enough
* to be entertaining for a decent amount of time, and I want them to
* make good use of monitor real estate (the typical screen resolution
* is why I do 13x9 and not 9x13).
*/
static game_params *default_params(void)
{
game_params *ret = snew(game_params);
*ret = range_presets[DEFAULT_PRESET]; /* structure copy */
return ret;
}
static game_params *dup_params(const game_params *params)
{
game_params *ret = snew(game_params);
*ret = *params; /* structure copy */
return ret;
}
static bool game_fetch_preset(int i, char **name, game_params **params)
{
game_params *ret;
if (i < 0 || i >= lenof(range_presets)) return false;
ret = default_params();
*ret = range_presets[i]; /* struct copy */
*params = ret;
*name = nfmtstr(40, "%d x %d", range_presets[i].w, range_presets[i].h);
return true;
}
static void free_params(game_params *params)
{
sfree(params);
}
static void decode_params(game_params *params, char const *string)
{
/* FIXME check for puzzle_size overflow and decoding issues */
params->w = params->h = atoi(string);
while (*string && isdigit((unsigned char) *string)) ++string;
if (*string == 'x') {
string++;
params->h = atoi(string);
while (*string && isdigit((unsigned char)*string)) string++;
}
}
static char *encode_params(const game_params *params, bool full)
{
char str[80];
sprintf(str, "%dx%d", params->w, params->h);
return dupstr(str);
}
static config_item *game_configure(const game_params *params)
{
config_item *ret;
ret = snewn(3, config_item);
ret[0].name = "Width";
ret[0].type = C_STRING;
ret[0].u.string.sval = nfmtstr(10, "%d", params->w);
ret[1].name = "Height";
ret[1].type = C_STRING;
ret[1].u.string.sval = nfmtstr(10, "%d", params->h);
ret[2].name = NULL;
ret[2].type = C_END;
return ret;
}
static game_params *custom_params(const config_item *configuration)
{
game_params *ret = snew(game_params);
ret->w = atoi(configuration[0].u.string.sval);
ret->h = atoi(configuration[1].u.string.sval);
return ret;
}
#define memdup(dst, src, n, type) do { \
dst = snewn(n, type); \
memcpy(dst, src, n * sizeof (type)); \
} while (0)
static game_state *dup_game(const game_state *state)
{
game_state *ret = snew(game_state);
int const n = state->params.w * state->params.h;
*ret = *state; /* structure copy */
/* copy the poin_tee_, set a new value of the poin_ter_ */
memdup(ret->grid, state->grid, n, puzzle_size);
return ret;
}
static void free_game(game_state *state)
{
sfree(state->grid);
sfree(state);
}
/* ----------------------------------------------------------------------
* The solver subsystem.
*
* The solver is used for two purposes:
* - To solve puzzles when the user selects `Solve'.
* - To test solubility of a grid as clues are being removed from it
* during the puzzle generation.
*
* It supports the following ways of reasoning:
*
* - A cell adjacent to a black cell must be white.
*
* - If painting a square black would bisect the white regions, that
* square is white (by finding biconnected components' cut points)
*
* - A cell with number n, covering at most k white squares in three
* directions must white-cover n-k squares in the last direction.
*
* - A cell with number n known to cover k squares, if extending the
* cover by one square in a given direction causes the cell to
* cover _more_ than n squares, that extension cell must be black.
*
* (either if the square already covers n, or if it extends into a
* chunk of size > n - k)
*
* - Recursion. Pick any cell and see if this leads to either a
* contradiction or a solution (and then act appropriately).
*
*
* TODO:
*
* (propagation upper limit)
* - If one has two numbers on the same line, the smaller limits the
* larger. Example: in |b|_|_|8|4|_|_|b|, only two _'s can be both
* white and connected to the "8" cell; so that cell will propagate
* at least four cells orthogonally to the displayed line (which is
* better than the current "at least 2").
*
* (propagation upper limit)
* - cells can't propagate into other cells if doing so exceeds that
* number. Example: in |b|4|.|.|2|b|, at most one _ can be white;
* otherwise, the |2| would have too many reaching white cells.
*
* (propagation lower and upper limit)
* - `Full Combo': in each four directions d_1 ... d_4, find a set of
* possible propagation distances S_1 ... S_4. For each i=1..4,
* for each x in S_i: if not exists (y, z, w) in the other sets
* such that (x+y+z+w+1 == clue value): then remove x from S_i.
* Repeat until this stabilizes. If any cell would contradict
*/
#define idx(i, j, w) ((i)*(w) + (j))
#define out_of_bounds(r, c, w, h) \
((r) < 0 || (r) >= h || (c) < 0 || (c) >= w)
typedef struct square {
puzzle_size r, c;
} square;
enum {BLACK = -2, WHITE, EMPTY};
/* white is for pencil marks, empty is undecided */
static int const dr[4] = {+1, 0, -1, 0};
static int const dc[4] = { 0, +1, 0, -1};
static int const cursors[4] = /* must match dr and dc */
{CURSOR_DOWN, CURSOR_RIGHT, CURSOR_UP, CURSOR_LEFT};
typedef struct move {
square square;
unsigned int colour: 1;
} move;
enum {M_BLACK = 0, M_WHITE = 1};
typedef move *(reasoning)(game_state *state,
int nclues,
const square *clues,
move *buf);
static reasoning solver_reasoning_not_too_big;
static reasoning solver_reasoning_adjacency;
static reasoning solver_reasoning_connectedness;
static reasoning solver_reasoning_recursion;
enum {
DIFF_NOT_TOO_BIG,
DIFF_ADJACENCY,
DIFF_CONNECTEDNESS,
DIFF_RECURSION
};
static move *solve_internal(const game_state *state, move *base, int diff);
static char *solve_game(const game_state *orig, const game_state *curpos,
const char *aux, const char **error)
{
int const n = orig->params.w * orig->params.h;
move *const base = snewn(n, move);
move *moves = solve_internal(orig, base, DIFF_RECURSION);
char *ret = NULL;
if (moves != NULL) {
int const k = moves - base;
char *str = ret = snewn(15*k + 2, char);
char colour[2] = "BW";
move *it;
*str++ = 'S';
*str = '\0';
for (it = base; it < moves; ++it)
str += sprintf(str, "%c,%d,%d", colour[it->colour],
it->square.r, it->square.c);
} else *error = "This puzzle instance contains a contradiction";
sfree(base);
return ret;
}
static square *find_clues(const game_state *state, int *ret_nclues);
static move *do_solve(game_state *state,
int nclues,
const square *clues,
move *move_buffer,
int difficulty);
/* new_game_desc entry point in the solver subsystem */
static move *solve_internal(const game_state *state, move *base, int diff)
{
int nclues;
square *const clues = find_clues(state, &nclues);
game_state *dup = dup_game(state);
move *const moves = do_solve(dup, nclues, clues, base, diff);
free_game(dup);
sfree(clues);
return moves;
}
static reasoning *const reasonings[] = {
solver_reasoning_not_too_big,
solver_reasoning_adjacency,
solver_reasoning_connectedness,
solver_reasoning_recursion
};
static move *do_solve(game_state *state,
int nclues,
const square *clues,
move *move_buffer,
int difficulty)
{
struct move *buf = move_buffer, *oldbuf;
int i;
do {
oldbuf = buf;
for (i = 0; i < lenof(reasonings) && i <= difficulty; ++i) {
/* only recurse if all else fails */
if (i == DIFF_RECURSION && buf > oldbuf) continue;
buf = (*reasonings[i])(state, nclues, clues, buf);
if (buf == NULL) return NULL;
}
} while (buf > oldbuf);
return buf;
}
#define MASK(n) (1 << ((n) + 2))
static int runlength(puzzle_size r, puzzle_size c,
puzzle_size dr, puzzle_size dc,
const game_state *state, int colourmask)
{
int const w = state->params.w, h = state->params.h;
int sz = 0;
while (true) {
int cell = idx(r, c, w);
if (out_of_bounds(r, c, w, h)) break;
if (state->grid[cell] > 0) {
if (!(colourmask & ~(MASK(BLACK) | MASK(WHITE) | MASK(EMPTY))))
break;
} else if (!(MASK(state->grid[cell]) & colourmask)) break;
++sz;
r += dr;
c += dc;
}
return sz;
}
static void solver_makemove(puzzle_size r, puzzle_size c, int colour,
game_state *state, move **buffer_ptr)
{
int const cell = idx(r, c, state->params.w);
if (out_of_bounds(r, c, state->params.w, state->params.h)) return;
if (state->grid[cell] != EMPTY) return;
setmember((*buffer_ptr)->square, r);
setmember((*buffer_ptr)->square, c);
setmember(**buffer_ptr, colour);
++*buffer_ptr;
state->grid[cell] = (colour == M_BLACK ? BLACK : WHITE);
}
static move *solver_reasoning_adjacency(game_state *state,
int nclues,
const square *clues,
move *buf)
{
int r, c, i;
for (r = 0; r < state->params.h; ++r)
for (c = 0; c < state->params.w; ++c) {
int const cell = idx(r, c, state->params.w);
if (state->grid[cell] != BLACK) continue;
for (i = 0; i < 4; ++i)
solver_makemove(r + dr[i], c + dc[i], M_WHITE, state, &buf);
}
return buf;
}
enum {NOT_VISITED = -1};
static int dfs_biconnect_visit(puzzle_size r, puzzle_size c,
game_state *state,
square *dfs_parent, int *dfs_depth,
move **buf);
static move *solver_reasoning_connectedness(game_state *state,
int nclues,
const square *clues,
move *buf)
{
int const w = state->params.w, h = state->params.h, n = w * h;
square *const dfs_parent = snewn(n, square);
int *const dfs_depth = snewn(n, int);
int i;
for (i = 0; i < n; ++i) {
dfs_parent[i].r = NOT_VISITED;
dfs_depth[i] = -n;
}
for (i = 0; i < n && state->grid[i] == BLACK; ++i);
dfs_parent[i].r = i / w;
dfs_parent[i].c = i % w; /* `dfs root`.parent == `dfs root` */
dfs_depth[i] = 0;
dfs_biconnect_visit(i / w, i % w, state, dfs_parent, dfs_depth, &buf);
sfree(dfs_parent);
sfree(dfs_depth);
return buf;
}
/* returns the `lowpoint` of (r, c) */
static int dfs_biconnect_visit(puzzle_size r, puzzle_size c,
game_state *state,
square *dfs_parent, int *dfs_depth,
move **buf)
{
const puzzle_size w = state->params.w, h = state->params.h;
int const i = idx(r, c, w), mydepth = dfs_depth[i];
int lowpoint = mydepth, j, nchildren = 0;
for (j = 0; j < 4; ++j) {
const puzzle_size rr = r + dr[j], cc = c + dc[j];
int const cell = idx(rr, cc, w);
if (out_of_bounds(rr, cc, w, h)) continue;
if (state->grid[cell] == BLACK) continue;
if (dfs_parent[cell].r == NOT_VISITED) {
int child_lowpoint;
dfs_parent[cell].r = r;
dfs_parent[cell].c = c;
dfs_depth[cell] = mydepth + 1;
child_lowpoint = dfs_biconnect_visit(rr, cc, state, dfs_parent,
dfs_depth, buf);
if (child_lowpoint >= mydepth && mydepth > 0)
solver_makemove(r, c, M_WHITE, state, buf);
lowpoint = min(lowpoint, child_lowpoint);
++nchildren;
} else if (rr != dfs_parent[i].r || cc != dfs_parent[i].c) {
lowpoint = min(lowpoint, dfs_depth[cell]);
}
}
if (mydepth == 0 && nchildren >= 2)
solver_makemove(r, c, M_WHITE, state, buf);
return lowpoint;
}
static move *solver_reasoning_not_too_big(game_state *state,
int nclues,
const square *clues,
move *buf)
{
int const w = state->params.w, runmasks[4] = {
~(MASK(BLACK) | MASK(EMPTY)),
MASK(EMPTY),
~(MASK(BLACK) | MASK(EMPTY)),
~(MASK(BLACK))
};
enum {RUN_WHITE, RUN_EMPTY, RUN_BEYOND, RUN_SPACE};
int i, runlengths[4][4];
for (i = 0; i < nclues; ++i) {
int j, k, whites, space;
const puzzle_size row = clues[i].r, col = clues[i].c;
int const clue = state->grid[idx(row, col, w)];
for (j = 0; j < 4; ++j) {
puzzle_size r = row + dr[j], c = col + dc[j];
runlengths[RUN_SPACE][j] = 0;
for (k = 0; k <= RUN_SPACE; ++k) {
int l = runlength(r, c, dr[j], dc[j], state, runmasks[k]);
if (k < RUN_SPACE) {
runlengths[k][j] = l;
r += dr[j] * l;
c += dc[j] * l;
}
runlengths[RUN_SPACE][j] += l;
}
}
whites = 1;
for (j = 0; j < 4; ++j) whites += runlengths[RUN_WHITE][j];
for (j = 0; j < 4; ++j) {
int const delta = 1 + runlengths[RUN_WHITE][j];
const puzzle_size r = row + delta * dr[j];
const puzzle_size c = col + delta * dc[j];
if (whites == clue) {
solver_makemove(r, c, M_BLACK, state, &buf);
continue;
}
if (runlengths[RUN_EMPTY][j] == 1 &&
whites
+ runlengths[RUN_EMPTY][j]
+ runlengths[RUN_BEYOND][j]
> clue) {
solver_makemove(r, c, M_BLACK, state, &buf);
continue;
}
if (whites
+ runlengths[RUN_EMPTY][j]
+ runlengths[RUN_BEYOND][j]
> clue) {
runlengths[RUN_SPACE][j] =
runlengths[RUN_WHITE][j] +
runlengths[RUN_EMPTY][j] - 1;
if (runlengths[RUN_EMPTY][j] == 1)
solver_makemove(r, c, M_BLACK, state, &buf);
}
}
space = 1;
for (j = 0; j < 4; ++j) space += runlengths[RUN_SPACE][j];
for (j = 0; j < 4; ++j) {
puzzle_size r = row + dr[j], c = col + dc[j];
int k = space - runlengths[RUN_SPACE][j];
if (k >= clue) continue;
for (; k < clue; ++k, r += dr[j], c += dc[j])
solver_makemove(r, c, M_WHITE, state, &buf);
}
}
return buf;
}
static move *solver_reasoning_recursion(game_state *state,
int nclues,
const square *clues,
move *buf)
{
int const w = state->params.w, n = w * state->params.h;
int cell, colour;
for (cell = 0; cell < n; ++cell) {
int const r = cell / w, c = cell % w;
int i;
game_state *newstate;
move *recursive_result;
if (state->grid[cell] != EMPTY) continue;
/* FIXME: add enum alias for smallest and largest (or N) */
for (colour = M_BLACK; colour <= M_WHITE; ++colour) {
newstate = dup_game(state);
newstate->grid[cell] = colour == M_BLACK ? BLACK : WHITE;
recursive_result = do_solve(newstate, nclues, clues, buf,
DIFF_RECURSION);
if (recursive_result == NULL) {
free_game(newstate);
solver_makemove(r, c, M_BLACK + M_WHITE - colour, state, &buf);
return buf;
}
for (i = 0; i < n && newstate->grid[i] != EMPTY; ++i);
free_game(newstate);
if (i == n) return buf;
}
}
return buf;
}
static square *find_clues(const game_state *state, int *ret_nclues)
{
int r, c, i, nclues = 0;
square *ret = snewn(state->params.w * state->params.h, struct square);
for (i = r = 0; r < state->params.h; ++r)
for (c = 0; c < state->params.w; ++c, ++i)
if (state->grid[i] > 0) {
ret[nclues].r = r;
ret[nclues].c = c;
++nclues;
}
*ret_nclues = nclues;
return sresize(ret, nclues + (nclues == 0), square);
}
/* ----------------------------------------------------------------------
* Puzzle generation
*
* Generating kurodoko instances is rather straightforward:
*
* - Start with a white grid and add black squares at randomly chosen
* locations, unless colouring that square black would violate
* either the adjacency or connectedness constraints.
*
* - For each white square, compute the number it would contain if it
* were given as a clue.
*
* - From a starting point of "give _every_ white square as a clue",
* for each white square (in a random order), see if the board is
* solvable when that square is not given as a clue. If not, don't
* give it as a clue, otherwise do.
*
* This never fails, but it's only _almost_ what I do. The real final
* step is this:
*
* - From a starting point of "give _every_ white square as a clue",
* first remove all clues that are two-way rotationally symmetric
* to a black square. If this leaves the puzzle unsolvable, throw
* it out and try again. Otherwise, remove all _pairs_ of clues
* (that are rotationally symmetric) which can be removed without
* rendering the puzzle unsolvable.
*
* This can fail even if one only removes the black and symmetric
* clues; indeed it happens often (avg. once or twice per puzzle) when
* generating 1xN instances. (If you add black cells they must be in
* the end, and if you only add one, it's ambiguous where).
*/
/* forward declarations of internal calls */
static void newdesc_choose_black_squares(game_state *state,
const int *shuffle_1toN);
static void newdesc_compute_clues(game_state *state);
static int newdesc_strip_clues(game_state *state, int *shuffle_1toN);
static char *newdesc_encode_game_description(int n, puzzle_size *grid);
static char *new_game_desc(const game_params *params, random_state *rs,
char **aux, bool interactive)
{
int const w = params->w, h = params->h, n = w * h;
puzzle_size *const grid = snewn(n, puzzle_size);
int *const shuffle_1toN = snewn(n, int);
int i, clues_removed;
char *encoding;
game_state state;
state.params = *params;
state.grid = grid;
interactive = false; /* I don't need it, I shouldn't use it*/
for (i = 0; i < n; ++i) shuffle_1toN[i] = i;
while (true) {
shuffle(shuffle_1toN, n, sizeof (int), rs);
newdesc_choose_black_squares(&state, shuffle_1toN);
newdesc_compute_clues(&state);
shuffle(shuffle_1toN, n, sizeof (int), rs);
clues_removed = newdesc_strip_clues(&state, shuffle_1toN);
if (clues_removed < 0) continue; else break;
}
encoding = newdesc_encode_game_description(n, grid);
sfree(grid);
sfree(shuffle_1toN);
return encoding;
}
static int dfs_count_white(game_state *state, int cell);
static void newdesc_choose_black_squares(game_state *state,
const int *shuffle_1toN)
{
int const w = state->params.w, h = state->params.h, n = w * h;
int k, any_white_cell, n_black_cells;
for (k = 0; k < n; ++k) state->grid[k] = WHITE;
any_white_cell = shuffle_1toN[n - 1];
n_black_cells = 0;
/* I like the puzzles that result from n / 3, but maybe this
* could be made a (generation, i.e. non-full) parameter? */
for (k = 0; k < n / 3; ++k) {
int const i = shuffle_1toN[k], c = i % w, r = i / w;
int j;
for (j = 0; j < 4; ++j) {
int const rr = r + dr[j], cc = c + dc[j], cell = idx(rr, cc, w);
/* if you're out of bounds, we skip you */
if (out_of_bounds(rr, cc, w, h)) continue;
if (state->grid[cell] == BLACK) break; /* I can't be black */
} if (j < 4) continue; /* I have black neighbour: I'm white */
state->grid[i] = BLACK;
++n_black_cells;
j = dfs_count_white(state, any_white_cell);
if (j + n_black_cells < n) {
state->grid[i] = WHITE;
--n_black_cells;
}
}
}
static void newdesc_compute_clues(game_state *state)
{
int const w = state->params.w, h = state->params.h;
int r, c;
for (r = 0; r < h; ++r) {
int run_size = 0, c, cc;
for (c = 0; c <= w; ++c) {
if (c == w || state->grid[idx(r, c, w)] == BLACK) {
for (cc = c - run_size; cc < c; ++cc)
state->grid[idx(r, cc, w)] += run_size;
run_size = 0;
} else ++run_size;
}
}
for (c = 0; c < w; ++c) {
int run_size = 0, r, rr;
for (r = 0; r <= h; ++r) {
if (r == h || state->grid[idx(r, c, w)] == BLACK) {
for (rr = r - run_size; rr < r; ++rr)
state->grid[idx(rr, c, w)] += run_size;
run_size = 0;
} else ++run_size;
}
}
}
#define rotate(x) (n - 1 - (x))
static int newdesc_strip_clues(game_state *state, int *shuffle_1toN)
{
int const w = state->params.w, n = w * state->params.h;
move *const move_buffer = snewn(n, move);
move *buf;
game_state *dupstate;
/*
* do a partition/pivot of shuffle_1toN into three groups:
* (1) squares rotationally-symmetric to (3)
* (2) squares not in (1) or (3)
* (3) black squares
*
* They go from [0, left), [left, right) and [right, n) in
* shuffle_1toN (and from there into state->grid[ ])
*
* Then, remove clues from the grid one by one in shuffle_1toN
* order, until the solver becomes unhappy. If we didn't remove
* all of (1), return (-1). Else, we're happy.
*/
/* do the partition */
int clues_removed, k = 0, left = 0, right = n;
for (;; ++k) {
while (k < right && state->grid[shuffle_1toN[k]] == BLACK) {
--right;
SWAP(int, shuffle_1toN[right], shuffle_1toN[k]);
assert(state->grid[shuffle_1toN[right]] == BLACK);
}
if (k >= right) break;
assert (k >= left);
if (state->grid[rotate(shuffle_1toN[k])] == BLACK) {
SWAP(int, shuffle_1toN[k], shuffle_1toN[left]);
++left;
}
assert (state->grid[rotate(shuffle_1toN[k])] != BLACK
|| k == left - 1);
}
for (k = 0; k < left; ++k) {
assert (state->grid[rotate(shuffle_1toN[k])] == BLACK);
state->grid[shuffle_1toN[k]] = EMPTY;
}
for (k = left; k < right; ++k) {
assert (state->grid[rotate(shuffle_1toN[k])] != BLACK);
assert (state->grid[shuffle_1toN[k]] != BLACK);
}
for (k = right; k < n; ++k) {
assert (state->grid[shuffle_1toN[k]] == BLACK);
state->grid[shuffle_1toN[k]] = EMPTY;
}
clues_removed = (left - 0) + (n - right);
dupstate = dup_game(state);
buf = solve_internal(dupstate, move_buffer, DIFF_RECURSION - 1);
free_game(dupstate);
if (buf - move_buffer < clues_removed) {
/* branch prediction: I don't think I'll go here */
clues_removed = -1;
goto ret;
}
for (k = left; k < right; ++k) {
const int i = shuffle_1toN[k], j = rotate(i);
int const clue = state->grid[i], clue_rot = state->grid[j];
if (clue == BLACK) continue;
state->grid[i] = state->grid[j] = EMPTY;
dupstate = dup_game(state);
buf = solve_internal(dupstate, move_buffer, DIFF_RECURSION - 1);
free_game(dupstate);
clues_removed += 2 - (i == j);
/* if i is the center square, then i == (j = rotate(i))
* when i and j are one, removing i and j removes only one */
if (buf - move_buffer == clues_removed) continue;
/* if the solver is sound, refilling all removed clues means
* we have filled all squares, i.e. solved the puzzle. */
state->grid[i] = clue;
state->grid[j] = clue_rot;
clues_removed -= 2 - (i == j);
}
ret:
sfree(move_buffer);
return clues_removed;
}
static int dfs_count_rec(puzzle_size *grid, int r, int c, int w, int h)
{
int const cell = idx(r, c, w);
if (out_of_bounds(r, c, w, h)) return 0;
if (grid[cell] != WHITE) return 0;
grid[cell] = EMPTY;
return 1 +
dfs_count_rec(grid, r + 0, c + 1, w, h) +
dfs_count_rec(grid, r + 0, c - 1, w, h) +
dfs_count_rec(grid, r + 1, c + 0, w, h) +
dfs_count_rec(grid, r - 1, c + 0, w, h);
}
static int dfs_count_white(game_state *state, int cell)
{
int const w = state->params.w, h = state->params.h, n = w * h;
int const r = cell / w, c = cell % w;
int i, k = dfs_count_rec(state->grid, r, c, w, h);
for (i = 0; i < n; ++i)
if (state->grid[i] == EMPTY)
state->grid[i] = WHITE;
return k;
}
static const char *validate_params(const game_params *params, bool full)
{
int const w = params->w, h = params->h;
if (w < 1) return "Error: width is less than 1";
if (h < 1) return "Error: height is less than 1";
if (w > SCHAR_MAX - (h - 1)) return "Error: w + h is too big";
if (w * h < 1) return "Error: size is less than 1";
/* I might be unable to store clues in my puzzle_size *grid; */
if (full) {
if (w == 2 && h == 2) return "Error: can't create 2x2 puzzles";
if (w == 1 && h == 2) return "Error: can't create 1x2 puzzles";
if (w == 2 && h == 1) return "Error: can't create 2x1 puzzles";
if (w == 1 && h == 1) return "Error: can't create 1x1 puzzles";
}
return NULL;
}
/* Definition: a puzzle instance is _good_ if:
* - it has a unique solution
* - the solver can find this solution without using recursion
* - the solution contains at least one black square
* - the clues are 2-way rotationally symmetric
*
* (the idea being: the generator can not output any _bad_ puzzles)
*
* Theorem: validate_params, when full != 0, discards exactly the set
* of parameters for which there are _no_ good puzzle instances.
*
* Proof: it's an immediate consequence of the five lemmas below.
*
* Observation: not only do puzzles on non-tiny grids exist, the
* generator is pretty fast about coming up with them. On my pre-2004
* desktop box, it generates 100 puzzles on the highest preset (16x11)
* in 8.383 seconds, or <= 0.1 second per puzzle.
*
* ----------------------------------------------------------------------
*
* Lemma: On a 1x1 grid, there are no good puzzles.
*
* Proof: the one square can't be a clue because at least one square
* is black. But both a white square and a black square satisfy the
* solution criteria, so the puzzle is ambiguous (and hence bad).
*
* Lemma: On a 1x2 grid, there are no good puzzles.
*
* Proof: let's name the squares l and r. Note that there can be at
* most one black square, or adjacency is violated. By assumption at
* least one square is black, so let's call that one l. By clue
* symmetry, neither l nor r can be given as a clue, so the puzzle
* instance is blank and thus ambiguous.
*
* Corollary: On a 2x1 grid, there are no good puzzles.
* Proof: rotate the above proof 90 degrees ;-)
*
* ----------------------------------------------------------------------
*
* Lemma: On a 2x2 grid, there are no soluble puzzles with 2-way
* rotational symmetric clues and at least one black square.
*
* Proof: Let's name the squares a, b, c, and d, with a and b on the
* top row, a and c in the left column. Let's consider the case where
* a is black. Then no other square can be black: b and c would both
* violate the adjacency constraint; d would disconnect b from c.
*
* So exactly one square is black (and by 4-way rotation symmetry of
* the 2x2 square, it doesn't matter which one, so let's stick to a).
* By 2-way rotational symmetry of the clues and the rule about not
* painting numbers black, neither a nor d can be clues. A blank
* puzzle would be ambiguous, so one of {b, c} is a clue; by symmetry,
* so is the other one.
*
* It is readily seen that their clue value is 2. But "a is black"
* and "d is black" are both valid solutions in this case, so the
* puzzle is ambiguous (and hence bad).
*
* ----------------------------------------------------------------------
*
* Lemma: On a wxh grid with w, h >= 1 and (w > 2 or h > 2), there is
* at least one good puzzle.
*
* Proof: assume that w > h (otherwise rotate the proof again). Paint
* the top left and bottom right corners black, and fill a clue into
* all the other squares. Present this board to the solver code (or
* player, hypothetically), except with the two black squares as blank
* squares.
*
* For an Nx1 puzzle, observe that every clue is N - 2, and there are
* N - 2 of them in one connected sequence, so the remaining two
* squares can be deduced to be black, which solves the puzzle.
*
* For any other puzzle, let j be a cell in the same row as a black
* cell, but not in the same column (such a cell doesn't exist in 2x3
* puzzles, but we assume w > h and such cells exist in 3x2 puzzles).
*
* Note that the number of cells in axis parallel `rays' going out
* from j exceeds j's clue value by one. Only one such cell is a
* non-clue, so it must be black. Similarly for the other corner (let
* j' be a cell in the same row as the _other_ black cell, but not in
* the same column as _any_ black cell; repeat this argument at j').
*
* This fills the grid and satisfies all clues and the adjacency
* constraint and doesn't paint on top of any clues. All that is left
* to see is connectedness.
*
* Observe that the white cells in each column form a single connected
* `run', and each column contains a white cell adjacent to a white
* cell in the column to the right, if that column exists.
*
* Thus, any cell in the left-most column can reach any other cell:
* first go to the target column (by repeatedly going to the cell in
* your current column that lets you go right, then going right), then
* go up or down to the desired cell.
*
* As reachability is symmetric (in undirected graphs) and transitive,
* any cell can reach any left-column cell, and from there any other
* cell.
*/
/* ----------------------------------------------------------------------
* Game encoding and decoding
*/
#define NDIGITS_BASE '!'
static char *newdesc_encode_game_description(int area, puzzle_size *grid)
{
char *desc = NULL;
int desclen = 0, descsize = 0;
int run, i;
run = 0;
for (i = 0; i <= area; i++) {
int n = (i < area ? grid[i] : -1);
if (!n)
run++;
else {
if (descsize < desclen + 40) {
descsize = desclen * 3 / 2 + 40;
desc = sresize(desc, descsize, char);
}
if (run) {
while (run > 0) {
int c = 'a' - 1 + run;
if (run > 26)
c = 'z';
desc[desclen++] = c;
run -= c - ('a' - 1);
}
} else {
/*
* If there's a number in the very top left or
* bottom right, there's no point putting an
* unnecessary _ before or after it.
*/
if (desclen > 0 && n > 0)
desc[desclen++] = '_';
}
if (n > 0)
desclen += sprintf(desc+desclen, "%d", n);
run = 0;
}
}
desc[desclen] = '\0';
return desc;
}
static const char *validate_desc(const game_params *params, const char *desc)
{
int const n = params->w * params->h;
int squares = 0;
int range = params->w + params->h - 1; /* maximum cell value */
while (*desc && *desc != ',') {
int c = *desc++;
if (c >= 'a' && c <= 'z') {
squares += c - 'a' + 1;
} else if (c == '_') {
/* do nothing */;
} else if (c > '0' && c <= '9') {
int val = atoi(desc-1);
if (val < 1 || val > range)
return "Out-of-range number in game description";
squares++;
while (*desc >= '0' && *desc <= '9')
desc++;
} else
return "Invalid character in game description";
}
if (squares < n)
return "Not enough data to fill grid";
if (squares > n)
return "Too much data to fit in grid";
return NULL;
}
static game_state *new_game(midend *me, const game_params *params,
const char *desc)
{
int i;
const char *p;
int const n = params->w * params->h;
game_state *state = snew(game_state);
me = NULL; /* I don't need it, I shouldn't use it */
state->params = *params; /* structure copy */
state->grid = snewn(n, puzzle_size);
p = desc;
i = 0;
while (i < n && *p) {
int c = *p++;
if (c >= 'a' && c <= 'z') {
int squares = c - 'a' + 1;
while (squares--)
state->grid[i++] = 0;
} else if (c == '_') {
/* do nothing */;
} else if (c > '0' && c <= '9') {
int val = atoi(p-1);
assert(val >= 1 && val <= params->w+params->h-1);
state->grid[i++] = val;
while (*p >= '0' && *p <= '9')
p++;
}
}
assert(i == n);
state->has_cheated = false;
state->was_solved = false;
return state;
}
/* ----------------------------------------------------------------------
* User interface: ascii
*/
static bool game_can_format_as_text_now(const game_params *params)
{
return true;
}
static char *game_text_format(const game_state *state)
{
int r, c, i, w_string, h_string, n_string;
char cellsize;
char *ret, *buf, *gridline;
int const w = state->params.w, h = state->params.h;
cellsize = 0; /* or may be used uninitialized */
for (c = 0; c < w; ++c) {
for (r = 0; r < h; ++r) {
puzzle_size k = state->grid[idx(r, c, w)];
int d;
for (d = 0; k; k /= 10, ++d);
cellsize = max(cellsize, d);
}
}
++cellsize;
w_string = w * cellsize + 2; /* "|%d|%d|...|\n" */
h_string = 2 * h + 1; /* "+--+--+...+\n%s\n+--+--+...+\n" */
n_string = w_string * h_string;
gridline = snewn(w_string + 1, char); /* +1: NUL terminator */
memset(gridline, '-', w_string);
for (c = 0; c <= w; ++c) gridline[c * cellsize] = '+';
gridline[w_string - 1] = '\n';
gridline[w_string - 0] = '\0';
buf = ret = snewn(n_string + 1, char); /* +1: NUL terminator */
for (i = r = 0; r < h; ++r) {
memcpy(buf, gridline, w_string);
buf += w_string;
for (c = 0; c < w; ++c, ++i) {
char ch;
switch (state->grid[i]) {
case BLACK: ch = '#'; break;
case WHITE: ch = '.'; break;
case EMPTY: ch = ' '; break;
default:
buf += sprintf(buf, "|%*d", cellsize - 1, state->grid[i]);
continue;
}
*buf++ = '|';
memset(buf, ch, cellsize - 1);
buf += cellsize - 1;
}
buf += sprintf(buf, "|\n");
}
memcpy(buf, gridline, w_string);
buf += w_string;
assert (buf - ret == n_string);
*buf = '\0';
sfree(gridline);
return ret;
}
/* ----------------------------------------------------------------------
* User interfaces: interactive
*/
struct game_ui {
puzzle_size r, c; /* cursor position */
bool cursor_show;
/*
* User preference option to swap the left and right mouse
* buttons.
*
* The original puzzle submitter thought it would be more useful
* to have the left button turn an empty square into a dotted one,
* on the grounds that that was what you did most often; I (SGT)
* felt instinctively that the left button ought to place black
* squares and the right button place dots, on the grounds that
* that was consistent with many other puzzles in which the left
* button fills in the data used by the solution checker while the
* right button places pencil marks for the user's convenience.
*
* My first beta-player wasn't sure either, so I thought I'd
* pre-emptively put in a 'configuration' mechanism just in case.
*/
bool swap_buttons;
};
static void legacy_prefs_override(struct game_ui *ui_out)
{
static int initialised = false;
static int swap_buttons = -1;
if (!initialised) {
initialised = true;
swap_buttons = getenv_bool("RANGE_SWAP_BUTTONS", -1);
}
if (swap_buttons != -1)
ui_out->swap_buttons = swap_buttons;
}
static game_ui *new_ui(const game_state *state)
{
struct game_ui *ui = snew(game_ui);
ui->r = ui->c = 0;
ui->cursor_show = getenv_bool("PUZZLES_SHOW_CURSOR", false);
ui->swap_buttons = false;
legacy_prefs_override(ui);
return ui;
}
static config_item *get_prefs(game_ui *ui)
{
config_item *ret;
ret = snewn(N_PREF_ITEMS+1, config_item);
ret[PREF_MOUSE_BUTTON_ORDER].name = "Mouse button order";
ret[PREF_MOUSE_BUTTON_ORDER].kw = "left-mouse-button";
ret[PREF_MOUSE_BUTTON_ORDER].type = C_CHOICES;
ret[PREF_MOUSE_BUTTON_ORDER].u.choices.choicenames =
":Left to fill, right to dot:Left to dot, right to fill";
ret[PREF_MOUSE_BUTTON_ORDER].u.choices.choicekws = ":fill:dot";
ret[PREF_MOUSE_BUTTON_ORDER].u.choices.selected = ui->swap_buttons;
ret[N_PREF_ITEMS].name = NULL;
ret[N_PREF_ITEMS].type = C_END;
return ret;
}
static void set_prefs(game_ui *ui, const config_item *cfg)
{
ui->swap_buttons = cfg[PREF_MOUSE_BUTTON_ORDER].u.choices.selected;
}
static void free_ui(game_ui *ui)
{
sfree(ui);
}
static const char *current_key_label(const game_ui *ui,
const game_state *state, int button)
{
int cell;
if (IS_CURSOR_SELECT(button)) {
cell = state->grid[idx(ui->r, ui->c, state->params.w)];
if (!ui->cursor_show || cell > 0) return "";
switch (cell) {
case EMPTY:
return button == CURSOR_SELECT ? "Fill" : "Dot";
case WHITE:
return button == CURSOR_SELECT ? "Empty" : "Fill";
case BLACK:
return button == CURSOR_SELECT ? "Dot" : "Empty";
}
}
return "";
}
typedef struct drawcell {
puzzle_size value;
bool error, cursor, flash;
} drawcell;
struct game_drawstate {
int tilesize;
drawcell *grid;
};
#define TILESIZE (ds->tilesize)
#define BORDER (TILESIZE / 2)
#define COORD(x) ((x) * TILESIZE + BORDER)
#define FROMCOORD(x) (((x) - BORDER) / TILESIZE)
static char *interpret_move(const game_state *state, game_ui *ui,
const game_drawstate *ds,
int x, int y, int button)
{
enum {none, forwards, backwards, hint};
int const w = state->params.w, h = state->params.h;
int r = ui->r, c = ui->c, action = none, cell;
bool shift = button & MOD_SHFT;
button &= ~MOD_SHFT;
if (IS_CURSOR_SELECT(button) && !ui->cursor_show) return NULL;
if (IS_MOUSE_DOWN(button)) {
r = FROMCOORD(y + TILESIZE) - 1; /* or (x, y) < TILESIZE) */
c = FROMCOORD(x + TILESIZE) - 1; /* are considered inside */
if (out_of_bounds(r, c, w, h)) return NULL;
ui->r = r;
ui->c = c;
ui->cursor_show = false;
}
if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
if (ui->swap_buttons) {
if (button == LEFT_BUTTON)
button = RIGHT_BUTTON;
else
button = LEFT_BUTTON;
}
}
switch (button) {
case CURSOR_SELECT : case LEFT_BUTTON: action = backwards; break;
case CURSOR_SELECT2: case RIGHT_BUTTON: action = forwards; break;
case 'h': case 'H' : action = hint; break;
case CURSOR_UP: case CURSOR_DOWN:
case CURSOR_LEFT: case CURSOR_RIGHT:
if (ui->cursor_show) {
int i;
for (i = 0; i < 4 && cursors[i] != button; ++i);
assert (i < 4);
if (shift) {
int pre_r = r, pre_c = c;
bool do_pre, do_post;
cell = state->grid[idx(r, c, state->params.w)];
do_pre = (cell == EMPTY);
if (out_of_bounds(ui->r + dr[i], ui->c + dc[i], w, h)) {
if (do_pre)
return nfmtstr(40, "W,%d,%d", pre_r, pre_c);
else
return NULL;
}
ui->r += dr[i];
ui->c += dc[i];
cell = state->grid[idx(ui->r, ui->c, state->params.w)];
do_post = (cell == EMPTY);
/* (do_pre ? "..." : "") concat (do_post ? "..." : "") */
if (do_pre && do_post)
return nfmtstr(80, "W,%d,%dW,%d,%d",
pre_r, pre_c, ui->r, ui->c);
else if (do_pre)
return nfmtstr(40, "W,%d,%d", pre_r, pre_c);
else if (do_post)
return nfmtstr(40, "W,%d,%d", ui->r, ui->c);
else
return MOVE_UI_UPDATE;
} else if (!out_of_bounds(ui->r + dr[i], ui->c + dc[i], w, h)) {
ui->r += dr[i];
ui->c += dc[i];
}
} else ui->cursor_show = true;
return MOVE_UI_UPDATE;
}
if (action == hint) {
move *end, *buf = snewn(state->params.w * state->params.h,
struct move);
char *ret = NULL;
end = solve_internal(state, buf, DIFF_RECURSION);
if (end != NULL && end > buf) {
ret = nfmtstr(40, "%c,%d,%d",
buf->colour == M_BLACK ? 'B' : 'W',
buf->square.r, buf->square.c);
/* We used to set a flag here in the game_ui indicating
* that the player had used the hint function. I (SGT)
* retired it, on grounds of consistency with other games
* (most of these games will still flash to indicate
* completion if you solved and undid it, so why not if
* you got a hint?) and because the flash is as much about
* checking you got it all right than about congratulating
* you on a job well done. */
}
sfree(buf);
return ret;
}
cell = state->grid[idx(r, c, state->params.w)];
if (cell > 0) return NULL;
if (action == forwards) switch (cell) {
case EMPTY: return nfmtstr(40, "W,%d,%d", r, c);
case WHITE: return nfmtstr(40, "B,%d,%d", r, c);
case BLACK: return nfmtstr(40, "E,%d,%d", r, c);
}
else if (action == backwards) switch (cell) {
case BLACK: return nfmtstr(40, "W,%d,%d", r, c);
case WHITE: return nfmtstr(40, "E,%d,%d", r, c);
case EMPTY: return nfmtstr(40, "B,%d,%d", r, c);
}
return NULL;
}
static bool find_errors(const game_state *state, bool *report)
{
int const w = state->params.w, h = state->params.h, n = w * h;
DSF *dsf;
int r, c, i;
int nblack = 0, any_white_cell = -1;
game_state *dup = dup_game(state);
for (i = r = 0; r < h; ++r)
for (c = 0; c < w; ++c, ++i) {
switch (state->grid[i]) {
case BLACK:
{
int j;
++nblack;
for (j = 0; j < 4; ++j) {
int const rr = r + dr[j], cc = c + dc[j];
if (out_of_bounds(rr, cc, w, h)) continue;
if (state->grid[idx(rr, cc, w)] != BLACK) continue;
if (!report) goto found_error;
report[i] = true;
break;
}
}
break;
default:
{
int j, runs;
for (runs = 1, j = 0; j < 4; ++j) {
int const rr = r + dr[j], cc = c + dc[j];
runs += runlength(rr, cc, dr[j], dc[j], state,
~MASK(BLACK));
}
if (!report) {
if (runs != state->grid[i]) goto found_error;
} else if (runs < state->grid[i]) report[i] = true;
else {
for (runs = 1, j = 0; j < 4; ++j) {
int const rr = r + dr[j], cc = c + dc[j];
runs += runlength(rr, cc, dr[j], dc[j], state,
~(MASK(BLACK) | MASK(EMPTY)));
}
if (runs > state->grid[i]) report[i] = true;
}
}
/* note: fallthrough _into_ these cases */
case EMPTY:
case WHITE: any_white_cell = i;
}
}
/*
* Check that all the white cells form a single connected component.
*/
dsf = dsf_new(n);
for (r = 0; r < h-1; ++r)
for (c = 0; c < w; ++c)
if (state->grid[r*w+c] != BLACK &&
state->grid[(r+1)*w+c] != BLACK)
dsf_merge(dsf, r*w+c, (r+1)*w+c);
for (r = 0; r < h; ++r)
for (c = 0; c < w-1; ++c)
if (state->grid[r*w+c] != BLACK &&
state->grid[r*w+(c+1)] != BLACK)
dsf_merge(dsf, r*w+c, r*w+(c+1));
if (any_white_cell != -1 &&
nblack + dsf_size(dsf, any_white_cell) < n) {
int biggest, canonical;
if (!report) {
dsf_free(dsf);
goto found_error;
}
/*
* Report this error by choosing one component to be the
* canonical one (we pick the largest, arbitrarily
* tie-breaking towards lower array indices) and highlighting
* as an error any square in a different component.
*/
canonical = -1;
biggest = 0;
for (i = 0; i < n; ++i)
if (state->grid[i] != BLACK) {
int size = dsf_size(dsf, i);
if (size > biggest) {
biggest = size;
canonical = dsf_canonify(dsf, i);
}
}
for (i = 0; i < n; ++i)
if (state->grid[i] != BLACK && dsf_canonify(dsf, i) != canonical)
report[i] = true;
}
dsf_free(dsf);
free_game(dup);
return false; /* if report != NULL, this is ignored */
found_error:
free_game(dup);
return true;
}
static game_state *execute_move(const game_state *state, const char *move)
{
signed int r, c, value, nchars, ntok;
signed char what_to_do;
game_state *ret;
assert (move);
ret = dup_game(state);
if (*move == 'S') {
++move;
ret->has_cheated = ret->was_solved = true;
}
for (; *move; move += nchars) {
ntok = sscanf(move, "%c,%d,%d%n", &what_to_do, &r, &c, &nchars);
if (ntok < 3) goto failure;
switch (what_to_do) {
case 'W': value = WHITE; break;
case 'E': value = EMPTY; break;
case 'B': value = BLACK; break;
default: goto failure;
}
if (out_of_bounds(r, c, ret->params.w, ret->params.h)) goto failure;
ret->grid[idx(r, c, ret->params.w)] = value;
}
if (!ret->was_solved)
ret->was_solved = !find_errors(ret, NULL);
return ret;
failure:
free_game(ret);
return NULL;
}
static void game_changed_state(game_ui *ui, const game_state *oldstate,
const game_state *newstate)
{
}
static float game_anim_length(const game_state *oldstate,
const game_state *newstate, int dir, game_ui *ui)
{
return 0.0F;
}
#define FLASH_TIME 0.7F
static float game_flash_length(const game_state *from,
const game_state *to, int dir, game_ui *ui)
{
if (!from->was_solved && to->was_solved && !to->has_cheated)
return FLASH_TIME;
return 0.0F;
}
static void game_get_cursor_location(const game_ui *ui,
const game_drawstate *ds,
const game_state *state,
const game_params *params,
int *x, int *y, int *w, int *h)
{
if(ui->cursor_show) {
*x = BORDER + TILESIZE * ui->c;
*y = BORDER + TILESIZE * ui->r;
*w = *h = TILESIZE;
}
}
static int game_status(const game_state *state)
{
return state->was_solved ? +1 : 0;
}
/* ----------------------------------------------------------------------
* Drawing routines.
*/
#define PREFERRED_TILE_SIZE 32
enum {
COL_BACKGROUND = 0,
COL_GRID,
COL_BLACK = COL_GRID,
COL_TEXT = COL_GRID,
COL_USER = COL_GRID,
COL_ERROR,
COL_LOWLIGHT,
COL_CURSOR = COL_LOWLIGHT,
NCOLOURS
};
static void game_compute_size(const game_params *params, int tilesize,
const game_ui *ui, int *x, int *y)
{
*x = (1 + params->w) * tilesize;
*y = (1 + params->h) * tilesize;
}
static void game_set_size(drawing *dr, game_drawstate *ds,
const game_params *params, int tilesize)
{
ds->tilesize = tilesize;
}
#define COLOUR(ret, i, r, g, b) \
((ret[3*(i)+0] = (r)), (ret[3*(i)+1] = (g)), (ret[3*(i)+2] = (b)))
static float *game_colours(frontend *fe, int *ncolours)
{
float *ret = snewn(3 * NCOLOURS, float);
game_mkhighlight(fe, ret, COL_BACKGROUND, -1, COL_LOWLIGHT);
COLOUR(ret, COL_GRID, 0.0F, 0.0F, 0.0F);
COLOUR(ret, COL_ERROR, 1.0F, 0.0F, 0.0F);
*ncolours = NCOLOURS;
return ret;
}
static drawcell makecell(puzzle_size value,
bool error, bool cursor, bool flash)
{
drawcell ret;
setmember(ret, value);
setmember(ret, error);
setmember(ret, cursor);
setmember(ret, flash);
return ret;
}
static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state)
{
int const w = state->params.w, h = state->params.h, n = w * h;
struct game_drawstate *ds = snew(struct game_drawstate);
int i;
ds->tilesize = 0;
ds->grid = snewn(n, drawcell);
for (i = 0; i < n; ++i)
ds->grid[i] = makecell(w + h, false, false, false);
return ds;
}
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
{
sfree(ds->grid);
sfree(ds);
}
#define cmpmember(a, b, field) ((a) . field == (b) . field)
static bool cell_eq(drawcell a, drawcell b)
{
return
cmpmember(a, b, value) &&
cmpmember(a, b, error) &&
cmpmember(a, b, cursor) &&
cmpmember(a, b, flash);
}
static void draw_cell(drawing *dr, game_drawstate *ds, int r, int c,
drawcell cell);
static void game_redraw(drawing *dr, game_drawstate *ds,
const game_state *oldstate, const game_state *state,
int dir, const game_ui *ui,
float animtime, float flashtime)
{
int const w = state->params.w, h = state->params.h, n = w * h;
int const flash = ((int) (flashtime * 5 / FLASH_TIME)) % 2;
int r, c, i;
bool *errors = snewn(n, bool);
memset(errors, 0, n * sizeof (bool));
find_errors(state, errors);
assert (oldstate == NULL); /* only happens if animating moves */
for (i = r = 0; r < h; ++r) {
for (c = 0; c < w; ++c, ++i) {
drawcell cell = makecell(state->grid[i], errors[i], false, flash);
if (r == ui->r && c == ui->c && ui->cursor_show)
cell.cursor = true;
if (!cell_eq(cell, ds->grid[i])) {
draw_cell(dr, ds, r, c, cell);
ds->grid[i] = cell;
}
}
}
sfree(errors);
}
static void draw_cell(drawing *draw, game_drawstate *ds, int r, int c,
drawcell cell)
{
int const ts = ds->tilesize;
int const y = BORDER + ts * r, x = BORDER + ts * c;
int const tx = x + (ts / 2), ty = y + (ts / 2);
int const dotsz = (ds->tilesize + 9) / 10;
int const colour = (cell.value == BLACK ?
cell.error ? COL_ERROR : COL_BLACK :
cell.flash || cell.cursor ?
COL_LOWLIGHT : COL_BACKGROUND);
draw_rect_outline(draw, x, y, ts + 1, ts + 1, COL_GRID);
draw_rect (draw, x + 1, y + 1, ts - 1, ts - 1, colour);
if (cell.error)
draw_rect_outline(draw, x + 1, y + 1, ts - 1, ts - 1, COL_ERROR);
switch (cell.value) {
case WHITE: draw_rect(draw, tx - dotsz / 2, ty - dotsz / 2, dotsz, dotsz,
cell.error ? COL_ERROR : COL_USER);
case BLACK: case EMPTY: break;
default:
{
int const colour = (cell.error ? COL_ERROR : COL_GRID);
char *msg = nfmtstr(10, "%d", cell.value);
draw_text(draw, tx, ty, FONT_VARIABLE, ts * 3 / 5,
ALIGN_VCENTRE | ALIGN_HCENTRE, colour, msg);
sfree(msg);
}
}
draw_update(draw, x, y, ts + 1, ts + 1);
}
/* ----------------------------------------------------------------------
* User interface: print
*/
static void game_print_size(const game_params *params, const game_ui *ui,
float *x, float *y)
{
int print_width, print_height;
game_compute_size(params, 800, ui, &print_width, &print_height);
*x = print_width / 100.0F;
*y = print_height / 100.0F;
}
static void game_print(drawing *dr, const game_state *state, const game_ui *ui,
int tilesize)
{
int const w = state->params.w, h = state->params.h;
game_drawstate ds_obj, *ds = &ds_obj;
int r, c, i, colour;
ds->tilesize = tilesize;
colour = print_mono_colour(dr, 1); assert(colour == COL_BACKGROUND);
colour = print_mono_colour(dr, 0); assert(colour == COL_GRID);
colour = print_mono_colour(dr, 1); assert(colour == COL_ERROR);
colour = print_mono_colour(dr, 0); assert(colour == COL_LOWLIGHT);
colour = print_mono_colour(dr, 0); assert(colour == NCOLOURS);
for (i = r = 0; r < h; ++r)
for (c = 0; c < w; ++c, ++i)
draw_cell(dr, ds, r, c,
makecell(state->grid[i], false, false, false));
print_line_width(dr, 3 * tilesize / 40);
draw_rect_outline(dr, BORDER, BORDER, w*TILESIZE, h*TILESIZE, COL_GRID);
}
/* And that's about it ;-) **************************************************/
#ifdef COMBINED
#define thegame range
#endif
struct game const thegame = {
"Range", "games.range", "range",
default_params,
game_fetch_preset, NULL,
decode_params,
encode_params,
free_params,
dup_params,
true, game_configure, custom_params,
validate_params,
new_game_desc,
validate_desc,
new_game,
dup_game,
free_game,
true, solve_game,
true, game_can_format_as_text_now, game_text_format,
get_prefs, set_prefs,
new_ui,
free_ui,
NULL, /* encode_ui */
NULL, /* decode_ui */
NULL, /* game_request_keys */
game_changed_state,
current_key_label,
interpret_move,
execute_move,
PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
game_colours,
game_new_drawstate,
game_free_drawstate,
game_redraw,
game_anim_length,
game_flash_length,
game_get_cursor_location,
game_status,
true, false, game_print_size, game_print,
false, /* wants_statusbar */
false, NULL, /* timing_state */
0, /* flags */
};