mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-21 16:05:44 -07:00
Files

This is the main bulk of this boolification work, but although it's making the largest actual change, it should also be the least disruptive to anyone interacting with this code base downstream of me, because it doesn't modify any interface between modules: all the inter-module APIs were updated one by one in the previous commits. This just cleans up the code within each individual source file to use bool in place of int where I think that makes things clearer.
193 lines
5.1 KiB
C
193 lines
5.1 KiB
C
/*
|
|
* dsf.c: some functions to handle a disjoint set forest,
|
|
* which is a data structure useful in any solver which has to
|
|
* worry about avoiding closed loops.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
|
|
#include "puzzles.h"
|
|
|
|
/*void print_dsf(int *dsf, int size)
|
|
{
|
|
int *printed_elements = snewn(size, int);
|
|
int *equal_elements = snewn(size, int);
|
|
int *inverse_elements = snewn(size, int);
|
|
int printed_count = 0, equal_count, inverse_count;
|
|
int i, n;
|
|
bool inverse;
|
|
|
|
memset(printed_elements, -1, sizeof(int) * size);
|
|
|
|
while (1) {
|
|
equal_count = 0;
|
|
inverse_count = 0;
|
|
for (i = 0; i < size; ++i) {
|
|
if (!memchr(printed_elements, i, sizeof(int) * size))
|
|
break;
|
|
}
|
|
if (i == size)
|
|
goto done;
|
|
|
|
i = dsf_canonify(dsf, i);
|
|
|
|
for (n = 0; n < size; ++n) {
|
|
if (edsf_canonify(dsf, n, &inverse) == i) {
|
|
if (inverse)
|
|
inverse_elements[inverse_count++] = n;
|
|
else
|
|
equal_elements[equal_count++] = n;
|
|
}
|
|
}
|
|
|
|
for (n = 0; n < equal_count; ++n) {
|
|
fprintf(stderr, "%d ", equal_elements[n]);
|
|
printed_elements[printed_count++] = equal_elements[n];
|
|
}
|
|
if (inverse_count) {
|
|
fprintf(stderr, "!= ");
|
|
for (n = 0; n < inverse_count; ++n) {
|
|
fprintf(stderr, "%d ", inverse_elements[n]);
|
|
printed_elements[printed_count++] = inverse_elements[n];
|
|
}
|
|
}
|
|
fprintf(stderr, "\n");
|
|
}
|
|
done:
|
|
|
|
sfree(printed_elements);
|
|
sfree(equal_elements);
|
|
sfree(inverse_elements);
|
|
}*/
|
|
|
|
void dsf_init(int *dsf, int size)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < size; i++) dsf[i] = 6;
|
|
/* Bottom bit of each element of this array stores whether that
|
|
* element is opposite to its parent, which starts off as
|
|
* false. Second bit of each element stores whether that element
|
|
* is the root of its tree or not. If it's not the root, the
|
|
* remaining 30 bits are the parent, otherwise the remaining 30
|
|
* bits are the number of elements in the tree. */
|
|
}
|
|
|
|
int *snew_dsf(int size)
|
|
{
|
|
int *ret;
|
|
|
|
ret = snewn(size, int);
|
|
dsf_init(ret, size);
|
|
|
|
/*print_dsf(ret, size); */
|
|
|
|
return ret;
|
|
}
|
|
|
|
int dsf_canonify(int *dsf, int index)
|
|
{
|
|
return edsf_canonify(dsf, index, NULL);
|
|
}
|
|
|
|
void dsf_merge(int *dsf, int v1, int v2)
|
|
{
|
|
edsf_merge(dsf, v1, v2, false);
|
|
}
|
|
|
|
int dsf_size(int *dsf, int index) {
|
|
return dsf[dsf_canonify(dsf, index)] >> 2;
|
|
}
|
|
|
|
int edsf_canonify(int *dsf, int index, bool *inverse_return)
|
|
{
|
|
int start_index = index, canonical_index;
|
|
bool inverse = false;
|
|
|
|
/* fprintf(stderr, "dsf = %p\n", dsf); */
|
|
/* fprintf(stderr, "Canonify %2d\n", index); */
|
|
|
|
assert(index >= 0);
|
|
|
|
/* Find the index of the canonical element of the 'equivalence class' of
|
|
* which start_index is a member, and figure out whether start_index is the
|
|
* same as or inverse to that. */
|
|
while ((dsf[index] & 2) == 0) {
|
|
inverse ^= (dsf[index] & 1);
|
|
index = dsf[index] >> 2;
|
|
/* fprintf(stderr, "index = %2d, ", index); */
|
|
/* fprintf(stderr, "inverse = %d\n", inverse); */
|
|
}
|
|
canonical_index = index;
|
|
|
|
if (inverse_return)
|
|
*inverse_return = inverse;
|
|
|
|
/* Update every member of this 'equivalence class' to point directly at the
|
|
* canonical member. */
|
|
index = start_index;
|
|
while (index != canonical_index) {
|
|
int nextindex = dsf[index] >> 2;
|
|
bool nextinverse = inverse ^ (dsf[index] & 1);
|
|
dsf[index] = (canonical_index << 2) | inverse;
|
|
inverse = nextinverse;
|
|
index = nextindex;
|
|
}
|
|
|
|
assert(!inverse);
|
|
|
|
/* fprintf(stderr, "Return %2d\n", index); */
|
|
|
|
return index;
|
|
}
|
|
|
|
void edsf_merge(int *dsf, int v1, int v2, bool inverse)
|
|
{
|
|
bool i1, i2;
|
|
|
|
/* fprintf(stderr, "dsf = %p\n", dsf); */
|
|
/* fprintf(stderr, "Merge [%2d,%2d], %d\n", v1, v2, inverse); */
|
|
|
|
v1 = edsf_canonify(dsf, v1, &i1);
|
|
assert(dsf[v1] & 2);
|
|
inverse ^= i1;
|
|
v2 = edsf_canonify(dsf, v2, &i2);
|
|
assert(dsf[v2] & 2);
|
|
inverse ^= i2;
|
|
|
|
/* fprintf(stderr, "Doing [%2d,%2d], %d\n", v1, v2, inverse); */
|
|
|
|
if (v1 == v2)
|
|
assert(!inverse);
|
|
else {
|
|
/*
|
|
* We always make the smaller of v1 and v2 the new canonical
|
|
* element. This ensures that the canonical element of any
|
|
* class in this structure is always the first element in
|
|
* it. 'Keen' depends critically on this property.
|
|
*
|
|
* (Jonas Koelker previously had this code choosing which
|
|
* way round to connect the trees by examining the sizes of
|
|
* the classes being merged, so that the root of the
|
|
* larger-sized class became the new root. This gives better
|
|
* asymptotic performance, but I've changed it to do it this
|
|
* way because I like having a deterministic canonical
|
|
* element.)
|
|
*/
|
|
if (v1 > v2) {
|
|
int v3 = v1;
|
|
v1 = v2;
|
|
v2 = v3;
|
|
}
|
|
dsf[v1] += (dsf[v2] >> 2) << 2;
|
|
dsf[v2] = (v1 << 2) | inverse;
|
|
}
|
|
|
|
v2 = edsf_canonify(dsf, v2, &i2);
|
|
assert(v2 == v1);
|
|
assert(i2 == inverse);
|
|
|
|
/* fprintf(stderr, "dsf[%2d] = %2d\n", v2, dsf[v2]); */
|
|
}
|