mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-20 07:31:30 -07:00
Files

After Ben fixed all the unwanted global functions by using gcc's -Wmissing-declarations to spot any that were not predeclared, I remembered that clang has -Wmissing-variable-declarations, which does the same job for global objects. Enabled it in -DSTRICT=ON, and made the code clean under it. Mostly this was just a matter of sticking 'static' on the front of things. One variable was outright removed ('verbose' in signpost.c) because after I made it static clang was then able to spot that it was also unused. The more interesting cases were the ones where declarations had to be _added_ to header files. In particular, in COMBINED builds, puzzles.h now arranges to have predeclared each 'game' structure defined by a puzzle backend. Also there's a new tiny header file gtk.h, containing the declarations of xpm_icons and n_xpm_icons which are exported by each puzzle's autogenerated icon source file and by no-icon.c. Happily even the real XPM icon files were generated by our own Perl script rather than being raw xpm output from ImageMagick, so there was no difficulty adding the corresponding #include in there.
3394 lines
91 KiB
C
3394 lines
91 KiB
C
/*
|
|
* map.c: Game involving four-colouring a map.
|
|
*/
|
|
|
|
/*
|
|
* TODO:
|
|
*
|
|
* - clue marking
|
|
* - better four-colouring algorithm?
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <ctype.h>
|
|
#include <limits.h>
|
|
#include <math.h>
|
|
|
|
#include "puzzles.h"
|
|
|
|
/*
|
|
* In standalone solver mode, `verbose' is a variable which can be
|
|
* set by command-line option; in debugging mode it's simply always
|
|
* true.
|
|
*/
|
|
#if defined STANDALONE_SOLVER
|
|
#define SOLVER_DIAGNOSTICS
|
|
static bool verbose = false;
|
|
#elif defined SOLVER_DIAGNOSTICS
|
|
#define verbose true
|
|
#endif
|
|
|
|
/*
|
|
* I don't seriously anticipate wanting to change the number of
|
|
* colours used in this game, but it doesn't cost much to use a
|
|
* #define just in case :-)
|
|
*/
|
|
#define FOUR 4
|
|
#define THREE (FOUR-1)
|
|
#define FIVE (FOUR+1)
|
|
#define SIX (FOUR+2)
|
|
|
|
/*
|
|
* Ghastly run-time configuration option, just for Gareth (again).
|
|
*/
|
|
static int flash_type = -1;
|
|
static float flash_length;
|
|
|
|
/*
|
|
* Difficulty levels. I do some macro ickery here to ensure that my
|
|
* enum and the various forms of my name list always match up.
|
|
*/
|
|
#define DIFFLIST(A) \
|
|
A(EASY,Easy,e) \
|
|
A(NORMAL,Normal,n) \
|
|
A(HARD,Hard,h) \
|
|
A(RECURSE,Unreasonable,u)
|
|
#define ENUM(upper,title,lower) DIFF_ ## upper,
|
|
#define TITLE(upper,title,lower) #title,
|
|
#define ENCODE(upper,title,lower) #lower
|
|
#define CONFIG(upper,title,lower) ":" #title
|
|
enum { DIFFLIST(ENUM) DIFFCOUNT };
|
|
static char const *const map_diffnames[] = { DIFFLIST(TITLE) };
|
|
static char const map_diffchars[] = DIFFLIST(ENCODE);
|
|
#define DIFFCONFIG DIFFLIST(CONFIG)
|
|
|
|
enum { TE, BE, LE, RE }; /* top/bottom/left/right edges */
|
|
|
|
enum {
|
|
COL_BACKGROUND,
|
|
COL_GRID,
|
|
COL_0, COL_1, COL_2, COL_3,
|
|
COL_ERROR, COL_ERRTEXT,
|
|
NCOLOURS
|
|
};
|
|
|
|
struct game_params {
|
|
int w, h, n, diff;
|
|
};
|
|
|
|
struct map {
|
|
int refcount;
|
|
int *map;
|
|
int *graph;
|
|
int n;
|
|
int ngraph;
|
|
bool *immutable;
|
|
int *edgex, *edgey; /* position of a point on each edge */
|
|
int *regionx, *regiony; /* position of a point in each region */
|
|
};
|
|
|
|
struct game_state {
|
|
game_params p;
|
|
struct map *map;
|
|
int *colouring, *pencil;
|
|
bool completed, cheated;
|
|
};
|
|
|
|
static game_params *default_params(void)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
#ifdef PORTRAIT_SCREEN
|
|
ret->w = 16;
|
|
ret->h = 18;
|
|
#else
|
|
ret->w = 20;
|
|
ret->h = 15;
|
|
#endif
|
|
ret->n = 30;
|
|
ret->diff = DIFF_NORMAL;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct game_params map_presets[] = {
|
|
#ifdef PORTRAIT_SCREEN
|
|
{16, 18, 30, DIFF_EASY},
|
|
{16, 18, 30, DIFF_NORMAL},
|
|
{16, 18, 30, DIFF_HARD},
|
|
{16, 18, 30, DIFF_RECURSE},
|
|
{25, 30, 75, DIFF_NORMAL},
|
|
{25, 30, 75, DIFF_HARD},
|
|
#else
|
|
{20, 15, 30, DIFF_EASY},
|
|
{20, 15, 30, DIFF_NORMAL},
|
|
{20, 15, 30, DIFF_HARD},
|
|
{20, 15, 30, DIFF_RECURSE},
|
|
{30, 25, 75, DIFF_NORMAL},
|
|
{30, 25, 75, DIFF_HARD},
|
|
#endif
|
|
};
|
|
|
|
static bool game_fetch_preset(int i, char **name, game_params **params)
|
|
{
|
|
game_params *ret;
|
|
char str[80];
|
|
|
|
if (i < 0 || i >= lenof(map_presets))
|
|
return false;
|
|
|
|
ret = snew(game_params);
|
|
*ret = map_presets[i];
|
|
|
|
sprintf(str, "%dx%d, %d regions, %s", ret->w, ret->h, ret->n,
|
|
map_diffnames[ret->diff]);
|
|
|
|
*name = dupstr(str);
|
|
*params = ret;
|
|
return true;
|
|
}
|
|
|
|
static void free_params(game_params *params)
|
|
{
|
|
sfree(params);
|
|
}
|
|
|
|
static game_params *dup_params(const game_params *params)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
*ret = *params; /* structure copy */
|
|
return ret;
|
|
}
|
|
|
|
static void decode_params(game_params *params, char const *string)
|
|
{
|
|
char const *p = string;
|
|
|
|
params->w = atoi(p);
|
|
while (*p && isdigit((unsigned char)*p)) p++;
|
|
if (*p == 'x') {
|
|
p++;
|
|
params->h = atoi(p);
|
|
while (*p && isdigit((unsigned char)*p)) p++;
|
|
} else {
|
|
params->h = params->w;
|
|
}
|
|
if (*p == 'n') {
|
|
p++;
|
|
params->n = atoi(p);
|
|
while (*p && (*p == '.' || isdigit((unsigned char)*p))) p++;
|
|
} else {
|
|
if (params->h > 0 && params->w > 0 &&
|
|
params->w <= INT_MAX / params->h)
|
|
params->n = params->w * params->h / 8;
|
|
}
|
|
if (*p == 'd') {
|
|
int i;
|
|
p++;
|
|
for (i = 0; i < DIFFCOUNT; i++)
|
|
if (*p == map_diffchars[i])
|
|
params->diff = i;
|
|
if (*p) p++;
|
|
}
|
|
}
|
|
|
|
static char *encode_params(const game_params *params, bool full)
|
|
{
|
|
char ret[400];
|
|
|
|
sprintf(ret, "%dx%dn%d", params->w, params->h, params->n);
|
|
if (full)
|
|
sprintf(ret + strlen(ret), "d%c", map_diffchars[params->diff]);
|
|
|
|
return dupstr(ret);
|
|
}
|
|
|
|
static config_item *game_configure(const game_params *params)
|
|
{
|
|
config_item *ret;
|
|
char buf[80];
|
|
|
|
ret = snewn(5, config_item);
|
|
|
|
ret[0].name = "Width";
|
|
ret[0].type = C_STRING;
|
|
sprintf(buf, "%d", params->w);
|
|
ret[0].u.string.sval = dupstr(buf);
|
|
|
|
ret[1].name = "Height";
|
|
ret[1].type = C_STRING;
|
|
sprintf(buf, "%d", params->h);
|
|
ret[1].u.string.sval = dupstr(buf);
|
|
|
|
ret[2].name = "Regions";
|
|
ret[2].type = C_STRING;
|
|
sprintf(buf, "%d", params->n);
|
|
ret[2].u.string.sval = dupstr(buf);
|
|
|
|
ret[3].name = "Difficulty";
|
|
ret[3].type = C_CHOICES;
|
|
ret[3].u.choices.choicenames = DIFFCONFIG;
|
|
ret[3].u.choices.selected = params->diff;
|
|
|
|
ret[4].name = NULL;
|
|
ret[4].type = C_END;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static game_params *custom_params(const config_item *cfg)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->w = atoi(cfg[0].u.string.sval);
|
|
ret->h = atoi(cfg[1].u.string.sval);
|
|
ret->n = atoi(cfg[2].u.string.sval);
|
|
ret->diff = cfg[3].u.choices.selected;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const char *validate_params(const game_params *params, bool full)
|
|
{
|
|
if (params->w < 2 || params->h < 2)
|
|
return "Width and height must be at least two";
|
|
if (params->w > INT_MAX / params->h)
|
|
return "Width times height must not be unreasonably large";
|
|
if (params->n < 5)
|
|
return "Must have at least five regions";
|
|
if (params->n > params->w * params->h)
|
|
return "Too many regions to fit in grid";
|
|
return NULL;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Cumulative frequency table functions.
|
|
*/
|
|
|
|
/*
|
|
* Initialise a cumulative frequency table. (Hardly worth writing
|
|
* this function; all it does is to initialise everything in the
|
|
* array to zero.)
|
|
*/
|
|
static void cf_init(int *table, int n)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < n; i++)
|
|
table[i] = 0;
|
|
}
|
|
|
|
/*
|
|
* Increment the count of symbol `sym' by `count'.
|
|
*/
|
|
static void cf_add(int *table, int n, int sym, int count)
|
|
{
|
|
int bit;
|
|
|
|
bit = 1;
|
|
while (sym != 0) {
|
|
if (sym & bit) {
|
|
table[sym] += count;
|
|
sym &= ~bit;
|
|
}
|
|
bit <<= 1;
|
|
}
|
|
|
|
table[0] += count;
|
|
}
|
|
|
|
/*
|
|
* Cumulative frequency lookup: return the total count of symbols
|
|
* with value less than `sym'.
|
|
*/
|
|
static int cf_clookup(int *table, int n, int sym)
|
|
{
|
|
int bit, index, limit, count;
|
|
|
|
if (sym == 0)
|
|
return 0;
|
|
|
|
assert(0 < sym && sym <= n);
|
|
|
|
count = table[0]; /* start with the whole table size */
|
|
|
|
bit = 1;
|
|
while (bit < n)
|
|
bit <<= 1;
|
|
|
|
limit = n;
|
|
|
|
while (bit > 0) {
|
|
/*
|
|
* Find the least number with its lowest set bit in this
|
|
* position which is greater than or equal to sym.
|
|
*/
|
|
index = ((sym + bit - 1) &~ (bit * 2 - 1)) + bit;
|
|
|
|
if (index < limit) {
|
|
count -= table[index];
|
|
limit = index;
|
|
}
|
|
|
|
bit >>= 1;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* Single frequency lookup: return the count of symbol `sym'.
|
|
*/
|
|
static int cf_slookup(int *table, int n, int sym)
|
|
{
|
|
int count, bit;
|
|
|
|
assert(0 <= sym && sym < n);
|
|
|
|
count = table[sym];
|
|
|
|
for (bit = 1; sym+bit < n && !(sym & bit); bit <<= 1)
|
|
count -= table[sym+bit];
|
|
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* Return the largest symbol index such that the cumulative
|
|
* frequency up to that symbol is less than _or equal to_ count.
|
|
*/
|
|
static int cf_whichsym(int *table, int n, int count) {
|
|
int bit, sym, top;
|
|
|
|
assert(count >= 0 && count < table[0]);
|
|
|
|
bit = 1;
|
|
while (bit < n)
|
|
bit <<= 1;
|
|
|
|
sym = 0;
|
|
top = table[0];
|
|
|
|
while (bit > 0) {
|
|
if (sym+bit < n) {
|
|
if (count >= top - table[sym+bit])
|
|
sym += bit;
|
|
else
|
|
top -= table[sym+bit];
|
|
}
|
|
|
|
bit >>= 1;
|
|
}
|
|
|
|
return sym;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Map generation.
|
|
*
|
|
* FIXME: this isn't entirely optimal at present, because it
|
|
* inherently prioritises growing the largest region since there
|
|
* are more squares adjacent to it. This acts as a destabilising
|
|
* influence leading to a few large regions and mostly small ones.
|
|
* It might be better to do it some other way.
|
|
*/
|
|
|
|
#define WEIGHT_INCREASED 2 /* for increased perimeter */
|
|
#define WEIGHT_DECREASED 4 /* for decreased perimeter */
|
|
#define WEIGHT_UNCHANGED 3 /* for unchanged perimeter */
|
|
|
|
/*
|
|
* Look at a square and decide which colours can be extended into
|
|
* it.
|
|
*
|
|
* If called with index < 0, it adds together one of
|
|
* WEIGHT_INCREASED, WEIGHT_DECREASED or WEIGHT_UNCHANGED for each
|
|
* colour that has a valid extension (according to the effect that
|
|
* it would have on the perimeter of the region being extended) and
|
|
* returns the overall total.
|
|
*
|
|
* If called with index >= 0, it returns one of the possible
|
|
* colours depending on the value of index, in such a way that the
|
|
* number of possible inputs which would give rise to a given
|
|
* return value correspond to the weight of that value.
|
|
*/
|
|
static int extend_options(int w, int h, int n, int *map,
|
|
int x, int y, int index)
|
|
{
|
|
int c, i, dx, dy;
|
|
int col[8];
|
|
int total = 0;
|
|
|
|
if (map[y*w+x] >= 0) {
|
|
assert(index < 0);
|
|
return 0; /* can't do this square at all */
|
|
}
|
|
|
|
/*
|
|
* Fetch the eight neighbours of this square, in order around
|
|
* the square.
|
|
*/
|
|
for (dy = -1; dy <= +1; dy++)
|
|
for (dx = -1; dx <= +1; dx++) {
|
|
int index = (dy < 0 ? 6-dx : dy > 0 ? 2+dx : 2*(1+dx));
|
|
if (x+dx >= 0 && x+dx < w && y+dy >= 0 && y+dy < h)
|
|
col[index] = map[(y+dy)*w+(x+dx)];
|
|
else
|
|
col[index] = -1;
|
|
}
|
|
|
|
/*
|
|
* Iterate over each colour that might be feasible.
|
|
*
|
|
* FIXME: this routine currently has O(n) running time. We
|
|
* could turn it into O(FOUR) by only bothering to iterate over
|
|
* the colours mentioned in the four neighbouring squares.
|
|
*/
|
|
|
|
for (c = 0; c < n; c++) {
|
|
int count, neighbours, runs;
|
|
|
|
/*
|
|
* One of the even indices of col (representing the
|
|
* orthogonal neighbours of this square) must be equal to
|
|
* c, or else this square is not adjacent to region c and
|
|
* obviously cannot become an extension of it at this time.
|
|
*/
|
|
neighbours = 0;
|
|
for (i = 0; i < 8; i += 2)
|
|
if (col[i] == c)
|
|
neighbours++;
|
|
if (!neighbours)
|
|
continue;
|
|
|
|
/*
|
|
* Now we know this square is adjacent to region c. The
|
|
* next question is, would extending it cause the region to
|
|
* become non-simply-connected? If so, we mustn't do it.
|
|
*
|
|
* We determine this by looking around col to see if we can
|
|
* find more than one separate run of colour c.
|
|
*/
|
|
runs = 0;
|
|
for (i = 0; i < 8; i++)
|
|
if (col[i] == c && col[(i+1) & 7] != c)
|
|
runs++;
|
|
if (runs > 1)
|
|
continue;
|
|
|
|
assert(runs == 1);
|
|
|
|
/*
|
|
* This square is a possibility. Determine its effect on
|
|
* the region's perimeter (computed from the number of
|
|
* orthogonal neighbours - 1 means a perimeter increase, 3
|
|
* a decrease, 2 no change; 4 is impossible because the
|
|
* region would already not be simply connected) and we're
|
|
* done.
|
|
*/
|
|
assert(neighbours > 0 && neighbours < 4);
|
|
count = (neighbours == 1 ? WEIGHT_INCREASED :
|
|
neighbours == 2 ? WEIGHT_UNCHANGED : WEIGHT_DECREASED);
|
|
|
|
total += count;
|
|
if (index >= 0 && index < count)
|
|
return c;
|
|
else
|
|
index -= count;
|
|
}
|
|
|
|
assert(index < 0);
|
|
|
|
return total;
|
|
}
|
|
|
|
static void genmap(int w, int h, int n, int *map, random_state *rs)
|
|
{
|
|
int wh = w*h;
|
|
int x, y, i, k;
|
|
int *tmp;
|
|
|
|
assert(n <= wh);
|
|
tmp = snewn(wh, int);
|
|
|
|
/*
|
|
* Clear the map, and set up `tmp' as a list of grid indices.
|
|
*/
|
|
for (i = 0; i < wh; i++) {
|
|
map[i] = -1;
|
|
tmp[i] = i;
|
|
}
|
|
|
|
/*
|
|
* Place the region seeds by selecting n members from `tmp'.
|
|
*/
|
|
k = wh;
|
|
for (i = 0; i < n; i++) {
|
|
int j = random_upto(rs, k);
|
|
map[tmp[j]] = i;
|
|
tmp[j] = tmp[--k];
|
|
}
|
|
|
|
/*
|
|
* Re-initialise `tmp' as a cumulative frequency table. This
|
|
* will store the number of possible region colours we can
|
|
* extend into each square.
|
|
*/
|
|
cf_init(tmp, wh);
|
|
|
|
/*
|
|
* Go through the grid and set up the initial cumulative
|
|
* frequencies.
|
|
*/
|
|
for (y = 0; y < h; y++)
|
|
for (x = 0; x < w; x++)
|
|
cf_add(tmp, wh, y*w+x,
|
|
extend_options(w, h, n, map, x, y, -1));
|
|
|
|
/*
|
|
* Now repeatedly choose a square we can extend a region into,
|
|
* and do so.
|
|
*/
|
|
while (tmp[0] > 0) {
|
|
int k = random_upto(rs, tmp[0]);
|
|
int sq;
|
|
int colour;
|
|
int xx, yy;
|
|
|
|
sq = cf_whichsym(tmp, wh, k);
|
|
k -= cf_clookup(tmp, wh, sq);
|
|
x = sq % w;
|
|
y = sq / w;
|
|
colour = extend_options(w, h, n, map, x, y, k);
|
|
|
|
map[sq] = colour;
|
|
|
|
/*
|
|
* Re-scan the nine cells around the one we've just
|
|
* modified.
|
|
*/
|
|
for (yy = max(y-1, 0); yy < min(y+2, h); yy++)
|
|
for (xx = max(x-1, 0); xx < min(x+2, w); xx++) {
|
|
cf_add(tmp, wh, yy*w+xx,
|
|
-cf_slookup(tmp, wh, yy*w+xx) +
|
|
extend_options(w, h, n, map, xx, yy, -1));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Finally, go through and normalise the region labels into
|
|
* order, meaning that indistinguishable maps are actually
|
|
* identical.
|
|
*/
|
|
for (i = 0; i < n; i++)
|
|
tmp[i] = -1;
|
|
k = 0;
|
|
for (i = 0; i < wh; i++) {
|
|
assert(map[i] >= 0);
|
|
if (tmp[map[i]] < 0)
|
|
tmp[map[i]] = k++;
|
|
map[i] = tmp[map[i]];
|
|
}
|
|
|
|
sfree(tmp);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Functions to handle graphs.
|
|
*/
|
|
|
|
/*
|
|
* Having got a map in a square grid, convert it into a graph
|
|
* representation.
|
|
*/
|
|
static int gengraph(int w, int h, int n, int *map, int *graph)
|
|
{
|
|
int i, j, x, y;
|
|
|
|
/*
|
|
* Start by setting the graph up as an adjacency matrix. We'll
|
|
* turn it into a list later.
|
|
*/
|
|
for (i = 0; i < n*n; i++)
|
|
graph[i] = 0;
|
|
|
|
/*
|
|
* Iterate over the map looking for all adjacencies.
|
|
*/
|
|
for (y = 0; y < h; y++)
|
|
for (x = 0; x < w; x++) {
|
|
int v, vx, vy;
|
|
v = map[y*w+x];
|
|
if (x+1 < w && (vx = map[y*w+(x+1)]) != v)
|
|
graph[v*n+vx] = graph[vx*n+v] = 1;
|
|
if (y+1 < h && (vy = map[(y+1)*w+x]) != v)
|
|
graph[v*n+vy] = graph[vy*n+v] = 1;
|
|
}
|
|
|
|
/*
|
|
* Turn the matrix into a list.
|
|
*/
|
|
for (i = j = 0; i < n*n; i++)
|
|
if (graph[i])
|
|
graph[j++] = i;
|
|
|
|
return j;
|
|
}
|
|
|
|
static int graph_edge_index(int *graph, int n, int ngraph, int i, int j)
|
|
{
|
|
int v = i*n+j;
|
|
int top, bot, mid;
|
|
|
|
bot = -1;
|
|
top = ngraph;
|
|
while (top - bot > 1) {
|
|
mid = (top + bot) / 2;
|
|
if (graph[mid] == v)
|
|
return mid;
|
|
else if (graph[mid] < v)
|
|
bot = mid;
|
|
else
|
|
top = mid;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
#define graph_adjacent(graph, n, ngraph, i, j) \
|
|
(graph_edge_index((graph), (n), (ngraph), (i), (j)) >= 0)
|
|
|
|
static int graph_vertex_start(int *graph, int n, int ngraph, int i)
|
|
{
|
|
int v = i*n;
|
|
int top, bot, mid;
|
|
|
|
bot = -1;
|
|
top = ngraph;
|
|
while (top - bot > 1) {
|
|
mid = (top + bot) / 2;
|
|
if (graph[mid] < v)
|
|
bot = mid;
|
|
else
|
|
top = mid;
|
|
}
|
|
return top;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Generate a four-colouring of a graph.
|
|
*
|
|
* FIXME: it would be nice if we could convert this recursion into
|
|
* pseudo-recursion using some sort of explicit stack array, for
|
|
* the sake of the Palm port and its limited stack.
|
|
*/
|
|
|
|
static bool fourcolour_recurse(int *graph, int n, int ngraph,
|
|
int *colouring, int *scratch, random_state *rs)
|
|
{
|
|
int nfree, nvert, start, i, j, k, c, ci;
|
|
int cs[FOUR];
|
|
|
|
/*
|
|
* Find the smallest number of free colours in any uncoloured
|
|
* vertex, and count the number of such vertices.
|
|
*/
|
|
|
|
nfree = FIVE; /* start off bigger than FOUR! */
|
|
nvert = 0;
|
|
for (i = 0; i < n; i++)
|
|
if (colouring[i] < 0 && scratch[i*FIVE+FOUR] <= nfree) {
|
|
if (nfree > scratch[i*FIVE+FOUR]) {
|
|
nfree = scratch[i*FIVE+FOUR];
|
|
nvert = 0;
|
|
}
|
|
nvert++;
|
|
}
|
|
|
|
/*
|
|
* If there aren't any uncoloured vertices at all, we're done.
|
|
*/
|
|
if (nvert == 0)
|
|
return true; /* we've got a colouring! */
|
|
|
|
/*
|
|
* Pick a random vertex in that set.
|
|
*/
|
|
j = random_upto(rs, nvert);
|
|
for (i = 0; i < n; i++)
|
|
if (colouring[i] < 0 && scratch[i*FIVE+FOUR] == nfree)
|
|
if (j-- == 0)
|
|
break;
|
|
assert(i < n);
|
|
start = graph_vertex_start(graph, n, ngraph, i);
|
|
|
|
/*
|
|
* Loop over the possible colours for i, and recurse for each
|
|
* one.
|
|
*/
|
|
ci = 0;
|
|
for (c = 0; c < FOUR; c++)
|
|
if (scratch[i*FIVE+c] == 0)
|
|
cs[ci++] = c;
|
|
shuffle(cs, ci, sizeof(*cs), rs);
|
|
|
|
while (ci-- > 0) {
|
|
c = cs[ci];
|
|
|
|
/*
|
|
* Fill in this colour.
|
|
*/
|
|
colouring[i] = c;
|
|
|
|
/*
|
|
* Update the scratch space to reflect a new neighbour
|
|
* of this colour for each neighbour of vertex i.
|
|
*/
|
|
for (j = start; j < ngraph && graph[j] < n*(i+1); j++) {
|
|
k = graph[j] - i*n;
|
|
if (scratch[k*FIVE+c] == 0)
|
|
scratch[k*FIVE+FOUR]--;
|
|
scratch[k*FIVE+c]++;
|
|
}
|
|
|
|
/*
|
|
* Recurse.
|
|
*/
|
|
if (fourcolour_recurse(graph, n, ngraph, colouring, scratch, rs))
|
|
return true; /* got one! */
|
|
|
|
/*
|
|
* If that didn't work, clean up and try again with a
|
|
* different colour.
|
|
*/
|
|
for (j = start; j < ngraph && graph[j] < n*(i+1); j++) {
|
|
k = graph[j] - i*n;
|
|
scratch[k*FIVE+c]--;
|
|
if (scratch[k*FIVE+c] == 0)
|
|
scratch[k*FIVE+FOUR]++;
|
|
}
|
|
colouring[i] = -1;
|
|
}
|
|
|
|
/*
|
|
* If we reach here, we were unable to find a colouring at all.
|
|
* (This doesn't necessarily mean the Four Colour Theorem is
|
|
* violated; it might just mean we've gone down a dead end and
|
|
* need to back up and look somewhere else. It's only an FCT
|
|
* violation if we get all the way back up to the top level and
|
|
* still fail.)
|
|
*/
|
|
return false;
|
|
}
|
|
|
|
static void fourcolour(int *graph, int n, int ngraph, int *colouring,
|
|
random_state *rs)
|
|
{
|
|
int *scratch;
|
|
int i;
|
|
bool retd;
|
|
|
|
/*
|
|
* For each vertex and each colour, we store the number of
|
|
* neighbours that have that colour. Also, we store the number
|
|
* of free colours for the vertex.
|
|
*/
|
|
scratch = snewn(n * FIVE, int);
|
|
for (i = 0; i < n * FIVE; i++)
|
|
scratch[i] = (i % FIVE == FOUR ? FOUR : 0);
|
|
|
|
/*
|
|
* Clear the colouring to start with.
|
|
*/
|
|
for (i = 0; i < n; i++)
|
|
colouring[i] = -1;
|
|
|
|
retd = fourcolour_recurse(graph, n, ngraph, colouring, scratch, rs);
|
|
assert(retd); /* by the Four Colour Theorem :-) */
|
|
|
|
sfree(scratch);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Non-recursive solver.
|
|
*/
|
|
|
|
struct solver_scratch {
|
|
unsigned char *possible; /* bitmap of colours for each region */
|
|
|
|
int *graph;
|
|
int n;
|
|
int ngraph;
|
|
|
|
int *bfsqueue;
|
|
int *bfscolour;
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
int *bfsprev;
|
|
#endif
|
|
|
|
int depth;
|
|
};
|
|
|
|
static struct solver_scratch *new_scratch(int *graph, int n, int ngraph)
|
|
{
|
|
struct solver_scratch *sc;
|
|
|
|
sc = snew(struct solver_scratch);
|
|
sc->graph = graph;
|
|
sc->n = n;
|
|
sc->ngraph = ngraph;
|
|
sc->possible = snewn(n, unsigned char);
|
|
sc->depth = 0;
|
|
sc->bfsqueue = snewn(n, int);
|
|
sc->bfscolour = snewn(n, int);
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
sc->bfsprev = snewn(n, int);
|
|
#endif
|
|
|
|
return sc;
|
|
}
|
|
|
|
static void free_scratch(struct solver_scratch *sc)
|
|
{
|
|
sfree(sc->possible);
|
|
sfree(sc->bfsqueue);
|
|
sfree(sc->bfscolour);
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
sfree(sc->bfsprev);
|
|
#endif
|
|
sfree(sc);
|
|
}
|
|
|
|
/*
|
|
* Count the bits in a word. Only needs to cope with FOUR bits.
|
|
*/
|
|
static int bitcount(int word)
|
|
{
|
|
assert(FOUR <= 4); /* or this needs changing */
|
|
word = ((word & 0xA) >> 1) + (word & 0x5);
|
|
word = ((word & 0xC) >> 2) + (word & 0x3);
|
|
return word;
|
|
}
|
|
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
static const char colnames[FOUR] = { 'R', 'Y', 'G', 'B' };
|
|
#endif
|
|
|
|
static bool place_colour(struct solver_scratch *sc,
|
|
int *colouring, int index, int colour
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
, const char *verb
|
|
#endif
|
|
)
|
|
{
|
|
int *graph = sc->graph, n = sc->n, ngraph = sc->ngraph;
|
|
int j, k;
|
|
|
|
if (!(sc->possible[index] & (1 << colour))) {
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
if (verbose)
|
|
printf("%*scannot place %c in region %d\n", 2*sc->depth, "",
|
|
colnames[colour], index);
|
|
#endif
|
|
return false; /* can't do it */
|
|
}
|
|
|
|
sc->possible[index] = 1 << colour;
|
|
colouring[index] = colour;
|
|
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
if (verbose)
|
|
printf("%*s%s %c in region %d\n", 2*sc->depth, "",
|
|
verb, colnames[colour], index);
|
|
#endif
|
|
|
|
/*
|
|
* Rule out this colour from all the region's neighbours.
|
|
*/
|
|
for (j = graph_vertex_start(graph, n, ngraph, index);
|
|
j < ngraph && graph[j] < n*(index+1); j++) {
|
|
k = graph[j] - index*n;
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
if (verbose && (sc->possible[k] & (1 << colour)))
|
|
printf("%*s ruling out %c in region %d\n", 2*sc->depth, "",
|
|
colnames[colour], k);
|
|
#endif
|
|
sc->possible[k] &= ~(1 << colour);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
static char *colourset(char *buf, int set)
|
|
{
|
|
int i;
|
|
char *p = buf;
|
|
const char *sep = "";
|
|
|
|
for (i = 0; i < FOUR; i++)
|
|
if (set & (1 << i)) {
|
|
p += sprintf(p, "%s%c", sep, colnames[i]);
|
|
sep = ",";
|
|
}
|
|
|
|
return buf;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Returns 0 for impossible, 1 for success, 2 for failure to
|
|
* converge (i.e. puzzle is either ambiguous or just too
|
|
* difficult).
|
|
*/
|
|
static int map_solver(struct solver_scratch *sc,
|
|
int *graph, int n, int ngraph, int *colouring,
|
|
int difficulty)
|
|
{
|
|
int i;
|
|
|
|
if (sc->depth == 0) {
|
|
/*
|
|
* Initialise scratch space.
|
|
*/
|
|
for (i = 0; i < n; i++)
|
|
sc->possible[i] = (1 << FOUR) - 1;
|
|
|
|
/*
|
|
* Place clues.
|
|
*/
|
|
for (i = 0; i < n; i++)
|
|
if (colouring[i] >= 0) {
|
|
if (!place_colour(sc, colouring, i, colouring[i]
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
, "initial clue:"
|
|
#endif
|
|
)) {
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
if (verbose)
|
|
printf("%*sinitial clue set is inconsistent\n",
|
|
2*sc->depth, "");
|
|
#endif
|
|
return 0; /* the clues aren't even consistent! */
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now repeatedly loop until we find nothing further to do.
|
|
*/
|
|
while (1) {
|
|
bool done_something = false;
|
|
|
|
if (difficulty < DIFF_EASY)
|
|
break; /* can't do anything at all! */
|
|
|
|
/*
|
|
* Simplest possible deduction: find a region with only one
|
|
* possible colour.
|
|
*/
|
|
for (i = 0; i < n; i++) if (colouring[i] < 0) {
|
|
int p = sc->possible[i];
|
|
|
|
if (p == 0) {
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
if (verbose)
|
|
printf("%*sregion %d has no possible colours left\n",
|
|
2*sc->depth, "", i);
|
|
#endif
|
|
return 0; /* puzzle is inconsistent */
|
|
}
|
|
|
|
if ((p & (p-1)) == 0) { /* p is a power of two */
|
|
int c;
|
|
bool ret;
|
|
for (c = 0; c < FOUR; c++)
|
|
if (p == (1 << c))
|
|
break;
|
|
assert(c < FOUR);
|
|
ret = place_colour(sc, colouring, i, c
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
, "placing"
|
|
#endif
|
|
);
|
|
/*
|
|
* place_colour() can only fail if colour c was not
|
|
* even a _possibility_ for region i, and we're
|
|
* pretty sure it was because we checked before
|
|
* calling place_colour(). So we can safely assert
|
|
* here rather than having to return a nice
|
|
* friendly error code.
|
|
*/
|
|
assert(ret);
|
|
done_something = true;
|
|
}
|
|
}
|
|
|
|
if (done_something)
|
|
continue;
|
|
|
|
if (difficulty < DIFF_NORMAL)
|
|
break; /* can't do anything harder */
|
|
|
|
/*
|
|
* Failing that, go up one level. Look for pairs of regions
|
|
* which (a) both have the same pair of possible colours,
|
|
* (b) are adjacent to one another, (c) are adjacent to the
|
|
* same region, and (d) that region still thinks it has one
|
|
* or both of those possible colours.
|
|
*
|
|
* Simplest way to do this is by going through the graph
|
|
* edge by edge, so that we start with property (b) and
|
|
* then look for (a) and finally (c) and (d).
|
|
*/
|
|
for (i = 0; i < ngraph; i++) {
|
|
int j1 = graph[i] / n, j2 = graph[i] % n;
|
|
int j, k, v, v2;
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
bool started = false;
|
|
#endif
|
|
|
|
if (j1 > j2)
|
|
continue; /* done it already, other way round */
|
|
|
|
if (colouring[j1] >= 0 || colouring[j2] >= 0)
|
|
continue; /* they're not undecided */
|
|
|
|
if (sc->possible[j1] != sc->possible[j2])
|
|
continue; /* they don't have the same possibles */
|
|
|
|
v = sc->possible[j1];
|
|
/*
|
|
* See if v contains exactly two set bits.
|
|
*/
|
|
v2 = v & -v; /* find lowest set bit */
|
|
v2 = v & ~v2; /* clear it */
|
|
if (v2 == 0 || (v2 & (v2-1)) != 0) /* not power of 2 */
|
|
continue;
|
|
|
|
/*
|
|
* We've found regions j1 and j2 satisfying properties
|
|
* (a) and (b): they have two possible colours between
|
|
* them, and since they're adjacent to one another they
|
|
* must use _both_ those colours between them.
|
|
* Therefore, if they are both adjacent to any other
|
|
* region then that region cannot be either colour.
|
|
*
|
|
* Go through the neighbours of j1 and see if any are
|
|
* shared with j2.
|
|
*/
|
|
for (j = graph_vertex_start(graph, n, ngraph, j1);
|
|
j < ngraph && graph[j] < n*(j1+1); j++) {
|
|
k = graph[j] - j1*n;
|
|
if (graph_adjacent(graph, n, ngraph, k, j2) &&
|
|
(sc->possible[k] & v)) {
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
if (verbose) {
|
|
char buf[80];
|
|
if (!started)
|
|
printf("%*sadjacent regions %d,%d share colours"
|
|
" %s\n", 2*sc->depth, "", j1, j2,
|
|
colourset(buf, v));
|
|
started = true;
|
|
printf("%*s ruling out %s in region %d\n",2*sc->depth,
|
|
"", colourset(buf, sc->possible[k] & v), k);
|
|
}
|
|
#endif
|
|
sc->possible[k] &= ~v;
|
|
done_something = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (done_something)
|
|
continue;
|
|
|
|
if (difficulty < DIFF_HARD)
|
|
break; /* can't do anything harder */
|
|
|
|
/*
|
|
* Right; now we get creative. Now we're going to look for
|
|
* `forcing chains'. A forcing chain is a path through the
|
|
* graph with the following properties:
|
|
*
|
|
* (a) Each vertex on the path has precisely two possible
|
|
* colours.
|
|
*
|
|
* (b) Each pair of vertices which are adjacent on the
|
|
* path share at least one possible colour in common.
|
|
*
|
|
* (c) Each vertex in the middle of the path shares _both_
|
|
* of its colours with at least one of its neighbours
|
|
* (not the same one with both neighbours).
|
|
*
|
|
* These together imply that at least one of the possible
|
|
* colour choices at one end of the path forces _all_ the
|
|
* rest of the colours along the path. In order to make
|
|
* real use of this, we need further properties:
|
|
*
|
|
* (c) Ruling out some colour C from the vertex at one end
|
|
* of the path forces the vertex at the other end to
|
|
* take colour C.
|
|
*
|
|
* (d) The two end vertices are mutually adjacent to some
|
|
* third vertex.
|
|
*
|
|
* (e) That third vertex currently has C as a possibility.
|
|
*
|
|
* If we can find all of that lot, we can deduce that at
|
|
* least one of the two ends of the forcing chain has
|
|
* colour C, and that therefore the mutually adjacent third
|
|
* vertex does not.
|
|
*
|
|
* To find forcing chains, we're going to start a bfs at
|
|
* each suitable vertex of the graph, once for each of its
|
|
* two possible colours.
|
|
*/
|
|
for (i = 0; i < n; i++) {
|
|
int c;
|
|
|
|
if (colouring[i] >= 0 || bitcount(sc->possible[i]) != 2)
|
|
continue;
|
|
|
|
for (c = 0; c < FOUR; c++)
|
|
if (sc->possible[i] & (1 << c)) {
|
|
int j, k, gi, origc, currc, head, tail;
|
|
/*
|
|
* Try a bfs from this vertex, ruling out
|
|
* colour c.
|
|
*
|
|
* Within this loop, we work in colour bitmaps
|
|
* rather than actual colours, because
|
|
* converting back and forth is a needless
|
|
* computational expense.
|
|
*/
|
|
|
|
origc = 1 << c;
|
|
|
|
for (j = 0; j < n; j++) {
|
|
sc->bfscolour[j] = -1;
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
sc->bfsprev[j] = -1;
|
|
#endif
|
|
}
|
|
head = tail = 0;
|
|
sc->bfsqueue[tail++] = i;
|
|
sc->bfscolour[i] = sc->possible[i] &~ origc;
|
|
|
|
while (head < tail) {
|
|
j = sc->bfsqueue[head++];
|
|
currc = sc->bfscolour[j];
|
|
|
|
/*
|
|
* Try neighbours of j.
|
|
*/
|
|
for (gi = graph_vertex_start(graph, n, ngraph, j);
|
|
gi < ngraph && graph[gi] < n*(j+1); gi++) {
|
|
k = graph[gi] - j*n;
|
|
|
|
/*
|
|
* To continue with the bfs in vertex
|
|
* k, we need k to be
|
|
* (a) not already visited
|
|
* (b) have two possible colours
|
|
* (c) those colours include currc.
|
|
*/
|
|
|
|
if (sc->bfscolour[k] < 0 &&
|
|
colouring[k] < 0 &&
|
|
bitcount(sc->possible[k]) == 2 &&
|
|
(sc->possible[k] & currc)) {
|
|
sc->bfsqueue[tail++] = k;
|
|
sc->bfscolour[k] =
|
|
sc->possible[k] &~ currc;
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
sc->bfsprev[k] = j;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* One other possibility is that k
|
|
* might be the region in which we can
|
|
* make a real deduction: if it's
|
|
* adjacent to i, contains currc as a
|
|
* possibility, and currc is equal to
|
|
* the original colour we ruled out.
|
|
*/
|
|
if (currc == origc &&
|
|
graph_adjacent(graph, n, ngraph, k, i) &&
|
|
(sc->possible[k] & currc)) {
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
if (verbose) {
|
|
char buf[80];
|
|
const char *sep = "";
|
|
int r;
|
|
|
|
printf("%*sforcing chain, colour %s, ",
|
|
2*sc->depth, "",
|
|
colourset(buf, origc));
|
|
for (r = j; r != -1; r = sc->bfsprev[r]) {
|
|
printf("%s%d", sep, r);
|
|
sep = "-";
|
|
}
|
|
printf("\n%*s ruling out %s in region"
|
|
" %d\n", 2*sc->depth, "",
|
|
colourset(buf, origc), k);
|
|
}
|
|
#endif
|
|
sc->possible[k] &= ~origc;
|
|
done_something = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
assert(tail <= n);
|
|
}
|
|
}
|
|
|
|
if (!done_something)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* See if we've got a complete solution, and return if so.
|
|
*/
|
|
for (i = 0; i < n; i++)
|
|
if (colouring[i] < 0)
|
|
break;
|
|
if (i == n) {
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
if (verbose)
|
|
printf("%*sone solution found\n", 2*sc->depth, "");
|
|
#endif
|
|
return 1; /* success! */
|
|
}
|
|
|
|
/*
|
|
* If recursion is not permissible, we now give up.
|
|
*/
|
|
if (difficulty < DIFF_RECURSE) {
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
if (verbose)
|
|
printf("%*sunable to proceed further without recursion\n",
|
|
2*sc->depth, "");
|
|
#endif
|
|
return 2; /* unable to complete */
|
|
}
|
|
|
|
/*
|
|
* Now we've got to do something recursive. So first hunt for a
|
|
* currently-most-constrained region.
|
|
*/
|
|
{
|
|
int best, bestc;
|
|
struct solver_scratch *rsc;
|
|
int *subcolouring, *origcolouring;
|
|
int ret, subret;
|
|
bool we_already_got_one;
|
|
|
|
best = -1;
|
|
bestc = FIVE;
|
|
|
|
for (i = 0; i < n; i++) if (colouring[i] < 0) {
|
|
int p = sc->possible[i];
|
|
enum { compile_time_assertion = 1 / (FOUR <= 4) };
|
|
int c;
|
|
|
|
/* Count the set bits. */
|
|
c = (p & 5) + ((p >> 1) & 5);
|
|
c = (c & 3) + ((c >> 2) & 3);
|
|
assert(c > 1); /* or colouring[i] would be >= 0 */
|
|
|
|
if (c < bestc) {
|
|
best = i;
|
|
bestc = c;
|
|
}
|
|
}
|
|
|
|
assert(best >= 0); /* or we'd be solved already */
|
|
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
if (verbose)
|
|
printf("%*srecursing on region %d\n", 2*sc->depth, "", best);
|
|
#endif
|
|
|
|
/*
|
|
* Now iterate over the possible colours for this region.
|
|
*/
|
|
rsc = new_scratch(graph, n, ngraph);
|
|
rsc->depth = sc->depth + 1;
|
|
origcolouring = snewn(n, int);
|
|
memcpy(origcolouring, colouring, n * sizeof(int));
|
|
subcolouring = snewn(n, int);
|
|
we_already_got_one = false;
|
|
ret = 0;
|
|
|
|
for (i = 0; i < FOUR; i++) {
|
|
if (!(sc->possible[best] & (1 << i)))
|
|
continue;
|
|
|
|
memcpy(rsc->possible, sc->possible, n);
|
|
memcpy(subcolouring, origcolouring, n * sizeof(int));
|
|
|
|
place_colour(rsc, subcolouring, best, i
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
, "trying"
|
|
#endif
|
|
);
|
|
|
|
subret = map_solver(rsc, graph, n, ngraph,
|
|
subcolouring, difficulty);
|
|
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
if (verbose) {
|
|
printf("%*sretracting %c in region %d; found %s\n",
|
|
2*sc->depth, "", colnames[i], best,
|
|
subret == 0 ? "no solutions" :
|
|
subret == 1 ? "one solution" : "multiple solutions");
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* If this possibility turned up more than one valid
|
|
* solution, or if it turned up one and we already had
|
|
* one, we're definitely ambiguous.
|
|
*/
|
|
if (subret == 2 || (subret == 1 && we_already_got_one)) {
|
|
ret = 2;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If this possibility turned up one valid solution and
|
|
* it's the first we've seen, copy it into the output.
|
|
*/
|
|
if (subret == 1) {
|
|
memcpy(colouring, subcolouring, n * sizeof(int));
|
|
we_already_got_one = true;
|
|
ret = 1;
|
|
}
|
|
|
|
/*
|
|
* Otherwise, this guess led to a contradiction, so we
|
|
* do nothing.
|
|
*/
|
|
}
|
|
|
|
sfree(origcolouring);
|
|
sfree(subcolouring);
|
|
free_scratch(rsc);
|
|
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
if (verbose && sc->depth == 0) {
|
|
printf("%*s%s found\n",
|
|
2*sc->depth, "",
|
|
ret == 0 ? "no solutions" :
|
|
ret == 1 ? "one solution" : "multiple solutions");
|
|
}
|
|
#endif
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Game generation main function.
|
|
*/
|
|
|
|
static char *new_game_desc(const game_params *params, random_state *rs,
|
|
char **aux, bool interactive)
|
|
{
|
|
struct solver_scratch *sc = NULL;
|
|
int *map, *graph, ngraph, *colouring, *colouring2, *regions;
|
|
int i, j, w, h, n, solveret, cfreq[FOUR];
|
|
int wh;
|
|
int mindiff, tries;
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
int x, y;
|
|
#endif
|
|
char *ret, buf[80];
|
|
int retlen, retsize;
|
|
|
|
w = params->w;
|
|
h = params->h;
|
|
n = params->n;
|
|
wh = w*h;
|
|
|
|
*aux = NULL;
|
|
|
|
map = snewn(wh, int);
|
|
graph = snewn(n*n, int);
|
|
colouring = snewn(n, int);
|
|
colouring2 = snewn(n, int);
|
|
regions = snewn(n, int);
|
|
|
|
/*
|
|
* This is the minimum difficulty below which we'll completely
|
|
* reject a map design. Normally we set this to one below the
|
|
* requested difficulty, ensuring that we have the right
|
|
* result. However, for particularly dense maps or maps with
|
|
* particularly few regions it might not be possible to get the
|
|
* desired difficulty, so we will eventually drop this down to
|
|
* -1 to indicate that any old map will do.
|
|
*/
|
|
mindiff = params->diff;
|
|
tries = 50;
|
|
|
|
while (1) {
|
|
|
|
/*
|
|
* Create the map.
|
|
*/
|
|
genmap(w, h, n, map, rs);
|
|
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
for (y = 0; y < h; y++) {
|
|
for (x = 0; x < w; x++) {
|
|
int v = map[y*w+x];
|
|
if (v >= 62)
|
|
putchar('!');
|
|
else if (v >= 36)
|
|
putchar('a' + v-36);
|
|
else if (v >= 10)
|
|
putchar('A' + v-10);
|
|
else
|
|
putchar('0' + v);
|
|
}
|
|
putchar('\n');
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Convert the map into a graph.
|
|
*/
|
|
ngraph = gengraph(w, h, n, map, graph);
|
|
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
for (i = 0; i < ngraph; i++)
|
|
printf("%d-%d\n", graph[i]/n, graph[i]%n);
|
|
#endif
|
|
|
|
/*
|
|
* Colour the map.
|
|
*/
|
|
fourcolour(graph, n, ngraph, colouring, rs);
|
|
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
for (i = 0; i < n; i++)
|
|
printf("%d: %d\n", i, colouring[i]);
|
|
|
|
for (y = 0; y < h; y++) {
|
|
for (x = 0; x < w; x++) {
|
|
int v = colouring[map[y*w+x]];
|
|
if (v >= 36)
|
|
putchar('a' + v-36);
|
|
else if (v >= 10)
|
|
putchar('A' + v-10);
|
|
else
|
|
putchar('0' + v);
|
|
}
|
|
putchar('\n');
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Encode the solution as an aux string.
|
|
*/
|
|
if (*aux) /* in case we've come round again */
|
|
sfree(*aux);
|
|
retlen = retsize = 0;
|
|
ret = NULL;
|
|
for (i = 0; i < n; i++) {
|
|
int len;
|
|
|
|
if (colouring[i] < 0)
|
|
continue;
|
|
|
|
len = sprintf(buf, "%s%d:%d", i ? ";" : "S;", colouring[i], i);
|
|
if (retlen + len >= retsize) {
|
|
retsize = retlen + len + 256;
|
|
ret = sresize(ret, retsize, char);
|
|
}
|
|
strcpy(ret + retlen, buf);
|
|
retlen += len;
|
|
}
|
|
*aux = ret;
|
|
|
|
/*
|
|
* Remove the region colours one by one, keeping
|
|
* solubility. Also ensure that there always remains at
|
|
* least one region of every colour, so that the user can
|
|
* drag from somewhere.
|
|
*/
|
|
for (i = 0; i < FOUR; i++)
|
|
cfreq[i] = 0;
|
|
for (i = 0; i < n; i++) {
|
|
regions[i] = i;
|
|
cfreq[colouring[i]]++;
|
|
}
|
|
for (i = 0; i < FOUR; i++)
|
|
if (cfreq[i] == 0)
|
|
continue;
|
|
|
|
shuffle(regions, n, sizeof(*regions), rs);
|
|
|
|
if (sc) free_scratch(sc);
|
|
sc = new_scratch(graph, n, ngraph);
|
|
|
|
for (i = 0; i < n; i++) {
|
|
j = regions[i];
|
|
|
|
if (cfreq[colouring[j]] == 1)
|
|
continue; /* can't remove last region of colour */
|
|
|
|
memcpy(colouring2, colouring, n*sizeof(int));
|
|
colouring2[j] = -1;
|
|
solveret = map_solver(sc, graph, n, ngraph, colouring2,
|
|
params->diff);
|
|
assert(solveret >= 0); /* mustn't be impossible! */
|
|
if (solveret == 1) {
|
|
cfreq[colouring[j]]--;
|
|
colouring[j] = -1;
|
|
}
|
|
}
|
|
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
for (i = 0; i < n; i++)
|
|
if (colouring[i] >= 0) {
|
|
if (i >= 62)
|
|
putchar('!');
|
|
else if (i >= 36)
|
|
putchar('a' + i-36);
|
|
else if (i >= 10)
|
|
putchar('A' + i-10);
|
|
else
|
|
putchar('0' + i);
|
|
printf(": %d\n", colouring[i]);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Finally, check that the puzzle is _at least_ as hard as
|
|
* required, and indeed that it isn't already solved.
|
|
* (Calling map_solver with negative difficulty ensures the
|
|
* latter - if a solver which _does nothing_ can solve it,
|
|
* it's too easy!)
|
|
*/
|
|
memcpy(colouring2, colouring, n*sizeof(int));
|
|
if (map_solver(sc, graph, n, ngraph, colouring2,
|
|
mindiff - 1) == 1) {
|
|
/*
|
|
* Drop minimum difficulty if necessary.
|
|
*/
|
|
if (mindiff > 0 && (n < 9 || n > 2*wh/3)) {
|
|
if (tries-- <= 0)
|
|
mindiff = 0; /* give up and go for Easy */
|
|
}
|
|
continue;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Encode as a game ID. We do this by:
|
|
*
|
|
* - first going along the horizontal edges row by row, and
|
|
* then the vertical edges column by column
|
|
* - encoding the lengths of runs of edges and runs of
|
|
* non-edges
|
|
* - the decoder will reconstitute the region boundaries from
|
|
* this and automatically number them the same way we did
|
|
* - then we encode the initial region colours in a Slant-like
|
|
* fashion (digits 0-3 interspersed with letters giving
|
|
* lengths of runs of empty spaces).
|
|
*/
|
|
retlen = retsize = 0;
|
|
ret = NULL;
|
|
|
|
{
|
|
int run;
|
|
bool pv;
|
|
|
|
/*
|
|
* Start with a notional non-edge, so that there'll be an
|
|
* explicit `a' to distinguish the case where we start with
|
|
* an edge.
|
|
*/
|
|
run = 1;
|
|
pv = false;
|
|
|
|
for (i = 0; i < w*(h-1) + (w-1)*h; i++) {
|
|
int x, y, dx, dy;
|
|
bool v;
|
|
|
|
if (i < w*(h-1)) {
|
|
/* Horizontal edge. */
|
|
y = i / w;
|
|
x = i % w;
|
|
dx = 0;
|
|
dy = 1;
|
|
} else {
|
|
/* Vertical edge. */
|
|
x = (i - w*(h-1)) / h;
|
|
y = (i - w*(h-1)) % h;
|
|
dx = 1;
|
|
dy = 0;
|
|
}
|
|
|
|
if (retlen + 10 >= retsize) {
|
|
retsize = retlen + 256;
|
|
ret = sresize(ret, retsize, char);
|
|
}
|
|
|
|
v = (map[y*w+x] != map[(y+dy)*w+(x+dx)]);
|
|
|
|
if (pv != v) {
|
|
ret[retlen++] = 'a'-1 + run;
|
|
run = 1;
|
|
pv = v;
|
|
} else {
|
|
/*
|
|
* 'z' is a special case in this encoding. Rather
|
|
* than meaning a run of 26 and a state switch, it
|
|
* means a run of 25 and _no_ state switch, because
|
|
* otherwise there'd be no way to encode runs of
|
|
* more than 26.
|
|
*/
|
|
if (run == 25) {
|
|
ret[retlen++] = 'z';
|
|
run = 0;
|
|
}
|
|
run++;
|
|
}
|
|
}
|
|
|
|
if (retlen + 10 >= retsize) {
|
|
retsize = retlen + 256;
|
|
ret = sresize(ret, retsize, char);
|
|
}
|
|
ret[retlen++] = 'a'-1 + run;
|
|
ret[retlen++] = ',';
|
|
|
|
run = 0;
|
|
for (i = 0; i < n; i++) {
|
|
if (retlen + 10 >= retsize) {
|
|
retsize = retlen + 256;
|
|
ret = sresize(ret, retsize, char);
|
|
}
|
|
|
|
if (colouring[i] < 0) {
|
|
/*
|
|
* In _this_ encoding, 'z' is a run of 26, since
|
|
* there's no implicit state switch after each run.
|
|
* Confusingly different, but more compact.
|
|
*/
|
|
if (run == 26) {
|
|
ret[retlen++] = 'z';
|
|
run = 0;
|
|
}
|
|
run++;
|
|
} else {
|
|
if (run > 0)
|
|
ret[retlen++] = 'a'-1 + run;
|
|
ret[retlen++] = '0' + colouring[i];
|
|
run = 0;
|
|
}
|
|
}
|
|
if (run > 0)
|
|
ret[retlen++] = 'a'-1 + run;
|
|
ret[retlen] = '\0';
|
|
|
|
assert(retlen < retsize);
|
|
}
|
|
|
|
free_scratch(sc);
|
|
sfree(regions);
|
|
sfree(colouring2);
|
|
sfree(colouring);
|
|
sfree(graph);
|
|
sfree(map);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const char *parse_edge_list(const game_params *params,
|
|
const char **desc, int *map)
|
|
{
|
|
int w = params->w, h = params->h, wh = w*h, n = params->n;
|
|
int i, k, pos;
|
|
bool state;
|
|
const char *p = *desc;
|
|
|
|
dsf_init(map+wh, wh);
|
|
|
|
pos = -1;
|
|
state = false;
|
|
|
|
/*
|
|
* Parse the game description to get the list of edges, and
|
|
* build up a disjoint set forest as we go (by identifying
|
|
* pairs of squares whenever the edge list shows a non-edge).
|
|
*/
|
|
while (*p && *p != ',') {
|
|
if (*p < 'a' || *p > 'z')
|
|
return "Unexpected character in edge list";
|
|
if (*p == 'z')
|
|
k = 25;
|
|
else
|
|
k = *p - 'a' + 1;
|
|
while (k-- > 0) {
|
|
int x, y, dx, dy;
|
|
|
|
if (pos < 0) {
|
|
pos++;
|
|
continue;
|
|
} else if (pos < w*(h-1)) {
|
|
/* Horizontal edge. */
|
|
y = pos / w;
|
|
x = pos % w;
|
|
dx = 0;
|
|
dy = 1;
|
|
} else if (pos < 2*wh-w-h) {
|
|
/* Vertical edge. */
|
|
x = (pos - w*(h-1)) / h;
|
|
y = (pos - w*(h-1)) % h;
|
|
dx = 1;
|
|
dy = 0;
|
|
} else
|
|
return "Too much data in edge list";
|
|
if (!state)
|
|
dsf_merge(map+wh, y*w+x, (y+dy)*w+(x+dx));
|
|
|
|
pos++;
|
|
}
|
|
if (*p != 'z')
|
|
state = !state;
|
|
p++;
|
|
}
|
|
assert(pos <= 2*wh-w-h);
|
|
if (pos < 2*wh-w-h)
|
|
return "Too little data in edge list";
|
|
|
|
/*
|
|
* Now go through again and allocate region numbers.
|
|
*/
|
|
pos = 0;
|
|
for (i = 0; i < wh; i++)
|
|
map[i] = -1;
|
|
for (i = 0; i < wh; i++) {
|
|
k = dsf_canonify(map+wh, i);
|
|
if (map[k] < 0)
|
|
map[k] = pos++;
|
|
map[i] = map[k];
|
|
}
|
|
if (pos != n)
|
|
return "Edge list defines the wrong number of regions";
|
|
|
|
*desc = p;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static const char *validate_desc(const game_params *params, const char *desc)
|
|
{
|
|
int w = params->w, h = params->h, wh = w*h, n = params->n;
|
|
int area;
|
|
int *map;
|
|
const char *ret;
|
|
|
|
map = snewn(2*wh, int);
|
|
ret = parse_edge_list(params, &desc, map);
|
|
sfree(map);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (*desc != ',')
|
|
return "Expected comma before clue list";
|
|
desc++; /* eat comma */
|
|
|
|
area = 0;
|
|
while (*desc) {
|
|
if (*desc >= '0' && *desc < '0'+FOUR)
|
|
area++;
|
|
else if (*desc >= 'a' && *desc <= 'z')
|
|
area += *desc - 'a' + 1;
|
|
else
|
|
return "Unexpected character in clue list";
|
|
desc++;
|
|
}
|
|
if (area < n)
|
|
return "Too little data in clue list";
|
|
else if (area > n)
|
|
return "Too much data in clue list";
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static game_state *new_game(midend *me, const game_params *params,
|
|
const char *desc)
|
|
{
|
|
int w = params->w, h = params->h, wh = w*h, n = params->n;
|
|
int i, pos;
|
|
const char *p;
|
|
game_state *state = snew(game_state);
|
|
|
|
state->p = *params;
|
|
state->colouring = snewn(n, int);
|
|
for (i = 0; i < n; i++)
|
|
state->colouring[i] = -1;
|
|
state->pencil = snewn(n, int);
|
|
for (i = 0; i < n; i++)
|
|
state->pencil[i] = 0;
|
|
|
|
state->completed = false;
|
|
state->cheated = false;
|
|
|
|
state->map = snew(struct map);
|
|
state->map->refcount = 1;
|
|
state->map->map = snewn(wh*4, int);
|
|
state->map->graph = snewn(n*n, int);
|
|
state->map->n = n;
|
|
state->map->immutable = snewn(n, bool);
|
|
for (i = 0; i < n; i++)
|
|
state->map->immutable[i] = false;
|
|
|
|
p = desc;
|
|
|
|
{
|
|
const char *ret;
|
|
ret = parse_edge_list(params, &p, state->map->map);
|
|
assert(!ret);
|
|
}
|
|
|
|
/*
|
|
* Set up the other three quadrants in `map'.
|
|
*/
|
|
for (i = wh; i < 4*wh; i++)
|
|
state->map->map[i] = state->map->map[i % wh];
|
|
|
|
assert(*p == ',');
|
|
p++;
|
|
|
|
/*
|
|
* Now process the clue list.
|
|
*/
|
|
pos = 0;
|
|
while (*p) {
|
|
if (*p >= '0' && *p < '0'+FOUR) {
|
|
state->colouring[pos] = *p - '0';
|
|
state->map->immutable[pos] = true;
|
|
pos++;
|
|
} else {
|
|
assert(*p >= 'a' && *p <= 'z');
|
|
pos += *p - 'a' + 1;
|
|
}
|
|
p++;
|
|
}
|
|
assert(pos == n);
|
|
|
|
state->map->ngraph = gengraph(w, h, n, state->map->map, state->map->graph);
|
|
|
|
/*
|
|
* Attempt to smooth out some of the more jagged region
|
|
* outlines by the judicious use of diagonally divided squares.
|
|
*/
|
|
{
|
|
random_state *rs = random_new(desc, strlen(desc));
|
|
int *squares = snewn(wh, int);
|
|
bool done_something;
|
|
|
|
for (i = 0; i < wh; i++)
|
|
squares[i] = i;
|
|
shuffle(squares, wh, sizeof(*squares), rs);
|
|
|
|
do {
|
|
done_something = false;
|
|
for (i = 0; i < wh; i++) {
|
|
int y = squares[i] / w, x = squares[i] % w;
|
|
int c = state->map->map[y*w+x];
|
|
int tc, bc, lc, rc;
|
|
|
|
if (x == 0 || x == w-1 || y == 0 || y == h-1)
|
|
continue;
|
|
|
|
if (state->map->map[TE * wh + y*w+x] !=
|
|
state->map->map[BE * wh + y*w+x])
|
|
continue;
|
|
|
|
tc = state->map->map[BE * wh + (y-1)*w+x];
|
|
bc = state->map->map[TE * wh + (y+1)*w+x];
|
|
lc = state->map->map[RE * wh + y*w+(x-1)];
|
|
rc = state->map->map[LE * wh + y*w+(x+1)];
|
|
|
|
/*
|
|
* If this square is adjacent on two sides to one
|
|
* region and on the other two sides to the other
|
|
* region, and is itself one of the two regions, we can
|
|
* adjust it so that it's a diagonal.
|
|
*/
|
|
if (tc != bc && (tc == c || bc == c)) {
|
|
if ((lc == tc && rc == bc) ||
|
|
(lc == bc && rc == tc)) {
|
|
state->map->map[TE * wh + y*w+x] = tc;
|
|
state->map->map[BE * wh + y*w+x] = bc;
|
|
state->map->map[LE * wh + y*w+x] = lc;
|
|
state->map->map[RE * wh + y*w+x] = rc;
|
|
done_something = true;
|
|
}
|
|
}
|
|
}
|
|
} while (done_something);
|
|
sfree(squares);
|
|
random_free(rs);
|
|
}
|
|
|
|
/*
|
|
* Analyse the map to find a canonical line segment
|
|
* corresponding to each edge, and a canonical point
|
|
* corresponding to each region. The former are where we'll
|
|
* eventually put error markers; the latter are where we'll put
|
|
* per-region flags such as numbers (when in diagnostic mode).
|
|
*/
|
|
{
|
|
int *bestx, *besty, *an, pass;
|
|
float *ax, *ay, *best;
|
|
|
|
ax = snewn(state->map->ngraph + n, float);
|
|
ay = snewn(state->map->ngraph + n, float);
|
|
an = snewn(state->map->ngraph + n, int);
|
|
bestx = snewn(state->map->ngraph + n, int);
|
|
besty = snewn(state->map->ngraph + n, int);
|
|
best = snewn(state->map->ngraph + n, float);
|
|
|
|
for (i = 0; i < state->map->ngraph + n; i++) {
|
|
bestx[i] = besty[i] = -1;
|
|
best[i] = (float)(2*(w+h)+1);
|
|
ax[i] = ay[i] = 0.0F;
|
|
an[i] = 0;
|
|
}
|
|
|
|
/*
|
|
* We make two passes over the map, finding all the line
|
|
* segments separating regions and all the suitable points
|
|
* within regions. In the first pass, we compute the
|
|
* _average_ x and y coordinate of all the points in a
|
|
* given class; in the second pass, for each such average
|
|
* point, we find the candidate closest to it and call that
|
|
* canonical.
|
|
*
|
|
* Line segments are considered to have coordinates in
|
|
* their centre. Thus, at least one coordinate for any line
|
|
* segment is always something-and-a-half; so we store our
|
|
* coordinates as twice their normal value.
|
|
*/
|
|
for (pass = 0; pass < 2; pass++) {
|
|
int x, y;
|
|
|
|
for (y = 0; y < h; y++)
|
|
for (x = 0; x < w; x++) {
|
|
int ex[4], ey[4], ea[4], eb[4], en = 0;
|
|
|
|
/*
|
|
* Look for an edge to the right of this
|
|
* square, an edge below it, and an edge in the
|
|
* middle of it. Also look to see if the point
|
|
* at the bottom right of this square is on an
|
|
* edge (and isn't a place where more than two
|
|
* regions meet).
|
|
*/
|
|
if (x+1 < w) {
|
|
/* right edge */
|
|
ea[en] = state->map->map[RE * wh + y*w+x];
|
|
eb[en] = state->map->map[LE * wh + y*w+(x+1)];
|
|
ex[en] = (x+1)*2;
|
|
ey[en] = y*2+1;
|
|
en++;
|
|
}
|
|
if (y+1 < h) {
|
|
/* bottom edge */
|
|
ea[en] = state->map->map[BE * wh + y*w+x];
|
|
eb[en] = state->map->map[TE * wh + (y+1)*w+x];
|
|
ex[en] = x*2+1;
|
|
ey[en] = (y+1)*2;
|
|
en++;
|
|
}
|
|
/* diagonal edge */
|
|
ea[en] = state->map->map[TE * wh + y*w+x];
|
|
eb[en] = state->map->map[BE * wh + y*w+x];
|
|
ex[en] = x*2+1;
|
|
ey[en] = y*2+1;
|
|
en++;
|
|
|
|
if (x+1 < w && y+1 < h) {
|
|
/* bottom right corner */
|
|
int oct[8], othercol, nchanges;
|
|
oct[0] = state->map->map[RE * wh + y*w+x];
|
|
oct[1] = state->map->map[LE * wh + y*w+(x+1)];
|
|
oct[2] = state->map->map[BE * wh + y*w+(x+1)];
|
|
oct[3] = state->map->map[TE * wh + (y+1)*w+(x+1)];
|
|
oct[4] = state->map->map[LE * wh + (y+1)*w+(x+1)];
|
|
oct[5] = state->map->map[RE * wh + (y+1)*w+x];
|
|
oct[6] = state->map->map[TE * wh + (y+1)*w+x];
|
|
oct[7] = state->map->map[BE * wh + y*w+x];
|
|
|
|
othercol = -1;
|
|
nchanges = 0;
|
|
for (i = 0; i < 8; i++) {
|
|
if (oct[i] != oct[0]) {
|
|
if (othercol < 0)
|
|
othercol = oct[i];
|
|
else if (othercol != oct[i])
|
|
break; /* three colours at this point */
|
|
}
|
|
if (oct[i] != oct[(i+1) & 7])
|
|
nchanges++;
|
|
}
|
|
|
|
/*
|
|
* Now if there are exactly two regions at
|
|
* this point (not one, and not three or
|
|
* more), and only two changes around the
|
|
* loop, then this is a valid place to put
|
|
* an error marker.
|
|
*/
|
|
if (i == 8 && othercol >= 0 && nchanges == 2) {
|
|
ea[en] = oct[0];
|
|
eb[en] = othercol;
|
|
ex[en] = (x+1)*2;
|
|
ey[en] = (y+1)*2;
|
|
en++;
|
|
}
|
|
|
|
/*
|
|
* If there's exactly _one_ region at this
|
|
* point, on the other hand, it's a valid
|
|
* place to put a region centre.
|
|
*/
|
|
if (othercol < 0) {
|
|
ea[en] = eb[en] = oct[0];
|
|
ex[en] = (x+1)*2;
|
|
ey[en] = (y+1)*2;
|
|
en++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now process the points we've found, one by
|
|
* one.
|
|
*/
|
|
for (i = 0; i < en; i++) {
|
|
int emin = min(ea[i], eb[i]);
|
|
int emax = max(ea[i], eb[i]);
|
|
int gindex;
|
|
|
|
if (emin != emax) {
|
|
/* Graph edge */
|
|
gindex =
|
|
graph_edge_index(state->map->graph, n,
|
|
state->map->ngraph, emin,
|
|
emax);
|
|
} else {
|
|
/* Region number */
|
|
gindex = state->map->ngraph + emin;
|
|
}
|
|
|
|
assert(gindex >= 0);
|
|
|
|
if (pass == 0) {
|
|
/*
|
|
* In pass 0, accumulate the values
|
|
* we'll use to compute the average
|
|
* positions.
|
|
*/
|
|
ax[gindex] += ex[i];
|
|
ay[gindex] += ey[i];
|
|
an[gindex] += 1;
|
|
} else {
|
|
/*
|
|
* In pass 1, work out whether this
|
|
* point is closer to the average than
|
|
* the last one we've seen.
|
|
*/
|
|
float dx, dy, d;
|
|
|
|
assert(an[gindex] > 0);
|
|
dx = ex[i] - ax[gindex];
|
|
dy = ey[i] - ay[gindex];
|
|
d = (float)sqrt(dx*dx + dy*dy);
|
|
if (d < best[gindex]) {
|
|
best[gindex] = d;
|
|
bestx[gindex] = ex[i];
|
|
besty[gindex] = ey[i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (pass == 0) {
|
|
for (i = 0; i < state->map->ngraph + n; i++)
|
|
if (an[i] > 0) {
|
|
ax[i] /= an[i];
|
|
ay[i] /= an[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
state->map->edgex = snewn(state->map->ngraph, int);
|
|
state->map->edgey = snewn(state->map->ngraph, int);
|
|
memcpy(state->map->edgex, bestx, state->map->ngraph * sizeof(int));
|
|
memcpy(state->map->edgey, besty, state->map->ngraph * sizeof(int));
|
|
|
|
state->map->regionx = snewn(n, int);
|
|
state->map->regiony = snewn(n, int);
|
|
memcpy(state->map->regionx, bestx + state->map->ngraph, n*sizeof(int));
|
|
memcpy(state->map->regiony, besty + state->map->ngraph, n*sizeof(int));
|
|
|
|
for (i = 0; i < state->map->ngraph; i++)
|
|
if (state->map->edgex[i] < 0) {
|
|
/* Find the other representation of this edge. */
|
|
int e = state->map->graph[i];
|
|
int iprime = graph_edge_index(state->map->graph, n,
|
|
state->map->ngraph, e%n, e/n);
|
|
assert(state->map->edgex[iprime] >= 0);
|
|
state->map->edgex[i] = state->map->edgex[iprime];
|
|
state->map->edgey[i] = state->map->edgey[iprime];
|
|
}
|
|
|
|
sfree(ax);
|
|
sfree(ay);
|
|
sfree(an);
|
|
sfree(best);
|
|
sfree(bestx);
|
|
sfree(besty);
|
|
}
|
|
|
|
return state;
|
|
}
|
|
|
|
static game_state *dup_game(const game_state *state)
|
|
{
|
|
game_state *ret = snew(game_state);
|
|
|
|
ret->p = state->p;
|
|
ret->colouring = snewn(state->p.n, int);
|
|
memcpy(ret->colouring, state->colouring, state->p.n * sizeof(int));
|
|
ret->pencil = snewn(state->p.n, int);
|
|
memcpy(ret->pencil, state->pencil, state->p.n * sizeof(int));
|
|
ret->map = state->map;
|
|
ret->map->refcount++;
|
|
ret->completed = state->completed;
|
|
ret->cheated = state->cheated;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void free_game(game_state *state)
|
|
{
|
|
if (--state->map->refcount <= 0) {
|
|
sfree(state->map->map);
|
|
sfree(state->map->graph);
|
|
sfree(state->map->immutable);
|
|
sfree(state->map->edgex);
|
|
sfree(state->map->edgey);
|
|
sfree(state->map->regionx);
|
|
sfree(state->map->regiony);
|
|
sfree(state->map);
|
|
}
|
|
sfree(state->pencil);
|
|
sfree(state->colouring);
|
|
sfree(state);
|
|
}
|
|
|
|
static char *solve_game(const game_state *state, const game_state *currstate,
|
|
const char *aux, const char **error)
|
|
{
|
|
if (!aux) {
|
|
/*
|
|
* Use the solver.
|
|
*/
|
|
int *colouring;
|
|
struct solver_scratch *sc;
|
|
int sret;
|
|
int i;
|
|
char *ret, buf[80];
|
|
int retlen, retsize;
|
|
|
|
colouring = snewn(state->map->n, int);
|
|
memcpy(colouring, state->colouring, state->map->n * sizeof(int));
|
|
|
|
sc = new_scratch(state->map->graph, state->map->n, state->map->ngraph);
|
|
sret = map_solver(sc, state->map->graph, state->map->n,
|
|
state->map->ngraph, colouring, DIFFCOUNT-1);
|
|
free_scratch(sc);
|
|
|
|
if (sret != 1) {
|
|
sfree(colouring);
|
|
if (sret == 0)
|
|
*error = "Puzzle is inconsistent";
|
|
else
|
|
*error = "Unable to find a unique solution for this puzzle";
|
|
return NULL;
|
|
}
|
|
|
|
retsize = 64;
|
|
ret = snewn(retsize, char);
|
|
strcpy(ret, "S");
|
|
retlen = 1;
|
|
|
|
for (i = 0; i < state->map->n; i++) {
|
|
int len;
|
|
|
|
assert(colouring[i] >= 0);
|
|
if (colouring[i] == currstate->colouring[i])
|
|
continue;
|
|
assert(!state->map->immutable[i]);
|
|
|
|
len = sprintf(buf, ";%d:%d", colouring[i], i);
|
|
if (retlen + len >= retsize) {
|
|
retsize = retlen + len + 256;
|
|
ret = sresize(ret, retsize, char);
|
|
}
|
|
strcpy(ret + retlen, buf);
|
|
retlen += len;
|
|
}
|
|
|
|
sfree(colouring);
|
|
|
|
return ret;
|
|
}
|
|
return dupstr(aux);
|
|
}
|
|
|
|
struct game_ui {
|
|
/*
|
|
* drag_colour:
|
|
*
|
|
* - -2 means no drag currently active.
|
|
* - >=0 means we're dragging a solid colour.
|
|
* - -1 means we're dragging a blank space, and drag_pencil
|
|
* might or might not add some pencil-mark stipples to that.
|
|
*/
|
|
int drag_colour;
|
|
int drag_pencil;
|
|
int dragx, dragy;
|
|
bool show_numbers;
|
|
|
|
int cur_x, cur_y, cur_lastmove;
|
|
bool cur_visible, cur_moved;
|
|
};
|
|
|
|
static game_ui *new_ui(const game_state *state)
|
|
{
|
|
game_ui *ui = snew(game_ui);
|
|
ui->dragx = ui->dragy = -1;
|
|
ui->drag_colour = -2;
|
|
ui->drag_pencil = 0;
|
|
ui->show_numbers = false;
|
|
ui->cur_x = ui->cur_y = 0;
|
|
ui->cur_visible = false;
|
|
ui->cur_moved = false;
|
|
ui->cur_lastmove = 0;
|
|
return ui;
|
|
}
|
|
|
|
static void free_ui(game_ui *ui)
|
|
{
|
|
sfree(ui);
|
|
}
|
|
|
|
static char *encode_ui(const game_ui *ui)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static void decode_ui(game_ui *ui, const char *encoding)
|
|
{
|
|
}
|
|
|
|
static void game_changed_state(game_ui *ui, const game_state *oldstate,
|
|
const game_state *newstate)
|
|
{
|
|
}
|
|
|
|
struct game_drawstate {
|
|
int tilesize;
|
|
unsigned long *drawn, *todraw;
|
|
bool started;
|
|
int dragx, dragy;
|
|
bool drag_visible;
|
|
blitter *bl;
|
|
};
|
|
|
|
/* Flags in `drawn'. */
|
|
#define ERR_BASE 0x00800000L
|
|
#define ERR_MASK 0xFF800000L
|
|
#define PENCIL_T_BASE 0x00080000L
|
|
#define PENCIL_T_MASK 0x00780000L
|
|
#define PENCIL_B_BASE 0x00008000L
|
|
#define PENCIL_B_MASK 0x00078000L
|
|
#define PENCIL_MASK 0x007F8000L
|
|
#define SHOW_NUMBERS 0x00004000L
|
|
|
|
#define TILESIZE (ds->tilesize)
|
|
#define BORDER (TILESIZE)
|
|
#define COORD(x) ( (x) * TILESIZE + BORDER )
|
|
#define FROMCOORD(x) ( ((x) - BORDER + TILESIZE) / TILESIZE - 1 )
|
|
|
|
/*
|
|
* EPSILON_FOO are epsilons added to absolute cursor position by
|
|
* cursor movement, such that in pathological cases (e.g. a very
|
|
* small diamond-shaped area) it's relatively easy to select the
|
|
* region you wanted.
|
|
*/
|
|
|
|
#define EPSILON_X(button) (((button) == CURSOR_RIGHT) ? +1 : \
|
|
((button) == CURSOR_LEFT) ? -1 : 0)
|
|
#define EPSILON_Y(button) (((button) == CURSOR_DOWN) ? +1 : \
|
|
((button) == CURSOR_UP) ? -1 : 0)
|
|
|
|
|
|
/*
|
|
* Return the map region containing a point in tile (tx,ty), offset by
|
|
* (x_eps,y_eps) from the centre of the tile.
|
|
*/
|
|
static int region_from_logical_coords(const game_state *state, int tx, int ty,
|
|
int x_eps, int y_eps)
|
|
{
|
|
int w = state->p.w, h = state->p.h, wh = w*h /*, n = state->p.n */;
|
|
|
|
int quadrant;
|
|
|
|
if (tx < 0 || tx >= w || ty < 0 || ty >= h)
|
|
return -1; /* border */
|
|
|
|
quadrant = 2 * (x_eps > y_eps) + (-x_eps > y_eps);
|
|
quadrant = (quadrant == 0 ? BE :
|
|
quadrant == 1 ? LE :
|
|
quadrant == 2 ? RE : TE);
|
|
|
|
return state->map->map[quadrant * wh + ty*w+tx];
|
|
}
|
|
|
|
static int region_from_coords(const game_state *state,
|
|
const game_drawstate *ds, int x, int y)
|
|
{
|
|
int tx = FROMCOORD(x), ty = FROMCOORD(y);
|
|
return region_from_logical_coords(
|
|
state, tx, ty, x - COORD(tx) - TILESIZE/2, y - COORD(ty) - TILESIZE/2);
|
|
}
|
|
|
|
static int region_from_ui_cursor(const game_state *state, const game_ui *ui)
|
|
{
|
|
assert(ui->cur_visible);
|
|
return region_from_logical_coords(state, ui->cur_x, ui->cur_y,
|
|
EPSILON_X(ui->cur_lastmove),
|
|
EPSILON_Y(ui->cur_lastmove));
|
|
}
|
|
|
|
static const char *current_key_label(const game_ui *ui,
|
|
const game_state *state, int button)
|
|
{
|
|
int r;
|
|
|
|
if (IS_CURSOR_SELECT(button) && ui->cur_visible) {
|
|
if (ui->drag_colour == -2) return "Pick";
|
|
r = region_from_ui_cursor(state, ui);
|
|
if (state->map->immutable[r]) return "Cancel";
|
|
if (!ui->cur_moved) return ui->drag_pencil ? "Cancel" : "Clear";
|
|
if (button == CURSOR_SELECT2) {
|
|
if (state->colouring[r] >= 0) return "Cancel";
|
|
if (ui->drag_colour >= 0) return "Stipple";
|
|
}
|
|
if (ui->drag_pencil) return "Stipple";
|
|
return ui->drag_colour >= 0 ? "Fill" : "Clear";
|
|
}
|
|
return "";
|
|
}
|
|
|
|
static char *interpret_move(const game_state *state, game_ui *ui,
|
|
const game_drawstate *ds,
|
|
int x, int y, int button)
|
|
{
|
|
char *bufp, buf[256];
|
|
bool alt_button;
|
|
int drop_region;
|
|
|
|
/*
|
|
* Enable or disable numeric labels on regions.
|
|
*/
|
|
if (button == 'l' || button == 'L') {
|
|
ui->show_numbers = !ui->show_numbers;
|
|
return UI_UPDATE;
|
|
}
|
|
|
|
if (IS_CURSOR_MOVE(button)) {
|
|
move_cursor(button, &ui->cur_x, &ui->cur_y, state->p.w, state->p.h,
|
|
false);
|
|
ui->cur_visible = true;
|
|
ui->cur_moved = true;
|
|
ui->cur_lastmove = button;
|
|
return UI_UPDATE;
|
|
}
|
|
if (IS_CURSOR_SELECT(button)) {
|
|
if (!ui->cur_visible) {
|
|
ui->cur_visible = true;
|
|
return UI_UPDATE;
|
|
}
|
|
if (ui->drag_colour == -2) { /* not currently cursor-dragging, start. */
|
|
int r = region_from_ui_cursor(state, ui);
|
|
if (r >= 0) {
|
|
ui->drag_colour = state->colouring[r];
|
|
ui->drag_pencil = (ui->drag_colour >= 0) ? 0 : state->pencil[r];
|
|
} else {
|
|
ui->drag_colour = -1;
|
|
ui->drag_pencil = 0;
|
|
}
|
|
ui->cur_moved = false;
|
|
return UI_UPDATE;
|
|
} else { /* currently cursor-dragging; drop the colour in the new region. */
|
|
alt_button = (button == CURSOR_SELECT2);
|
|
/* Double-select removes current colour. */
|
|
if (!ui->cur_moved) ui->drag_colour = -1;
|
|
drop_region = region_from_ui_cursor(state, ui);
|
|
goto drag_dropped;
|
|
}
|
|
}
|
|
|
|
if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
|
|
int r = region_from_coords(state, ds, x, y);
|
|
|
|
if (r >= 0) {
|
|
ui->drag_colour = state->colouring[r];
|
|
ui->drag_pencil = state->pencil[r];
|
|
if (ui->drag_colour >= 0)
|
|
ui->drag_pencil = 0; /* should be already, but double-check */
|
|
} else {
|
|
ui->drag_colour = -1;
|
|
ui->drag_pencil = 0;
|
|
}
|
|
ui->dragx = x;
|
|
ui->dragy = y;
|
|
ui->cur_visible = false;
|
|
return UI_UPDATE;
|
|
}
|
|
|
|
if ((button == LEFT_DRAG || button == RIGHT_DRAG) &&
|
|
ui->drag_colour > -2) {
|
|
ui->dragx = x;
|
|
ui->dragy = y;
|
|
return UI_UPDATE;
|
|
}
|
|
|
|
if ((button == LEFT_RELEASE || button == RIGHT_RELEASE) &&
|
|
ui->drag_colour > -2) {
|
|
alt_button = (button == RIGHT_RELEASE);
|
|
drop_region = region_from_coords(state, ds, x, y);
|
|
goto drag_dropped;
|
|
}
|
|
|
|
return NULL;
|
|
|
|
drag_dropped:
|
|
{
|
|
int r = drop_region;
|
|
int c = ui->drag_colour;
|
|
int p = ui->drag_pencil;
|
|
int oldp;
|
|
|
|
/*
|
|
* Cancel the drag, whatever happens.
|
|
*/
|
|
ui->drag_colour = -2;
|
|
|
|
if (r < 0)
|
|
return UI_UPDATE; /* drag into border; do nothing else */
|
|
|
|
if (state->map->immutable[r])
|
|
return UI_UPDATE; /* can't change this region */
|
|
|
|
if (state->colouring[r] == c && state->pencil[r] == p)
|
|
return UI_UPDATE; /* don't _need_ to change this region */
|
|
|
|
if (alt_button) {
|
|
if (state->colouring[r] >= 0) {
|
|
/* Can't pencil on a coloured region */
|
|
return UI_UPDATE;
|
|
} else if (c >= 0) {
|
|
/* Right-dragging from colour to blank toggles one pencil */
|
|
p = state->pencil[r] ^ (1 << c);
|
|
c = -1;
|
|
}
|
|
/* Otherwise, right-dragging from blank to blank is equivalent
|
|
* to left-dragging. */
|
|
}
|
|
|
|
bufp = buf;
|
|
oldp = state->pencil[r];
|
|
if (c != state->colouring[r]) {
|
|
bufp += sprintf(bufp, ";%c:%d", (int)(c < 0 ? 'C' : '0' + c), r);
|
|
if (c >= 0)
|
|
oldp = 0;
|
|
}
|
|
if (p != oldp) {
|
|
int i;
|
|
for (i = 0; i < FOUR; i++)
|
|
if ((oldp ^ p) & (1 << i))
|
|
bufp += sprintf(bufp, ";p%c:%d", (int)('0' + i), r);
|
|
}
|
|
|
|
return dupstr(buf+1); /* ignore first semicolon */
|
|
}
|
|
}
|
|
|
|
static game_state *execute_move(const game_state *state, const char *move)
|
|
{
|
|
int n = state->p.n;
|
|
game_state *ret = dup_game(state);
|
|
int c, k, adv, i;
|
|
|
|
while (*move) {
|
|
bool pencil = false;
|
|
|
|
c = *move;
|
|
if (c == 'p') {
|
|
pencil = true;
|
|
c = *++move;
|
|
}
|
|
if ((c == 'C' || (c >= '0' && c < '0'+FOUR)) &&
|
|
sscanf(move+1, ":%d%n", &k, &adv) == 1 &&
|
|
k >= 0 && k < state->p.n) {
|
|
move += 1 + adv;
|
|
if (pencil) {
|
|
if (ret->colouring[k] >= 0) {
|
|
free_game(ret);
|
|
return NULL;
|
|
}
|
|
if (c == 'C')
|
|
ret->pencil[k] = 0;
|
|
else
|
|
ret->pencil[k] ^= 1 << (c - '0');
|
|
} else {
|
|
ret->colouring[k] = (c == 'C' ? -1 : c - '0');
|
|
ret->pencil[k] = 0;
|
|
}
|
|
} else if (*move == 'S') {
|
|
move++;
|
|
ret->cheated = true;
|
|
} else {
|
|
free_game(ret);
|
|
return NULL;
|
|
}
|
|
|
|
if (*move && *move != ';') {
|
|
free_game(ret);
|
|
return NULL;
|
|
}
|
|
if (*move)
|
|
move++;
|
|
}
|
|
|
|
/*
|
|
* Check for completion.
|
|
*/
|
|
if (!ret->completed) {
|
|
bool ok = true;
|
|
|
|
for (i = 0; i < n; i++)
|
|
if (ret->colouring[i] < 0) {
|
|
ok = false;
|
|
break;
|
|
}
|
|
|
|
if (ok) {
|
|
for (i = 0; i < ret->map->ngraph; i++) {
|
|
int j = ret->map->graph[i] / n;
|
|
int k = ret->map->graph[i] % n;
|
|
if (ret->colouring[j] == ret->colouring[k]) {
|
|
ok = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ok)
|
|
ret->completed = true;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Drawing routines.
|
|
*/
|
|
|
|
static void game_compute_size(const game_params *params, int tilesize,
|
|
int *x, int *y)
|
|
{
|
|
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
|
|
struct { int tilesize; } ads, *ds = &ads;
|
|
ads.tilesize = tilesize;
|
|
|
|
*x = params->w * TILESIZE + 2 * BORDER + 1;
|
|
*y = params->h * TILESIZE + 2 * BORDER + 1;
|
|
}
|
|
|
|
static void game_set_size(drawing *dr, game_drawstate *ds,
|
|
const game_params *params, int tilesize)
|
|
{
|
|
ds->tilesize = tilesize;
|
|
|
|
assert(!ds->bl); /* set_size is never called twice */
|
|
ds->bl = blitter_new(dr, TILESIZE+3, TILESIZE+3);
|
|
}
|
|
|
|
static const float map_colours[FOUR][3] = {
|
|
#ifdef VIVID_COLOURS
|
|
/* Use more vivid colours (e.g. on the Pocket PC) */
|
|
{0.75F, 0.25F, 0.25F},
|
|
{0.3F, 0.7F, 0.3F},
|
|
{0.3F, 0.3F, 0.7F},
|
|
{0.85F, 0.85F, 0.1F},
|
|
#else
|
|
{0.7F, 0.5F, 0.4F},
|
|
{0.8F, 0.7F, 0.4F},
|
|
{0.5F, 0.6F, 0.4F},
|
|
{0.55F, 0.45F, 0.35F},
|
|
#endif
|
|
};
|
|
static const int map_hatching[FOUR] = {
|
|
HATCH_VERT, HATCH_SLASH, HATCH_HORIZ, HATCH_BACKSLASH
|
|
};
|
|
|
|
static float *game_colours(frontend *fe, int *ncolours)
|
|
{
|
|
float *ret = snewn(3 * NCOLOURS, float);
|
|
|
|
frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
|
|
|
|
ret[COL_GRID * 3 + 0] = 0.0F;
|
|
ret[COL_GRID * 3 + 1] = 0.0F;
|
|
ret[COL_GRID * 3 + 2] = 0.0F;
|
|
|
|
memcpy(ret + COL_0 * 3, map_colours[0], 3 * sizeof(float));
|
|
memcpy(ret + COL_1 * 3, map_colours[1], 3 * sizeof(float));
|
|
memcpy(ret + COL_2 * 3, map_colours[2], 3 * sizeof(float));
|
|
memcpy(ret + COL_3 * 3, map_colours[3], 3 * sizeof(float));
|
|
|
|
ret[COL_ERROR * 3 + 0] = 1.0F;
|
|
ret[COL_ERROR * 3 + 1] = 0.0F;
|
|
ret[COL_ERROR * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_ERRTEXT * 3 + 0] = 1.0F;
|
|
ret[COL_ERRTEXT * 3 + 1] = 1.0F;
|
|
ret[COL_ERRTEXT * 3 + 2] = 1.0F;
|
|
|
|
*ncolours = NCOLOURS;
|
|
return ret;
|
|
}
|
|
|
|
static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state)
|
|
{
|
|
struct game_drawstate *ds = snew(struct game_drawstate);
|
|
int i;
|
|
|
|
ds->tilesize = 0;
|
|
ds->drawn = snewn(state->p.w * state->p.h, unsigned long);
|
|
for (i = 0; i < state->p.w * state->p.h; i++)
|
|
ds->drawn[i] = 0xFFFFL;
|
|
ds->todraw = snewn(state->p.w * state->p.h, unsigned long);
|
|
ds->started = false;
|
|
ds->bl = NULL;
|
|
ds->drag_visible = false;
|
|
ds->dragx = ds->dragy = -1;
|
|
|
|
return ds;
|
|
}
|
|
|
|
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
|
|
{
|
|
sfree(ds->drawn);
|
|
sfree(ds->todraw);
|
|
if (ds->bl)
|
|
blitter_free(dr, ds->bl);
|
|
sfree(ds);
|
|
}
|
|
|
|
static void draw_error(drawing *dr, game_drawstate *ds, int x, int y)
|
|
{
|
|
int coords[8];
|
|
int yext, xext;
|
|
|
|
/*
|
|
* Draw a diamond.
|
|
*/
|
|
coords[0] = x - TILESIZE*2/5;
|
|
coords[1] = y;
|
|
coords[2] = x;
|
|
coords[3] = y - TILESIZE*2/5;
|
|
coords[4] = x + TILESIZE*2/5;
|
|
coords[5] = y;
|
|
coords[6] = x;
|
|
coords[7] = y + TILESIZE*2/5;
|
|
draw_polygon(dr, coords, 4, COL_ERROR, COL_GRID);
|
|
|
|
/*
|
|
* Draw an exclamation mark in the diamond. This turns out to
|
|
* look unpleasantly off-centre if done via draw_text, so I do
|
|
* it by hand on the basis that exclamation marks aren't that
|
|
* difficult to draw...
|
|
*/
|
|
xext = TILESIZE/16;
|
|
yext = TILESIZE*2/5 - (xext*2+2);
|
|
draw_rect(dr, x-xext, y-yext, xext*2+1, yext*2+1 - (xext*3),
|
|
COL_ERRTEXT);
|
|
draw_rect(dr, x-xext, y+yext-xext*2+1, xext*2+1, xext*2, COL_ERRTEXT);
|
|
}
|
|
|
|
static void draw_square(drawing *dr, game_drawstate *ds,
|
|
const game_params *params, struct map *map,
|
|
int x, int y, unsigned long v)
|
|
{
|
|
int w = params->w, h = params->h, wh = w*h;
|
|
int tv, bv, xo, yo, i, j, oldj;
|
|
unsigned long errs, pencil, show_numbers;
|
|
|
|
errs = v & ERR_MASK;
|
|
v &= ~ERR_MASK;
|
|
pencil = v & PENCIL_MASK;
|
|
v &= ~PENCIL_MASK;
|
|
show_numbers = v & SHOW_NUMBERS;
|
|
v &= ~SHOW_NUMBERS;
|
|
tv = v / FIVE;
|
|
bv = v % FIVE;
|
|
|
|
clip(dr, COORD(x), COORD(y), TILESIZE, TILESIZE);
|
|
|
|
/*
|
|
* Draw the region colour.
|
|
*/
|
|
draw_rect(dr, COORD(x), COORD(y), TILESIZE, TILESIZE,
|
|
(tv == FOUR ? COL_BACKGROUND : COL_0 + tv));
|
|
/*
|
|
* Draw the second region colour, if this is a diagonally
|
|
* divided square.
|
|
*/
|
|
if (map->map[TE * wh + y*w+x] != map->map[BE * wh + y*w+x]) {
|
|
int coords[6];
|
|
coords[0] = COORD(x)-1;
|
|
coords[1] = COORD(y+1)+1;
|
|
if (map->map[LE * wh + y*w+x] == map->map[TE * wh + y*w+x])
|
|
coords[2] = COORD(x+1)+1;
|
|
else
|
|
coords[2] = COORD(x)-1;
|
|
coords[3] = COORD(y)-1;
|
|
coords[4] = COORD(x+1)+1;
|
|
coords[5] = COORD(y+1)+1;
|
|
draw_polygon(dr, coords, 3,
|
|
(bv == FOUR ? COL_BACKGROUND : COL_0 + bv), COL_GRID);
|
|
}
|
|
|
|
/*
|
|
* Draw `pencil marks'. Currently we arrange these in a square
|
|
* formation, which means we may be in trouble if the value of
|
|
* FOUR changes later...
|
|
*/
|
|
assert(FOUR == 4);
|
|
for (yo = 0; yo < 4; yo++)
|
|
for (xo = 0; xo < 4; xo++) {
|
|
int te = map->map[TE * wh + y*w+x];
|
|
int e, ee, c;
|
|
|
|
e = (yo < xo && yo < 3-xo ? TE :
|
|
yo > xo && yo > 3-xo ? BE :
|
|
xo < 2 ? LE : RE);
|
|
ee = map->map[e * wh + y*w+x];
|
|
|
|
if (xo != (yo * 2 + 1) % 5)
|
|
continue;
|
|
c = yo;
|
|
|
|
if (!(pencil & ((ee == te ? PENCIL_T_BASE : PENCIL_B_BASE) << c)))
|
|
continue;
|
|
|
|
if (yo == xo &&
|
|
(map->map[TE * wh + y*w+x] != map->map[LE * wh + y*w+x]))
|
|
continue; /* avoid TL-BR diagonal line */
|
|
if (yo == 3-xo &&
|
|
(map->map[TE * wh + y*w+x] != map->map[RE * wh + y*w+x]))
|
|
continue; /* avoid BL-TR diagonal line */
|
|
|
|
draw_circle(dr, COORD(x) + (xo+1)*TILESIZE/5,
|
|
COORD(y) + (yo+1)*TILESIZE/5,
|
|
TILESIZE/7, COL_0 + c, COL_0 + c);
|
|
}
|
|
|
|
/*
|
|
* Draw the grid lines, if required.
|
|
*/
|
|
if (x <= 0 || map->map[RE*wh+y*w+(x-1)] != map->map[LE*wh+y*w+x])
|
|
draw_rect(dr, COORD(x), COORD(y), 1, TILESIZE, COL_GRID);
|
|
if (y <= 0 || map->map[BE*wh+(y-1)*w+x] != map->map[TE*wh+y*w+x])
|
|
draw_rect(dr, COORD(x), COORD(y), TILESIZE, 1, COL_GRID);
|
|
if (x <= 0 || y <= 0 ||
|
|
map->map[RE*wh+(y-1)*w+(x-1)] != map->map[TE*wh+y*w+x] ||
|
|
map->map[BE*wh+(y-1)*w+(x-1)] != map->map[LE*wh+y*w+x])
|
|
draw_rect(dr, COORD(x), COORD(y), 1, 1, COL_GRID);
|
|
|
|
/*
|
|
* Draw error markers.
|
|
*/
|
|
for (yo = 0; yo < 3; yo++)
|
|
for (xo = 0; xo < 3; xo++)
|
|
if (errs & (ERR_BASE << (yo*3+xo)))
|
|
draw_error(dr, ds,
|
|
(COORD(x)*2+TILESIZE*xo)/2,
|
|
(COORD(y)*2+TILESIZE*yo)/2);
|
|
|
|
/*
|
|
* Draw region numbers, if desired.
|
|
*/
|
|
if (show_numbers) {
|
|
oldj = -1;
|
|
for (i = 0; i < 2; i++) {
|
|
j = map->map[(i?BE:TE)*wh+y*w+x];
|
|
if (oldj == j)
|
|
continue;
|
|
oldj = j;
|
|
|
|
xo = map->regionx[j] - 2*x;
|
|
yo = map->regiony[j] - 2*y;
|
|
if (xo >= 0 && xo <= 2 && yo >= 0 && yo <= 2) {
|
|
char buf[80];
|
|
sprintf(buf, "%d", j);
|
|
draw_text(dr, (COORD(x)*2+TILESIZE*xo)/2,
|
|
(COORD(y)*2+TILESIZE*yo)/2,
|
|
FONT_VARIABLE, 3*TILESIZE/5,
|
|
ALIGN_HCENTRE|ALIGN_VCENTRE,
|
|
COL_GRID, buf);
|
|
}
|
|
}
|
|
}
|
|
|
|
unclip(dr);
|
|
|
|
draw_update(dr, COORD(x), COORD(y), TILESIZE, TILESIZE);
|
|
}
|
|
|
|
static void game_redraw(drawing *dr, game_drawstate *ds,
|
|
const game_state *oldstate, const game_state *state,
|
|
int dir, const game_ui *ui,
|
|
float animtime, float flashtime)
|
|
{
|
|
int w = state->p.w, h = state->p.h, wh = w*h, n = state->p.n;
|
|
int x, y, i;
|
|
int flash;
|
|
|
|
if (ds->drag_visible) {
|
|
blitter_load(dr, ds->bl, ds->dragx, ds->dragy);
|
|
draw_update(dr, ds->dragx, ds->dragy, TILESIZE + 3, TILESIZE + 3);
|
|
ds->drag_visible = false;
|
|
}
|
|
|
|
if (!ds->started) {
|
|
draw_rect(dr, COORD(0), COORD(0), w*TILESIZE+1, h*TILESIZE+1,
|
|
COL_GRID);
|
|
draw_update(dr, COORD(0), COORD(0), w*TILESIZE+1, h*TILESIZE+1);
|
|
ds->started = true;
|
|
}
|
|
|
|
if (flashtime) {
|
|
if (flash_type == 1)
|
|
flash = (int)(flashtime * FOUR / flash_length);
|
|
else
|
|
flash = 1 + (int)(flashtime * THREE / flash_length);
|
|
} else
|
|
flash = -1;
|
|
|
|
/*
|
|
* Set up the `todraw' array.
|
|
*/
|
|
for (y = 0; y < h; y++)
|
|
for (x = 0; x < w; x++) {
|
|
int tv = state->colouring[state->map->map[TE * wh + y*w+x]];
|
|
int bv = state->colouring[state->map->map[BE * wh + y*w+x]];
|
|
unsigned long v;
|
|
|
|
if (tv < 0)
|
|
tv = FOUR;
|
|
if (bv < 0)
|
|
bv = FOUR;
|
|
|
|
if (flash >= 0) {
|
|
if (flash_type == 1) {
|
|
if (tv == flash)
|
|
tv = FOUR;
|
|
if (bv == flash)
|
|
bv = FOUR;
|
|
} else if (flash_type == 2) {
|
|
if (flash % 2)
|
|
tv = bv = FOUR;
|
|
} else {
|
|
if (tv != FOUR)
|
|
tv = (tv + flash) % FOUR;
|
|
if (bv != FOUR)
|
|
bv = (bv + flash) % FOUR;
|
|
}
|
|
}
|
|
|
|
v = tv * FIVE + bv;
|
|
|
|
/*
|
|
* Add pencil marks.
|
|
*/
|
|
for (i = 0; i < FOUR; i++) {
|
|
if (state->colouring[state->map->map[TE * wh + y*w+x]] < 0 &&
|
|
(state->pencil[state->map->map[TE * wh + y*w+x]] & (1<<i)))
|
|
v |= PENCIL_T_BASE << i;
|
|
if (state->colouring[state->map->map[BE * wh + y*w+x]] < 0 &&
|
|
(state->pencil[state->map->map[BE * wh + y*w+x]] & (1<<i)))
|
|
v |= PENCIL_B_BASE << i;
|
|
}
|
|
|
|
if (ui->show_numbers)
|
|
v |= SHOW_NUMBERS;
|
|
|
|
ds->todraw[y*w+x] = v;
|
|
}
|
|
|
|
/*
|
|
* Add error markers to the `todraw' array.
|
|
*/
|
|
for (i = 0; i < state->map->ngraph; i++) {
|
|
int v1 = state->map->graph[i] / n;
|
|
int v2 = state->map->graph[i] % n;
|
|
int xo, yo;
|
|
|
|
if (state->colouring[v1] < 0 || state->colouring[v2] < 0)
|
|
continue;
|
|
if (state->colouring[v1] != state->colouring[v2])
|
|
continue;
|
|
|
|
x = state->map->edgex[i];
|
|
y = state->map->edgey[i];
|
|
|
|
xo = x % 2; x /= 2;
|
|
yo = y % 2; y /= 2;
|
|
|
|
ds->todraw[y*w+x] |= ERR_BASE << (yo*3+xo);
|
|
if (xo == 0) {
|
|
assert(x > 0);
|
|
ds->todraw[y*w+(x-1)] |= ERR_BASE << (yo*3+2);
|
|
}
|
|
if (yo == 0) {
|
|
assert(y > 0);
|
|
ds->todraw[(y-1)*w+x] |= ERR_BASE << (2*3+xo);
|
|
}
|
|
if (xo == 0 && yo == 0) {
|
|
assert(x > 0 && y > 0);
|
|
ds->todraw[(y-1)*w+(x-1)] |= ERR_BASE << (2*3+2);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now actually draw everything.
|
|
*/
|
|
for (y = 0; y < h; y++)
|
|
for (x = 0; x < w; x++) {
|
|
unsigned long v = ds->todraw[y*w+x];
|
|
if (ds->drawn[y*w+x] != v) {
|
|
draw_square(dr, ds, &state->p, state->map, x, y, v);
|
|
ds->drawn[y*w+x] = v;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Draw the dragged colour blob if any.
|
|
*/
|
|
if ((ui->drag_colour > -2) || ui->cur_visible) {
|
|
int bg, cursor_x, cursor_y;
|
|
bool iscur = false;
|
|
if (ui->drag_colour >= 0)
|
|
bg = COL_0 + ui->drag_colour;
|
|
else if (ui->drag_colour == -1) {
|
|
bg = COL_BACKGROUND;
|
|
} else {
|
|
int r = region_from_ui_cursor(state, ui);
|
|
int c = (r < 0) ? -1 : state->colouring[r];
|
|
/*bg = COL_GRID;*/
|
|
bg = (c < 0) ? COL_BACKGROUND : COL_0 + c;
|
|
iscur = true;
|
|
}
|
|
|
|
if (ui->cur_visible) {
|
|
cursor_x = COORD(ui->cur_x) + TILESIZE/2 +
|
|
EPSILON_X(ui->cur_lastmove);
|
|
cursor_y = COORD(ui->cur_y) + TILESIZE/2 +
|
|
EPSILON_Y(ui->cur_lastmove);
|
|
} else {
|
|
cursor_x = ui->dragx;
|
|
cursor_y = ui->dragy;
|
|
}
|
|
ds->dragx = cursor_x - TILESIZE/2 - 2;
|
|
ds->dragy = cursor_y - TILESIZE/2 - 2;
|
|
blitter_save(dr, ds->bl, ds->dragx, ds->dragy);
|
|
draw_circle(dr, cursor_x, cursor_y,
|
|
iscur ? TILESIZE/4 : TILESIZE/2, bg, COL_GRID);
|
|
for (i = 0; i < FOUR; i++)
|
|
if (ui->drag_pencil & (1 << i))
|
|
draw_circle(dr, cursor_x + ((i*4+2)%10-3) * TILESIZE/10,
|
|
cursor_y + (i*2-3) * TILESIZE/10,
|
|
TILESIZE/8, COL_0 + i, COL_0 + i);
|
|
draw_update(dr, ds->dragx, ds->dragy, TILESIZE + 3, TILESIZE + 3);
|
|
ds->drag_visible = true;
|
|
}
|
|
}
|
|
|
|
static float game_anim_length(const game_state *oldstate,
|
|
const game_state *newstate, int dir, game_ui *ui)
|
|
{
|
|
return 0.0F;
|
|
}
|
|
|
|
static float game_flash_length(const game_state *oldstate,
|
|
const game_state *newstate, int dir, game_ui *ui)
|
|
{
|
|
if (!oldstate->completed && newstate->completed &&
|
|
!oldstate->cheated && !newstate->cheated) {
|
|
if (flash_type < 0) {
|
|
char *env = getenv("MAP_ALTERNATIVE_FLASH");
|
|
if (env)
|
|
flash_type = atoi(env);
|
|
else
|
|
flash_type = 0;
|
|
flash_length = (flash_type == 1 ? 0.50F : 0.30F);
|
|
}
|
|
return flash_length;
|
|
} else
|
|
return 0.0F;
|
|
}
|
|
|
|
static void game_get_cursor_location(const game_ui *ui,
|
|
const game_drawstate *ds,
|
|
const game_state *state,
|
|
const game_params *params,
|
|
int *x, int *y, int *w, int *h)
|
|
{
|
|
if(ui->cur_visible) {
|
|
*x = COORD(ui->cur_x);
|
|
*y = COORD(ui->cur_y);
|
|
*w = *h = TILESIZE;
|
|
}
|
|
}
|
|
|
|
static int game_status(const game_state *state)
|
|
{
|
|
return state->completed ? +1 : 0;
|
|
}
|
|
|
|
static void game_print_size(const game_params *params, float *x, float *y)
|
|
{
|
|
int pw, ph;
|
|
|
|
/*
|
|
* I'll use 4mm squares by default, I think. Simplest way to
|
|
* compute this size is to compute the pixel puzzle size at a
|
|
* given tile size and then scale.
|
|
*/
|
|
game_compute_size(params, 400, &pw, &ph);
|
|
*x = pw / 100.0F;
|
|
*y = ph / 100.0F;
|
|
}
|
|
|
|
static void game_print(drawing *dr, const game_state *state, int tilesize)
|
|
{
|
|
int w = state->p.w, h = state->p.h, wh = w*h, n = state->p.n;
|
|
int ink, c[FOUR], i;
|
|
int x, y, r;
|
|
int *coords, ncoords, coordsize;
|
|
|
|
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
|
|
struct { int tilesize; } ads, *ds = &ads;
|
|
/* We can't call game_set_size() here because we don't want a blitter */
|
|
ads.tilesize = tilesize;
|
|
|
|
ink = print_mono_colour(dr, 0);
|
|
for (i = 0; i < FOUR; i++)
|
|
c[i] = print_rgb_hatched_colour(dr, map_colours[i][0],
|
|
map_colours[i][1], map_colours[i][2],
|
|
map_hatching[i]);
|
|
|
|
coordsize = 0;
|
|
coords = NULL;
|
|
|
|
print_line_width(dr, TILESIZE / 16);
|
|
|
|
/*
|
|
* Draw a single filled polygon around each region.
|
|
*/
|
|
for (r = 0; r < n; r++) {
|
|
int octants[8], lastdir, d1, d2, ox, oy;
|
|
|
|
/*
|
|
* Start by finding a point on the region boundary. Any
|
|
* point will do. To do this, we'll search for a square
|
|
* containing the region and then decide which corner of it
|
|
* to use.
|
|
*/
|
|
x = w;
|
|
for (y = 0; y < h; y++) {
|
|
for (x = 0; x < w; x++) {
|
|
if (state->map->map[wh*0+y*w+x] == r ||
|
|
state->map->map[wh*1+y*w+x] == r ||
|
|
state->map->map[wh*2+y*w+x] == r ||
|
|
state->map->map[wh*3+y*w+x] == r)
|
|
break;
|
|
}
|
|
if (x < w)
|
|
break;
|
|
}
|
|
assert(y < h && x < w); /* we must have found one somewhere */
|
|
/*
|
|
* This is the first square in lexicographic order which
|
|
* contains part of this region. Therefore, one of the top
|
|
* two corners of the square must be what we're after. The
|
|
* only case in which it isn't the top left one is if the
|
|
* square is diagonally divided and the region is in the
|
|
* bottom right half.
|
|
*/
|
|
if (state->map->map[wh*TE+y*w+x] != r &&
|
|
state->map->map[wh*LE+y*w+x] != r)
|
|
x++; /* could just as well have done y++ */
|
|
|
|
/*
|
|
* Now we have a point on the region boundary. Trace around
|
|
* the region until we come back to this point,
|
|
* accumulating coordinates for a polygon draw operation as
|
|
* we go.
|
|
*/
|
|
lastdir = -1;
|
|
ox = x;
|
|
oy = y;
|
|
ncoords = 0;
|
|
|
|
do {
|
|
/*
|
|
* There are eight possible directions we could head in
|
|
* from here. We identify them by octant numbers, and
|
|
* we also use octant numbers to identify the spaces
|
|
* between them:
|
|
*
|
|
* 6 7 0
|
|
* \ 7|0 /
|
|
* \ | /
|
|
* 6 \|/ 1
|
|
* 5-----+-----1
|
|
* 5 /|\ 2
|
|
* / | \
|
|
* / 4|3 \
|
|
* 4 3 2
|
|
*/
|
|
octants[0] = x<w && y>0 ? state->map->map[wh*LE+(y-1)*w+x] : -1;
|
|
octants[1] = x<w && y>0 ? state->map->map[wh*BE+(y-1)*w+x] : -1;
|
|
octants[2] = x<w && y<h ? state->map->map[wh*TE+y*w+x] : -1;
|
|
octants[3] = x<w && y<h ? state->map->map[wh*LE+y*w+x] : -1;
|
|
octants[4] = x>0 && y<h ? state->map->map[wh*RE+y*w+(x-1)] : -1;
|
|
octants[5] = x>0 && y<h ? state->map->map[wh*TE+y*w+(x-1)] : -1;
|
|
octants[6] = x>0 && y>0 ? state->map->map[wh*BE+(y-1)*w+(x-1)] :-1;
|
|
octants[7] = x>0 && y>0 ? state->map->map[wh*RE+(y-1)*w+(x-1)] :-1;
|
|
|
|
d1 = d2 = -1;
|
|
for (i = 0; i < 8; i++)
|
|
if ((octants[i] == r) ^ (octants[(i+1)%8] == r)) {
|
|
assert(d2 == -1);
|
|
if (d1 == -1)
|
|
d1 = i;
|
|
else
|
|
d2 = i;
|
|
}
|
|
|
|
assert(d1 != -1 && d2 != -1);
|
|
if (d1 == lastdir)
|
|
d1 = d2;
|
|
|
|
/*
|
|
* Now we're heading in direction d1. Save the current
|
|
* coordinates.
|
|
*/
|
|
if (ncoords + 2 > coordsize) {
|
|
coordsize += 128;
|
|
coords = sresize(coords, coordsize, int);
|
|
}
|
|
coords[ncoords++] = COORD(x);
|
|
coords[ncoords++] = COORD(y);
|
|
|
|
/*
|
|
* Compute the new coordinates.
|
|
*/
|
|
x += (d1 % 4 == 3 ? 0 : d1 < 4 ? +1 : -1);
|
|
y += (d1 % 4 == 1 ? 0 : d1 > 1 && d1 < 5 ? +1 : -1);
|
|
assert(x >= 0 && x <= w && y >= 0 && y <= h);
|
|
|
|
lastdir = d1 ^ 4;
|
|
} while (x != ox || y != oy);
|
|
|
|
draw_polygon(dr, coords, ncoords/2,
|
|
state->colouring[r] >= 0 ?
|
|
c[state->colouring[r]] : -1, ink);
|
|
}
|
|
sfree(coords);
|
|
}
|
|
|
|
#ifdef COMBINED
|
|
#define thegame map
|
|
#endif
|
|
|
|
const struct game thegame = {
|
|
"Map", "games.map", "map",
|
|
default_params,
|
|
game_fetch_preset, NULL,
|
|
decode_params,
|
|
encode_params,
|
|
free_params,
|
|
dup_params,
|
|
true, game_configure, custom_params,
|
|
validate_params,
|
|
new_game_desc,
|
|
validate_desc,
|
|
new_game,
|
|
dup_game,
|
|
free_game,
|
|
true, solve_game,
|
|
false, NULL, NULL, /* can_format_as_text_now, text_format */
|
|
new_ui,
|
|
free_ui,
|
|
encode_ui,
|
|
decode_ui,
|
|
NULL, /* game_request_keys */
|
|
game_changed_state,
|
|
current_key_label,
|
|
interpret_move,
|
|
execute_move,
|
|
20, game_compute_size, game_set_size,
|
|
game_colours,
|
|
game_new_drawstate,
|
|
game_free_drawstate,
|
|
game_redraw,
|
|
game_anim_length,
|
|
game_flash_length,
|
|
game_get_cursor_location,
|
|
game_status,
|
|
true, true, game_print_size, game_print,
|
|
false, /* wants_statusbar */
|
|
false, NULL, /* timing_state */
|
|
0, /* flags */
|
|
};
|
|
|
|
#ifdef STANDALONE_SOLVER
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
game_params *p;
|
|
game_state *s;
|
|
char *id = NULL, *desc;
|
|
const char *err;
|
|
bool grade = false;
|
|
int ret, diff;
|
|
bool really_verbose = false;
|
|
struct solver_scratch *sc;
|
|
int i;
|
|
|
|
while (--argc > 0) {
|
|
char *p = *++argv;
|
|
if (!strcmp(p, "-v")) {
|
|
really_verbose = true;
|
|
} else if (!strcmp(p, "-g")) {
|
|
grade = true;
|
|
} else if (*p == '-') {
|
|
fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
|
|
return 1;
|
|
} else {
|
|
id = p;
|
|
}
|
|
}
|
|
|
|
if (!id) {
|
|
fprintf(stderr, "usage: %s [-g | -v] <game_id>\n", argv[0]);
|
|
return 1;
|
|
}
|
|
|
|
desc = strchr(id, ':');
|
|
if (!desc) {
|
|
fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
|
|
return 1;
|
|
}
|
|
*desc++ = '\0';
|
|
|
|
p = default_params();
|
|
decode_params(p, id);
|
|
err = validate_desc(p, desc);
|
|
if (err) {
|
|
fprintf(stderr, "%s: %s\n", argv[0], err);
|
|
return 1;
|
|
}
|
|
s = new_game(NULL, p, desc);
|
|
|
|
sc = new_scratch(s->map->graph, s->map->n, s->map->ngraph);
|
|
|
|
/*
|
|
* When solving an Easy puzzle, we don't want to bother the
|
|
* user with Hard-level deductions. For this reason, we grade
|
|
* the puzzle internally before doing anything else.
|
|
*/
|
|
ret = -1; /* placate optimiser */
|
|
for (diff = 0; diff < DIFFCOUNT; diff++) {
|
|
for (i = 0; i < s->map->n; i++)
|
|
if (!s->map->immutable[i])
|
|
s->colouring[i] = -1;
|
|
ret = map_solver(sc, s->map->graph, s->map->n, s->map->ngraph,
|
|
s->colouring, diff);
|
|
if (ret < 2)
|
|
break;
|
|
}
|
|
|
|
if (diff == DIFFCOUNT) {
|
|
if (grade)
|
|
printf("Difficulty rating: harder than Hard, or ambiguous\n");
|
|
else
|
|
printf("Unable to find a unique solution\n");
|
|
} else {
|
|
if (grade) {
|
|
if (ret == 0)
|
|
printf("Difficulty rating: impossible (no solution exists)\n");
|
|
else if (ret == 1)
|
|
printf("Difficulty rating: %s\n", map_diffnames[diff]);
|
|
} else {
|
|
verbose = really_verbose;
|
|
for (i = 0; i < s->map->n; i++)
|
|
if (!s->map->immutable[i])
|
|
s->colouring[i] = -1;
|
|
ret = map_solver(sc, s->map->graph, s->map->n, s->map->ngraph,
|
|
s->colouring, diff);
|
|
if (ret == 0)
|
|
printf("Puzzle is inconsistent\n");
|
|
else {
|
|
int col = 0;
|
|
|
|
for (i = 0; i < s->map->n; i++) {
|
|
printf("%5d <- %c%c", i, colnames[s->colouring[i]],
|
|
(col < 6 && i+1 < s->map->n ? ' ' : '\n'));
|
|
if (++col == 7)
|
|
col = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
/* vim: set shiftwidth=4 tabstop=8: */
|