Files
puzzles/pattern.c
Simon Tatham 873d613dd5 Fix missing statics and #includes on variables.
After Ben fixed all the unwanted global functions by using gcc's
-Wmissing-declarations to spot any that were not predeclared, I
remembered that clang has -Wmissing-variable-declarations, which does
the same job for global objects. Enabled it in -DSTRICT=ON, and made
the code clean under it.

Mostly this was just a matter of sticking 'static' on the front of
things. One variable was outright removed ('verbose' in signpost.c)
because after I made it static clang was then able to spot that it was
also unused.

The more interesting cases were the ones where declarations had to be
_added_ to header files. In particular, in COMBINED builds, puzzles.h
now arranges to have predeclared each 'game' structure defined by a
puzzle backend. Also there's a new tiny header file gtk.h, containing
the declarations of xpm_icons and n_xpm_icons which are exported by
each puzzle's autogenerated icon source file and by no-icon.c. Happily
even the real XPM icon files were generated by our own Perl script
rather than being raw xpm output from ImageMagick, so there was no
difficulty adding the corresponding #include in there.
2023-02-18 08:55:13 +00:00

2356 lines
68 KiB
C

/*
* pattern.c: the pattern-reconstruction game known as `nonograms'.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <ctype.h>
#include <limits.h>
#include <math.h>
#include "puzzles.h"
enum {
COL_BACKGROUND,
COL_EMPTY,
COL_FULL,
COL_TEXT,
COL_UNKNOWN,
COL_GRID,
COL_CURSOR,
COL_ERROR,
COL_CURSOR_GUIDE,
NCOLOURS
};
#define PREFERRED_TILE_SIZE 24
#define TILE_SIZE (ds->tilesize)
#define BORDER (3 * TILE_SIZE / 4)
#define TLBORDER(d) ( (d) / 5 + 2 )
#define GUTTER (TILE_SIZE / 2)
#define FROMCOORD(d, x) \
( ((x) - (BORDER + GUTTER + TILE_SIZE * TLBORDER(d))) / TILE_SIZE )
#define SIZE(d) (2*BORDER + GUTTER + TILE_SIZE * (TLBORDER(d) + (d)))
#define GETTILESIZE(d, w) ((double)w / (2.0 + (double)TLBORDER(d) + (double)(d)))
#define TOCOORD(d, x) (BORDER + GUTTER + TILE_SIZE * (TLBORDER(d) + (x)))
struct game_params {
int w, h;
};
#define GRID_UNKNOWN 2
#define GRID_FULL 1
#define GRID_EMPTY 0
typedef struct game_state_common {
/* Parts of the game state that don't change during play. */
int w, h;
int rowsize;
int *rowdata, *rowlen;
bool *immutable;
int refcount;
enum { FS_SMALL, FS_LARGE } fontsize;
} game_state_common;
struct game_state {
game_state_common *common;
unsigned char *grid;
bool completed, cheated;
};
#define FLASH_TIME 0.13F
static game_params *default_params(void)
{
game_params *ret = snew(game_params);
ret->w = ret->h = 15;
return ret;
}
static const struct game_params pattern_presets[] = {
{10, 10},
{15, 15},
{20, 20},
#ifndef SLOW_SYSTEM
{25, 25},
{30, 30},
#endif
};
static bool game_fetch_preset(int i, char **name, game_params **params)
{
game_params *ret;
char str[80];
if (i < 0 || i >= lenof(pattern_presets))
return false;
ret = snew(game_params);
*ret = pattern_presets[i];
sprintf(str, "%dx%d", ret->w, ret->h);
*name = dupstr(str);
*params = ret;
return true;
}
static void free_params(game_params *params)
{
sfree(params);
}
static game_params *dup_params(const game_params *params)
{
game_params *ret = snew(game_params);
*ret = *params; /* structure copy */
return ret;
}
static void decode_params(game_params *ret, char const *string)
{
char const *p = string;
ret->w = atoi(p);
while (*p && isdigit((unsigned char)*p)) p++;
if (*p == 'x') {
p++;
ret->h = atoi(p);
while (*p && isdigit((unsigned char)*p)) p++;
} else {
ret->h = ret->w;
}
}
static char *encode_params(const game_params *params, bool full)
{
char ret[400];
int len;
len = sprintf(ret, "%dx%d", params->w, params->h);
assert(len < lenof(ret));
ret[len] = '\0';
return dupstr(ret);
}
static config_item *game_configure(const game_params *params)
{
config_item *ret;
char buf[80];
ret = snewn(3, config_item);
ret[0].name = "Width";
ret[0].type = C_STRING;
sprintf(buf, "%d", params->w);
ret[0].u.string.sval = dupstr(buf);
ret[1].name = "Height";
ret[1].type = C_STRING;
sprintf(buf, "%d", params->h);
ret[1].u.string.sval = dupstr(buf);
ret[2].name = NULL;
ret[2].type = C_END;
return ret;
}
static game_params *custom_params(const config_item *cfg)
{
game_params *ret = snew(game_params);
ret->w = atoi(cfg[0].u.string.sval);
ret->h = atoi(cfg[1].u.string.sval);
return ret;
}
static const char *validate_params(const game_params *params, bool full)
{
if (params->w <= 0 || params->h <= 0)
return "Width and height must both be greater than zero";
if (params->w > INT_MAX - 1 || params->h > INT_MAX - 1 ||
params->w > INT_MAX / params->h)
return "Puzzle must not be unreasonably large";
return NULL;
}
/* ----------------------------------------------------------------------
* Puzzle generation code.
*
* For this particular puzzle, it seemed important to me to ensure
* a unique solution. I do this the brute-force way, by having a
* solver algorithm alongside the generator, and repeatedly
* generating a random grid until I find one whose solution is
* unique. It turns out that this isn't too onerous on a modern PC
* provided you keep grid size below around 30. Any offers of
* better algorithms, however, will be very gratefully received.
*
* Another annoyance of this approach is that it limits the
* available puzzles to those solvable by the algorithm I've used.
* My algorithm only ever considers a single row or column at any
* one time, which means it's incapable of solving the following
* difficult example (found by Bella Image around 1995/6, when she
* and I were both doing maths degrees):
*
* 2 1 2 1
*
* +--+--+--+--+
* 1 1 | | | | |
* +--+--+--+--+
* 2 | | | | |
* +--+--+--+--+
* 1 | | | | |
* +--+--+--+--+
* 1 | | | | |
* +--+--+--+--+
*
* Obviously this cannot be solved by a one-row-or-column-at-a-time
* algorithm (it would require at least one row or column reading
* `2 1', `1 2', `3' or `4' to get started). However, it can be
* proved to have a unique solution: if the top left square were
* empty, then the only option for the top row would be to fill the
* two squares in the 1 columns, which would imply the squares
* below those were empty, leaving no place for the 2 in the second
* row. Contradiction. Hence the top left square is full, and the
* unique solution follows easily from that starting point.
*
* (The game ID for this puzzle is 4x4:2/1/2/1/1.1/2/1/1 , in case
* it's useful to anyone.)
*/
#ifndef STANDALONE_PICTURE_GENERATOR
static int float_compare(const void *av, const void *bv)
{
const float *a = (const float *)av;
const float *b = (const float *)bv;
if (*a < *b)
return -1;
else if (*a > *b)
return +1;
else
return 0;
}
static void generate(random_state *rs, int w, int h, unsigned char *retgrid)
{
float *fgrid;
float *fgrid2;
int step, i, j;
float threshold;
fgrid = snewn(w*h, float);
for (i = 0; i < h; i++) {
for (j = 0; j < w; j++) {
fgrid[i*w+j] = random_upto(rs, 100000000UL) / 100000000.F;
}
}
/*
* The above gives a completely random splattering of black and
* white cells. We want to gently bias this in favour of _some_
* reasonably thick areas of white and black, while retaining
* some randomness and fine detail.
*
* So we evolve the starting grid using a cellular automaton.
* Currently, I'm doing something very simple indeed, which is
* to set each square to the average of the surrounding nine
* cells (or the average of fewer, if we're on a corner).
*/
for (step = 0; step < 1; step++) {
fgrid2 = snewn(w*h, float);
for (i = 0; i < h; i++) {
for (j = 0; j < w; j++) {
float sx, xbar;
int n, p, q;
/*
* Compute the average of the surrounding cells.
*/
n = 0;
sx = 0.F;
for (p = -1; p <= +1; p++) {
for (q = -1; q <= +1; q++) {
if (i+p < 0 || i+p >= h || j+q < 0 || j+q >= w)
continue;
/*
* An additional special case not mentioned
* above: if a grid dimension is 2xn then
* we do not average across that dimension
* at all. Otherwise a 2x2 grid would
* contain four identical squares.
*/
if ((h==2 && p!=0) || (w==2 && q!=0))
continue;
n++;
sx += fgrid[(i+p)*w+(j+q)];
}
}
xbar = sx / n;
fgrid2[i*w+j] = xbar;
}
}
sfree(fgrid);
fgrid = fgrid2;
}
fgrid2 = snewn(w*h, float);
memcpy(fgrid2, fgrid, w*h*sizeof(float));
qsort(fgrid2, w*h, sizeof(float), float_compare);
/* Choose a threshold that makes half the pixels black. In case of
* an odd number of pixels, select randomly between just under and
* just over half. */
{
int index = w * h / 2;
if (w & h & 1)
index += random_upto(rs, 2);
if (index < w*h)
threshold = fgrid2[index];
else
threshold = fgrid2[w*h-1] + 1;
}
sfree(fgrid2);
for (i = 0; i < h; i++) {
for (j = 0; j < w; j++) {
retgrid[i*w+j] = (fgrid[i*w+j] >= threshold ? GRID_FULL :
GRID_EMPTY);
}
}
sfree(fgrid);
}
#endif
static int compute_rowdata(int *ret, unsigned char *start, int len, int step)
{
int i, n;
n = 0;
for (i = 0; i < len; i++) {
if (start[i*step] == GRID_FULL) {
int runlen = 1;
while (i+runlen < len && start[(i+runlen)*step] == GRID_FULL)
runlen++;
ret[n++] = runlen;
i += runlen;
}
if (i < len && start[i*step] == GRID_UNKNOWN)
return -1;
}
return n;
}
#define UNKNOWN 0
#define BLOCK 1
#define DOT 2
#define STILL_UNKNOWN 3
#ifdef STANDALONE_SOLVER
static bool verbose = false;
#endif
static bool do_recurse(unsigned char *known, unsigned char *deduced,
unsigned char *row,
unsigned char *minpos_done, unsigned char *maxpos_done,
unsigned char *minpos_ok, unsigned char *maxpos_ok,
int *data, int len,
int freespace, int ndone, int lowest)
{
int i, j, k;
/* This algorithm basically tries all possible ways the given rows of
* black blocks can be laid out in the row/column being examined.
* Special care is taken to avoid checking the tail of a row/column
* if the same conditions have already been checked during this recursion
* The algorithm also takes care to cut its losses as soon as an
* invalid (partial) solution is detected.
*/
if (data[ndone]) {
if (lowest >= minpos_done[ndone] && lowest <= maxpos_done[ndone]) {
if (lowest >= minpos_ok[ndone] && lowest <= maxpos_ok[ndone]) {
for (i=0; i<lowest; i++)
deduced[i] |= row[i];
}
return lowest >= minpos_ok[ndone] && lowest <= maxpos_ok[ndone];
} else {
if (lowest < minpos_done[ndone]) minpos_done[ndone] = lowest;
if (lowest > maxpos_done[ndone]) maxpos_done[ndone] = lowest;
}
for (i=0; i<=freespace; i++) {
j = lowest;
for (k=0; k<i; k++) {
if (known[j] == BLOCK) goto next_iter;
row[j++] = DOT;
}
for (k=0; k<data[ndone]; k++) {
if (known[j] == DOT) goto next_iter;
row[j++] = BLOCK;
}
if (j < len) {
if (known[j] == BLOCK) goto next_iter;
row[j++] = DOT;
}
if (do_recurse(known, deduced, row, minpos_done, maxpos_done,
minpos_ok, maxpos_ok, data, len, freespace-i, ndone+1, j)) {
if (lowest < minpos_ok[ndone]) minpos_ok[ndone] = lowest;
if (lowest + i > maxpos_ok[ndone]) maxpos_ok[ndone] = lowest + i;
if (lowest + i > maxpos_done[ndone]) maxpos_done[ndone] = lowest + i;
}
next_iter:
j++;
}
return lowest >= minpos_ok[ndone] && lowest <= maxpos_ok[ndone];
} else {
for (i=lowest; i<len; i++) {
if (known[i] == BLOCK) return false;
row[i] = DOT;
}
for (i=0; i<len; i++)
deduced[i] |= row[i];
return true;
}
}
static bool do_row(unsigned char *known, unsigned char *deduced,
unsigned char *row,
unsigned char *minpos_done, unsigned char *maxpos_done,
unsigned char *minpos_ok, unsigned char *maxpos_ok,
unsigned char *start, int len, int step, int *data,
unsigned int *changed
#ifdef STANDALONE_SOLVER
, const char *rowcol, int index, int cluewid
#endif
)
{
int rowlen, i, freespace;
bool done_any;
assert(len >= 0); /* avoid compile warnings about the memsets below */
freespace = len+1;
for (rowlen = 0; data[rowlen]; rowlen++) {
minpos_done[rowlen] = minpos_ok[rowlen] = len - 1;
maxpos_done[rowlen] = maxpos_ok[rowlen] = 0;
freespace -= data[rowlen]+1;
}
for (i = 0; i < len; i++) {
known[i] = start[i*step];
deduced[i] = 0;
}
for (i = len - 1; i >= 0 && known[i] == DOT; i--)
freespace--;
if (rowlen == 0) {
memset(deduced, DOT, len);
} else if (rowlen == 1 && data[0] == len) {
memset(deduced, BLOCK, len);
} else {
do_recurse(known, deduced, row, minpos_done, maxpos_done, minpos_ok,
maxpos_ok, data, len, freespace, 0, 0);
}
done_any = false;
for (i=0; i<len; i++)
if (deduced[i] && deduced[i] != STILL_UNKNOWN && !known[i]) {
start[i*step] = deduced[i];
if (changed) changed[i]++;
done_any = true;
}
#ifdef STANDALONE_SOLVER
if (verbose && done_any) {
char buf[80];
int thiscluewid;
printf("%s %2d: [", rowcol, index);
for (thiscluewid = -1, i = 0; data[i]; i++)
thiscluewid += sprintf(buf, " %d", data[i]);
printf("%*s", cluewid - thiscluewid, "");
for (i = 0; data[i]; i++)
printf(" %d", data[i]);
printf(" ] ");
for (i = 0; i < len; i++)
putchar(known[i] == BLOCK ? '#' :
known[i] == DOT ? '.' : '?');
printf(" -> ");
for (i = 0; i < len; i++)
putchar(start[i*step] == BLOCK ? '#' :
start[i*step] == DOT ? '.' : '?');
putchar('\n');
}
#endif
return done_any;
}
static bool solve_puzzle(const game_state *state, unsigned char *grid,
int w, int h,
unsigned char *matrix, unsigned char *workspace,
unsigned int *changed_h, unsigned int *changed_w,
int *rowdata
#ifdef STANDALONE_SOLVER
, int cluewid
#else
, int dummy
#endif
)
{
int i, j, max;
bool ok;
int max_h, max_w;
assert((state!=NULL && state->common->rowdata!=NULL) ^ (grid!=NULL));
max = max(w, h);
memset(matrix, 0, w*h);
if (state) {
for (i=0; i<w*h; i++) {
if (state->common->immutable[i])
matrix[i] = state->grid[i];
}
}
/* For each column, compute how many squares can be deduced
* from just the row-data and initial clues.
* Later, changed_* will hold how many squares were changed
* in every row/column in the previous iteration
* Changed_* is used to choose the next rows / cols to re-examine
*/
for (i=0; i<h; i++) {
int freespace, rowlen;
if (state && state->common->rowdata) {
memcpy(rowdata, state->common->rowdata + state->common->rowsize*(w+i), max*sizeof(int));
rowlen = state->common->rowlen[w+i];
} else {
rowlen = compute_rowdata(rowdata, grid+i*w, w, 1);
}
rowdata[rowlen] = 0;
if (rowlen == 0) {
changed_h[i] = w;
} else {
for (j=0, freespace=w+1; rowdata[j]; j++)
freespace -= rowdata[j] + 1;
for (j=0, changed_h[i]=0; rowdata[j]; j++)
if (rowdata[j] > freespace)
changed_h[i] += rowdata[j] - freespace;
}
for (j = 0; j < w; j++)
if (matrix[i*w+j])
changed_h[i]++;
}
for (i=0,max_h=0; i<h; i++)
if (changed_h[i] > max_h)
max_h = changed_h[i];
for (i=0; i<w; i++) {
int freespace, rowlen;
if (state && state->common->rowdata) {
memcpy(rowdata, state->common->rowdata + state->common->rowsize*i, max*sizeof(int));
rowlen = state->common->rowlen[i];
} else {
rowlen = compute_rowdata(rowdata, grid+i, h, w);
}
rowdata[rowlen] = 0;
if (rowlen == 0) {
changed_w[i] = h;
} else {
for (j=0, freespace=h+1; rowdata[j]; j++)
freespace -= rowdata[j] + 1;
for (j=0, changed_w[i]=0; rowdata[j]; j++)
if (rowdata[j] > freespace)
changed_w[i] += rowdata[j] - freespace;
}
for (j = 0; j < h; j++)
if (matrix[j*w+i])
changed_w[i]++;
}
for (i=0,max_w=0; i<w; i++)
if (changed_w[i] > max_w)
max_w = changed_w[i];
/* Solve the puzzle.
* Process rows/columns individually. Deductions involving more than one
* row and/or column at a time are not supported.
* Take care to only process rows/columns which have been changed since they
* were previously processed.
* Also, prioritize rows/columns which have had the most changes since their
* previous processing, as they promise the greatest benefit.
* Extremely rectangular grids (e.g. 10x20, 15x40, etc.) are not treated specially.
*/
do {
for (; max_h && max_h >= max_w; max_h--) {
for (i=0; i<h; i++) {
if (changed_h[i] >= max_h) {
if (state && state->common->rowdata) {
memcpy(rowdata, state->common->rowdata + state->common->rowsize*(w+i), max*sizeof(int));
rowdata[state->common->rowlen[w+i]] = 0;
} else {
rowdata[compute_rowdata(rowdata, grid+i*w, w, 1)] = 0;
}
do_row(workspace, workspace+max, workspace+2*max,
workspace+3*max, workspace+4*max,
workspace+5*max, workspace+6*max,
matrix+i*w, w, 1, rowdata, changed_w
#ifdef STANDALONE_SOLVER
, "row", i+1, cluewid
#endif
);
changed_h[i] = 0;
}
}
for (i=0,max_w=0; i<w; i++)
if (changed_w[i] > max_w)
max_w = changed_w[i];
}
for (; max_w && max_w >= max_h; max_w--) {
for (i=0; i<w; i++) {
if (changed_w[i] >= max_w) {
if (state && state->common->rowdata) {
memcpy(rowdata, state->common->rowdata + state->common->rowsize*i, max*sizeof(int));
rowdata[state->common->rowlen[i]] = 0;
} else {
rowdata[compute_rowdata(rowdata, grid+i, h, w)] = 0;
}
do_row(workspace, workspace+max, workspace+2*max,
workspace+3*max, workspace+4*max,
workspace+5*max, workspace+6*max,
matrix+i, h, w, rowdata, changed_h
#ifdef STANDALONE_SOLVER
, "col", i+1, cluewid
#endif
);
changed_w[i] = 0;
}
}
for (i=0,max_h=0; i<h; i++)
if (changed_h[i] > max_h)
max_h = changed_h[i];
}
} while (max_h>0 || max_w>0);
ok = true;
for (i=0; i<h; i++) {
for (j=0; j<w; j++) {
if (matrix[i*w+j] == UNKNOWN)
ok = false;
}
}
return ok;
}
#ifndef STANDALONE_PICTURE_GENERATOR
static unsigned char *generate_soluble(random_state *rs, int w, int h)
{
int i, j, ntries, max;
bool ok;
unsigned char *grid, *matrix, *workspace;
unsigned int *changed_h, *changed_w;
int *rowdata;
max = max(w, h);
grid = snewn(w*h, unsigned char);
/* Allocate this here, to avoid having to reallocate it again for every geneerated grid */
matrix = snewn(w*h, unsigned char);
workspace = snewn(max*7, unsigned char);
changed_h = snewn(max+1, unsigned int);
changed_w = snewn(max+1, unsigned int);
rowdata = snewn(max+1, int);
ntries = 0;
do {
ntries++;
generate(rs, w, h, grid);
/*
* The game is a bit too easy if any row or column is
* completely black or completely white. An exception is
* made for rows/columns that are under 3 squares,
* otherwise nothing will ever be successfully generated.
*/
ok = true;
if (w > 2) {
for (i = 0; i < h; i++) {
int colours = 0;
for (j = 0; j < w; j++)
colours |= (grid[i*w+j] == GRID_FULL ? 2 : 1);
if (colours != 3)
ok = false;
}
}
if (h > 2) {
for (j = 0; j < w; j++) {
int colours = 0;
for (i = 0; i < h; i++)
colours |= (grid[i*w+j] == GRID_FULL ? 2 : 1);
if (colours != 3)
ok = false;
}
}
if (!ok)
continue;
ok = solve_puzzle(NULL, grid, w, h, matrix, workspace,
changed_h, changed_w, rowdata, 0);
} while (!ok);
sfree(matrix);
sfree(workspace);
sfree(changed_h);
sfree(changed_w);
sfree(rowdata);
return grid;
}
#endif
#ifdef STANDALONE_PICTURE_GENERATOR
static unsigned char *picture;
#endif
static char *new_game_desc(const game_params *params, random_state *rs,
char **aux, bool interactive)
{
unsigned char *grid;
int i, j, max, rowlen, *rowdata;
char intbuf[80], *desc;
int desclen, descpos;
#ifdef STANDALONE_PICTURE_GENERATOR
game_state *state;
int *index;
#endif
max = max(params->w, params->h);
#ifdef STANDALONE_PICTURE_GENERATOR
/*
* Fixed input picture.
*/
grid = snewn(params->w * params->h, unsigned char);
memcpy(grid, picture, params->w * params->h);
/*
* Now winnow the immutable square set as far as possible.
*/
state = snew(game_state);
state->grid = grid;
state->common = snew(game_state_common);
state->common->rowdata = NULL;
state->common->immutable = snewn(params->w * params->h, bool);
for (i = 0; i < params->w * params->h; i++)
state->common->immutable[i] = true;
index = snewn(params->w * params->h, int);
for (i = 0; i < params->w * params->h; i++)
index[i] = i;
shuffle(index, params->w * params->h, sizeof(*index), rs);
{
unsigned char *matrix = snewn(params->w*params->h, unsigned char);
unsigned char *workspace = snewn(max*7, unsigned char);
unsigned int *changed_h = snewn(max+1, unsigned int);
unsigned int *changed_w = snewn(max+1, unsigned int);
int *rowdata = snewn(max+1, int);
for (i = 0; i < params->w * params->h; i++) {
state->common->immutable[index[i]] = false;
if (!solve_puzzle(state, grid, params->w, params->h,
matrix, workspace, changed_h, changed_w,
rowdata, 0))
state->common->immutable[index[i]] = true;
}
sfree(workspace);
sfree(changed_h);
sfree(changed_w);
sfree(rowdata);
sfree(matrix);
}
#else
grid = generate_soluble(rs, params->w, params->h);
#endif
rowdata = snewn(max, int);
/*
* Save the solved game in aux.
*/
if (aux) {
char *ai = snewn(params->w * params->h + 2, char);
/*
* String format is exactly the same as a solve move, so we
* can just dupstr this in solve_game().
*/
ai[0] = 'S';
for (i = 0; i < params->w * params->h; i++)
ai[i+1] = grid[i] ? '1' : '0';
ai[params->w * params->h + 1] = '\0';
*aux = ai;
}
/*
* Seed is a slash-separated list of row contents; each row
* contents section is a dot-separated list of integers. Row
* contents are listed in the order (columns left to right,
* then rows top to bottom).
*
* Simplest way to handle memory allocation is to make two
* passes, first computing the seed size and then writing it
* out.
*/
desclen = 0;
for (i = 0; i < params->w + params->h; i++) {
if (i < params->w)
rowlen = compute_rowdata(rowdata, grid+i, params->h, params->w);
else
rowlen = compute_rowdata(rowdata, grid+(i-params->w)*params->w,
params->w, 1);
if (rowlen > 0) {
for (j = 0; j < rowlen; j++) {
desclen += 1 + sprintf(intbuf, "%d", rowdata[j]);
}
} else {
desclen++;
}
}
desc = snewn(desclen, char);
descpos = 0;
for (i = 0; i < params->w + params->h; i++) {
if (i < params->w)
rowlen = compute_rowdata(rowdata, grid+i, params->h, params->w);
else
rowlen = compute_rowdata(rowdata, grid+(i-params->w)*params->w,
params->w, 1);
if (rowlen > 0) {
for (j = 0; j < rowlen; j++) {
int len = sprintf(desc+descpos, "%d", rowdata[j]);
if (j+1 < rowlen)
desc[descpos + len] = '.';
else
desc[descpos + len] = '/';
descpos += len+1;
}
} else {
desc[descpos++] = '/';
}
}
assert(descpos == desclen);
assert(desc[desclen-1] == '/');
desc[desclen-1] = '\0';
#ifdef STANDALONE_PICTURE_GENERATOR
for (i = 0; i < params->w * params->h; i++)
if (state->common->immutable[i])
break;
if (i < params->w * params->h) {
/*
* At least one immutable square, so we need a suffix.
*/
int run;
desc = sresize(desc, desclen + params->w * params->h + 3, char);
desc[descpos-1] = ',';
run = 0;
for (i = 0; i < params->w * params->h; i++) {
if (!state->common->immutable[i]) {
run++;
if (run == 25) {
desc[descpos++] = 'z';
run = 0;
}
} else {
desc[descpos++] = run + (grid[i] == GRID_FULL ? 'A' : 'a');
run = 0;
}
}
if (run > 0)
desc[descpos++] = run + 'a';
desc[descpos] = '\0';
}
sfree(state->common->immutable);
sfree(state->common);
sfree(state);
#endif
sfree(rowdata);
sfree(grid);
return desc;
}
static const char *validate_desc(const game_params *params, const char *desc)
{
int i, n, rowspace;
const char *p;
for (i = 0; i < params->w + params->h; i++) {
if (i < params->w)
rowspace = params->h + 1;
else
rowspace = params->w + 1;
if (*desc && isdigit((unsigned char)*desc)) {
do {
p = desc;
while (*desc && isdigit((unsigned char)*desc)) desc++;
n = atoi(p);
if (n < 0)
return "at least one clue is negative";
if (n > INT_MAX - 1)
return "at least one clue is grossly excessive";
rowspace -= n+1;
if (rowspace < 0) {
if (i < params->w)
return "at least one column contains more numbers than will fit";
else
return "at least one row contains more numbers than will fit";
}
} while (*desc++ == '.');
} else {
desc++; /* expect a slash immediately */
}
if (desc[-1] == '/') {
if (i+1 == params->w + params->h)
return "too many row/column specifications";
} else if (desc[-1] == '\0' || desc[-1] == ',') {
if (i+1 < params->w + params->h)
return "too few row/column specifications";
} else
return "unrecognised character in game specification";
}
if (desc[-1] == ',') {
/*
* Optional extra piece of game description which fills in
* some grid squares as extra clues.
*/
i = 0;
while (i < params->w * params->h) {
int c = (unsigned char)*desc++;
if ((c >= 'a' && c <= 'z') ||
(c >= 'A' && c <= 'Z')) {
int len = tolower(c) - 'a';
i += len;
if (len < 25 && i < params->w*params->h)
i++;
if (i > params->w * params->h) {
return "too much data in clue-squares section";
}
} else if (!c) {
return "too little data in clue-squares section";
} else {
return "unrecognised character in clue-squares section";
}
}
if (*desc) {
return "too much data in clue-squares section";
}
}
return NULL;
}
static game_state *new_game(midend *me, const game_params *params,
const char *desc)
{
int i, j;
const char *p;
game_state *state = snew(game_state);
state->common = snew(game_state_common);
state->common->refcount = 1;
state->common->w = params->w;
state->common->h = params->h;
state->grid = snewn(state->common->w * state->common->h, unsigned char);
memset(state->grid, GRID_UNKNOWN, state->common->w * state->common->h);
state->common->immutable = snewn(state->common->w * state->common->h,
bool);
memset(state->common->immutable, 0,
state->common->w * state->common->h * sizeof(bool));
state->common->rowsize = max(state->common->w, state->common->h);
state->common->rowdata = snewn(state->common->rowsize * (state->common->w + state->common->h), int);
state->common->rowlen = snewn(state->common->w + state->common->h, int);
state->completed = state->cheated = false;
for (i = 0; i < params->w + params->h; i++) {
state->common->rowlen[i] = 0;
if (*desc && isdigit((unsigned char)*desc)) {
do {
p = desc;
while (*desc && isdigit((unsigned char)*desc)) desc++;
state->common->rowdata[state->common->rowsize * i + state->common->rowlen[i]++] =
atoi(p);
} while (*desc++ == '.');
} else {
desc++; /* expect a slash immediately */
}
}
/*
* Choose a font size based on the clues. If any column clue is
* more than one digit, switch to the smaller size.
*/
state->common->fontsize = FS_LARGE;
for (i = 0; i < params->w; i++)
for (j = 0; j < state->common->rowlen[i]; j++)
if (state->common->rowdata[state->common->rowsize * i + j] >= 10)
state->common->fontsize = FS_SMALL;
if (desc[-1] == ',') {
/*
* Optional extra piece of game description which fills in
* some grid squares as extra clues.
*/
i = 0;
while (i < params->w * params->h) {
int c = (unsigned char)*desc++;
bool full = isupper(c);
int len = tolower(c) - 'a';
i += len;
if (len < 25 && i < params->w*params->h) {
state->grid[i] = full ? GRID_FULL : GRID_EMPTY;
state->common->immutable[i] = true;
i++;
}
}
}
return state;
}
static game_state *dup_game(const game_state *state)
{
game_state *ret = snew(game_state);
ret->common = state->common;
ret->common->refcount++;
ret->grid = snewn(ret->common->w * ret->common->h, unsigned char);
memcpy(ret->grid, state->grid, ret->common->w * ret->common->h);
ret->completed = state->completed;
ret->cheated = state->cheated;
return ret;
}
static void free_game(game_state *state)
{
if (--state->common->refcount == 0) {
sfree(state->common->rowdata);
sfree(state->common->rowlen);
sfree(state->common->immutable);
sfree(state->common);
}
sfree(state->grid);
sfree(state);
}
static char *solve_game(const game_state *state, const game_state *currstate,
const char *ai, const char **error)
{
unsigned char *matrix;
int w = state->common->w, h = state->common->h;
int i;
char *ret;
int max;
bool ok;
unsigned char *workspace;
unsigned int *changed_h, *changed_w;
int *rowdata;
/*
* If we already have the solved state in ai, copy it out.
*/
if (ai)
return dupstr(ai);
max = max(w, h);
matrix = snewn(w*h, unsigned char);
workspace = snewn(max*7, unsigned char);
changed_h = snewn(max+1, unsigned int);
changed_w = snewn(max+1, unsigned int);
rowdata = snewn(max+1, int);
ok = solve_puzzle(state, NULL, w, h, matrix, workspace,
changed_h, changed_w, rowdata, 0);
sfree(workspace);
sfree(changed_h);
sfree(changed_w);
sfree(rowdata);
if (!ok) {
sfree(matrix);
*error = "Solving algorithm cannot complete this puzzle";
return NULL;
}
ret = snewn(w*h+2, char);
ret[0] = 'S';
for (i = 0; i < w*h; i++) {
assert(matrix[i] == BLOCK || matrix[i] == DOT);
ret[i+1] = (matrix[i] == BLOCK ? '1' : '0');
}
ret[w*h+1] = '\0';
sfree(matrix);
return ret;
}
static bool game_can_format_as_text_now(const game_params *params)
{
return true;
}
static char *game_text_format(const game_state *state)
{
int w = state->common->w, h = state->common->h, i, j;
int left_gap = 0, top_gap = 0, ch = 2, cw = 1, limit = 1;
int len, topleft, lw, lh, gw, gh; /* {line,grid}_{width,height} */
char *board, *buf;
for (i = 0; i < w; ++i) {
top_gap = max(top_gap, state->common->rowlen[i]);
for (j = 0; j < state->common->rowlen[i]; ++j)
while (state->common->rowdata[i*state->common->rowsize + j] >= limit) {
++cw;
limit *= 10;
}
}
for (i = 0; i < h; ++i) {
int rowlen = 0;
bool predecessors = false;
for (j = 0; j < state->common->rowlen[i+w]; ++j) {
int copy = state->common->rowdata[(i+w)*state->common->rowsize + j];
rowlen += predecessors;
predecessors = true;
do ++rowlen; while (copy /= 10);
}
left_gap = max(left_gap, rowlen);
}
cw = max(cw, 3);
gw = w*cw + 2;
gh = h*ch + 1;
lw = gw + left_gap;
lh = gh + top_gap;
len = lw * lh;
topleft = lw * top_gap + left_gap;
board = snewn(len + 1, char);
sprintf(board, "%*s\n", len - 2, "");
for (i = 0; i < lh; ++i) {
board[lw - 1 + i*lw] = '\n';
if (i < top_gap) continue;
board[lw - 2 + i*lw] = ((i - top_gap) % ch ? '|' : '+');
}
for (i = 0; i < w; ++i) {
for (j = 0; j < state->common->rowlen[i]; ++j) {
int cell = topleft + i*cw + 1 + lw*(j - state->common->rowlen[i]);
int nch = sprintf(board + cell, "%*d", cw - 1,
state->common->rowdata[i*state->common->rowsize + j]);
board[cell + nch] = ' '; /* de-NUL-ify */
}
}
buf = snewn(left_gap, char);
for (i = 0; i < h; ++i) {
char *p = buf, *start = board + top_gap*lw + left_gap + (i*ch+1)*lw;
for (j = 0; j < state->common->rowlen[i+w]; ++j) {
if (p > buf) *p++ = ' ';
p += sprintf(p, "%d", state->common->rowdata[(i+w)*state->common->rowsize + j]);
}
memcpy(start - (p - buf), buf, p - buf);
}
for (i = 0; i < w; ++i) {
for (j = 0; j < h; ++j) {
int cell = topleft + i*cw + j*ch*lw;
int center = cell + cw/2 + (ch/2)*lw;
int dx, dy;
board[cell] = false ? center : '+';
for (dx = 1; dx < cw; ++dx) board[cell + dx] = '-';
for (dy = 1; dy < ch; ++dy) board[cell + dy*lw] = '|';
if (state->grid[i*w+j] == GRID_UNKNOWN) continue;
for (dx = 1; dx < cw; ++dx)
for (dy = 1; dy < ch; ++dy)
board[cell + dx + dy*lw] =
state->grid[i*w+j] == GRID_FULL ? '#' : '.';
}
}
memcpy(board + topleft + h*ch*lw, board + topleft, gw - 1);
sfree(buf);
return board;
}
struct game_ui {
bool dragging;
int drag_start_x;
int drag_start_y;
int drag_end_x;
int drag_end_y;
int drag, release, state;
int cur_x, cur_y;
bool cur_visible;
};
static game_ui *new_ui(const game_state *state)
{
game_ui *ret;
ret = snew(game_ui);
ret->dragging = false;
ret->cur_x = ret->cur_y = 0;
ret->cur_visible = false;
return ret;
}
static void free_ui(game_ui *ui)
{
sfree(ui);
}
static char *encode_ui(const game_ui *ui)
{
return NULL;
}
static void decode_ui(game_ui *ui, const char *encoding)
{
}
static void game_changed_state(game_ui *ui, const game_state *oldstate,
const game_state *newstate)
{
}
static const char *current_key_label(const game_ui *ui,
const game_state *state, int button)
{
if (IS_CURSOR_SELECT(button)) {
if (!ui->cur_visible) return "";
switch (state->grid[ui->cur_y * state->common->w + ui->cur_x]) {
case GRID_UNKNOWN:
return button == CURSOR_SELECT ? "Black" : "White";
case GRID_FULL:
return button == CURSOR_SELECT ? "White" : "Grey";
case GRID_EMPTY:
return button == CURSOR_SELECT ? "Grey" : "Black";
}
}
return "";
}
struct game_drawstate {
bool started;
int w, h;
int tilesize;
unsigned char *visible, *numcolours;
int cur_x, cur_y;
char *strbuf; /* Used for formatting clues. */
};
static char *interpret_move(const game_state *state, game_ui *ui,
const game_drawstate *ds,
int x, int y, int button)
{
bool control = button & MOD_CTRL, shift = button & MOD_SHFT;
button &= ~MOD_MASK;
x = FROMCOORD(state->common->w, x);
y = FROMCOORD(state->common->h, y);
if (x >= 0 && x < state->common->w && y >= 0 && y < state->common->h &&
(button == LEFT_BUTTON || button == RIGHT_BUTTON ||
button == MIDDLE_BUTTON)) {
#ifdef STYLUS_BASED
int currstate = state->grid[y * state->common->w + x];
#endif
ui->dragging = true;
if (button == LEFT_BUTTON) {
ui->drag = LEFT_DRAG;
ui->release = LEFT_RELEASE;
#ifdef STYLUS_BASED
ui->state = (currstate + 2) % 3; /* FULL -> EMPTY -> UNKNOWN */
#else
ui->state = GRID_FULL;
#endif
} else if (button == RIGHT_BUTTON) {
ui->drag = RIGHT_DRAG;
ui->release = RIGHT_RELEASE;
#ifdef STYLUS_BASED
ui->state = (currstate + 1) % 3; /* EMPTY -> FULL -> UNKNOWN */
#else
ui->state = GRID_EMPTY;
#endif
} else /* if (button == MIDDLE_BUTTON) */ {
ui->drag = MIDDLE_DRAG;
ui->release = MIDDLE_RELEASE;
ui->state = GRID_UNKNOWN;
}
ui->drag_start_x = ui->drag_end_x = x;
ui->drag_start_y = ui->drag_end_y = y;
ui->cur_visible = false;
return UI_UPDATE;
}
if (ui->dragging && button == ui->drag) {
/*
* There doesn't seem much point in allowing a rectangle
* drag; people will generally only want to drag a single
* horizontal or vertical line, so we make that easy by
* snapping to it.
*
* Exception: if we're _middle_-button dragging to tag
* things as UNKNOWN, we may well want to trash an entire
* area and start over!
*/
if (ui->state != GRID_UNKNOWN) {
if (abs(x - ui->drag_start_x) > abs(y - ui->drag_start_y))
y = ui->drag_start_y;
else
x = ui->drag_start_x;
}
if (x < 0) x = 0;
if (y < 0) y = 0;
if (x >= state->common->w) x = state->common->w - 1;
if (y >= state->common->h) y = state->common->h - 1;
ui->drag_end_x = x;
ui->drag_end_y = y;
return UI_UPDATE;
}
if (ui->dragging && button == ui->release) {
int x1, x2, y1, y2, xx, yy;
bool move_needed = false;
x1 = min(ui->drag_start_x, ui->drag_end_x);
x2 = max(ui->drag_start_x, ui->drag_end_x);
y1 = min(ui->drag_start_y, ui->drag_end_y);
y2 = max(ui->drag_start_y, ui->drag_end_y);
for (yy = y1; yy <= y2; yy++)
for (xx = x1; xx <= x2; xx++)
if (!state->common->immutable[yy * state->common->w + xx] &&
state->grid[yy * state->common->w + xx] != ui->state)
move_needed = true;
ui->dragging = false;
if (move_needed) {
char buf[80];
sprintf(buf, "%c%d,%d,%d,%d",
(char)(ui->state == GRID_FULL ? 'F' :
ui->state == GRID_EMPTY ? 'E' : 'U'),
x1, y1, x2-x1+1, y2-y1+1);
return dupstr(buf);
} else
return UI_UPDATE;
}
if (IS_CURSOR_MOVE(button)) {
int x = ui->cur_x, y = ui->cur_y, newstate;
char buf[80];
move_cursor(button, &ui->cur_x, &ui->cur_y, state->common->w, state->common->h, false);
ui->cur_visible = true;
if (!control && !shift) return UI_UPDATE;
newstate = control ? shift ? GRID_UNKNOWN : GRID_FULL : GRID_EMPTY;
if (state->grid[y * state->common->w + x] == newstate &&
state->grid[ui->cur_y * state->common->w + ui->cur_x] == newstate)
return UI_UPDATE;
sprintf(buf, "%c%d,%d,%d,%d", control ? shift ? 'U' : 'F' : 'E',
min(x, ui->cur_x), min(y, ui->cur_y),
abs(x - ui->cur_x) + 1, abs(y - ui->cur_y) + 1);
return dupstr(buf);
}
if (IS_CURSOR_SELECT(button)) {
int currstate = state->grid[ui->cur_y * state->common->w + ui->cur_x];
int newstate;
char buf[80];
if (!ui->cur_visible) {
ui->cur_visible = true;
return UI_UPDATE;
}
if (button == CURSOR_SELECT2)
newstate = currstate == GRID_UNKNOWN ? GRID_EMPTY :
currstate == GRID_EMPTY ? GRID_FULL : GRID_UNKNOWN;
else
newstate = currstate == GRID_UNKNOWN ? GRID_FULL :
currstate == GRID_FULL ? GRID_EMPTY : GRID_UNKNOWN;
sprintf(buf, "%c%d,%d,%d,%d",
(char)(newstate == GRID_FULL ? 'F' :
newstate == GRID_EMPTY ? 'E' : 'U'),
ui->cur_x, ui->cur_y, 1, 1);
return dupstr(buf);
}
return NULL;
}
static game_state *execute_move(const game_state *from, const char *move)
{
game_state *ret;
int x1, x2, y1, y2, xx, yy;
int val;
if (move[0] == 'S' &&
strlen(move) == from->common->w * from->common->h + 1) {
int i;
ret = dup_game(from);
for (i = 0; i < ret->common->w * ret->common->h; i++)
ret->grid[i] = (move[i+1] == '1' ? GRID_FULL : GRID_EMPTY);
ret->completed = ret->cheated = true;
return ret;
} else if ((move[0] == 'F' || move[0] == 'E' || move[0] == 'U') &&
sscanf(move+1, "%d,%d,%d,%d", &x1, &y1, &x2, &y2) == 4 &&
x1 >= 0 && x2 >= 0 && x1+x2 <= from->common->w &&
y1 >= 0 && y2 >= 0 && y1+y2 <= from->common->h) {
x2 += x1;
y2 += y1;
val = (move[0] == 'F' ? GRID_FULL :
move[0] == 'E' ? GRID_EMPTY : GRID_UNKNOWN);
ret = dup_game(from);
for (yy = y1; yy < y2; yy++)
for (xx = x1; xx < x2; xx++)
if (!ret->common->immutable[yy * ret->common->w + xx])
ret->grid[yy * ret->common->w + xx] = val;
/*
* An actual change, so check to see if we've completed the
* game.
*/
if (!ret->completed) {
int *rowdata = snewn(ret->common->rowsize, int);
int i, len;
ret->completed = true;
for (i=0; i<ret->common->w; i++) {
len = compute_rowdata(rowdata, ret->grid+i,
ret->common->h, ret->common->w);
if (len != ret->common->rowlen[i] ||
memcmp(ret->common->rowdata+i*ret->common->rowsize,
rowdata, len * sizeof(int))) {
ret->completed = false;
break;
}
}
for (i=0; i<ret->common->h; i++) {
len = compute_rowdata(rowdata, ret->grid+i*ret->common->w,
ret->common->w, 1);
if (len != ret->common->rowlen[i+ret->common->w] ||
memcmp(ret->common->rowdata +
(i+ret->common->w)*ret->common->rowsize,
rowdata, len * sizeof(int))) {
ret->completed = false;
break;
}
}
sfree(rowdata);
}
return ret;
} else
return NULL;
}
/* ----------------------------------------------------------------------
* Error-checking during gameplay.
*/
/*
* The difficulty in error-checking Pattern is to make the error check
* _weak_ enough. The most obvious way would be to check each row and
* column by calling (a modified form of) do_row() to recursively
* analyse the row contents against the clue set and see if the
* GRID_UNKNOWNs could be filled in in any way that would end up
* correct. However, this turns out to be such a strong error check as
* to constitute a spoiler in many situations: you make a typo while
* trying to fill in one row, and not only does the row light up to
* indicate an error, but several columns crossed by the move also
* light up and draw your attention to deductions you hadn't even
* noticed you could make.
*
* So instead I restrict error-checking to 'complete runs' within a
* row, by which I mean contiguous sequences of GRID_FULL bounded at
* both ends by either GRID_EMPTY or the ends of the row. We identify
* all the complete runs in a row, and verify that _those_ are
* consistent with the row's clue list. Sequences of complete runs
* separated by solid GRID_EMPTY are required to match contiguous
* sequences in the clue list, whereas if there's at least one
* GRID_UNKNOWN between any two complete runs then those two need not
* be contiguous in the clue list.
*
* To simplify the edge cases, I pretend that the clue list for the
* row is extended with a 0 at each end, and I also pretend that the
* grid data for the row is extended with a GRID_EMPTY and a
* zero-length run at each end. This permits the contiguity checker to
* handle the fiddly end effects (e.g. if the first contiguous
* sequence of complete runs in the grid matches _something_ in the
* clue list but not at the beginning, this is allowable iff there's a
* GRID_UNKNOWN before the first one) with minimal faff, since the end
* effects just drop out as special cases of the normal inter-run
* handling (in this code the above case is not 'at the end of the
* clue list' at all, but between the implicit initial zero run and
* the first nonzero one).
*
* We must also be a little careful about how we search for a
* contiguous sequence of runs. In the clue list (1 1 2 1 2 3),
* suppose we see a GRID_UNKNOWN and then a length-1 run. We search
* for 1 in the clue list and find it at the very beginning. But now
* suppose we find a length-2 run with no GRID_UNKNOWN before it. We
* can't naively look at the next clue from the 1 we found, because
* that'll be the second 1 and won't match. Instead, we must backtrack
* by observing that the 2 we've just found must be contiguous with
* the 1 we've already seen, so we search for the sequence (1 2) and
* find it starting at the second 1. Now if we see a 3, we must
* rethink again and search for (1 2 3).
*/
struct errcheck_state {
/*
* rowdata and rowlen point at the clue data for this row in the
* game state.
*/
int *rowdata;
int rowlen;
/*
* rowpos indicates the lowest position where it would be valid to
* see our next run length. It might be equal to rowlen,
* indicating that the next run would have to be the terminating 0.
*/
int rowpos;
/*
* ncontig indicates how many runs we've seen in a contiguous
* block. This is taken into account when searching for the next
* run we find, unless ncontig is zeroed out first by encountering
* a GRID_UNKNOWN.
*/
int ncontig;
};
static bool errcheck_found_run(struct errcheck_state *es, int r)
{
/* Macro to handle the pretence that rowdata has a 0 at each end */
#define ROWDATA(k) ((k)<0 || (k)>=es->rowlen ? 0 : es->rowdata[(k)])
/*
* See if we can find this new run length at a position where it
* also matches the last 'ncontig' runs we've seen.
*/
int i, newpos;
for (newpos = es->rowpos; newpos <= es->rowlen; newpos++) {
if (ROWDATA(newpos) != r)
goto notfound;
for (i = 1; i <= es->ncontig; i++)
if (ROWDATA(newpos - i) != ROWDATA(es->rowpos - i))
goto notfound;
es->rowpos = newpos+1;
es->ncontig++;
return true;
notfound:;
}
return false;
#undef ROWDATA
}
static bool check_errors(const game_state *state, int i)
{
int start, step, end, j;
int val, runlen;
struct errcheck_state aes, *es = &aes;
es->rowlen = state->common->rowlen[i];
es->rowdata = state->common->rowdata + state->common->rowsize * i;
/* Pretend that we've already encountered the initial zero run */
es->ncontig = 1;
es->rowpos = 0;
if (i < state->common->w) {
start = i;
step = state->common->w;
end = start + step * state->common->h;
} else {
start = (i - state->common->w) * state->common->w;
step = 1;
end = start + step * state->common->w;
}
runlen = -1;
for (j = start - step; j <= end; j += step) {
if (j < start || j == end)
val = GRID_EMPTY;
else
val = state->grid[j];
if (val == GRID_UNKNOWN) {
runlen = -1;
es->ncontig = 0;
} else if (val == GRID_FULL) {
if (runlen >= 0)
runlen++;
} else if (val == GRID_EMPTY) {
if (runlen > 0) {
if (!errcheck_found_run(es, runlen))
return true; /* error! */
}
runlen = 0;
}
}
/* Signal end-of-row by sending errcheck_found_run the terminating
* zero run, which will be marked as contiguous with the previous
* run if and only if there hasn't been a GRID_UNKNOWN before. */
if (!errcheck_found_run(es, 0))
return true; /* error at the last minute! */
return false; /* no error */
}
/* ----------------------------------------------------------------------
* Drawing routines.
*/
static void game_compute_size(const game_params *params, int tilesize,
int *x, int *y)
{
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
struct { int tilesize; } ads, *ds = &ads;
ads.tilesize = tilesize;
*x = SIZE(params->w);
*y = SIZE(params->h);
}
static void game_set_size(drawing *dr, game_drawstate *ds,
const game_params *params, int tilesize)
{
ds->tilesize = tilesize;
}
static float *game_colours(frontend *fe, int *ncolours)
{
float *ret = snewn(3 * NCOLOURS, float);
int i;
frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
for (i = 0; i < 3; i++) {
ret[COL_GRID * 3 + i] = 0.3F;
ret[COL_UNKNOWN * 3 + i] = 0.5F;
ret[COL_TEXT * 3 + i] = 0.0F;
ret[COL_FULL * 3 + i] = 0.0F;
ret[COL_EMPTY * 3 + i] = 1.0F;
ret[COL_CURSOR_GUIDE * 3 + i] = 0.5F;
}
ret[COL_CURSOR * 3 + 0] = 1.0F;
ret[COL_CURSOR * 3 + 1] = 0.25F;
ret[COL_CURSOR * 3 + 2] = 0.25F;
ret[COL_ERROR * 3 + 0] = 1.0F;
ret[COL_ERROR * 3 + 1] = 0.0F;
ret[COL_ERROR * 3 + 2] = 0.0F;
*ncolours = NCOLOURS;
return ret;
}
static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state)
{
struct game_drawstate *ds = snew(struct game_drawstate);
ds->started = false;
ds->w = state->common->w;
ds->h = state->common->h;
ds->visible = snewn(ds->w * ds->h, unsigned char);
ds->tilesize = 0; /* not decided yet */
memset(ds->visible, 255, ds->w * ds->h);
ds->numcolours = snewn(ds->w + ds->h, unsigned char);
memset(ds->numcolours, 255, ds->w + ds->h);
ds->cur_x = ds->cur_y = 0;
ds->strbuf = snewn(state->common->rowsize *
MAX_DIGITS(*state->common->rowdata) + 1, char);
return ds;
}
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
{
sfree(ds->visible);
sfree(ds->numcolours);
sfree(ds->strbuf);
sfree(ds);
}
static void grid_square(drawing *dr, game_drawstate *ds,
int y, int x, int state, bool cur)
{
int xl, xr, yt, yb, dx, dy, dw, dh;
draw_rect(dr, TOCOORD(ds->w, x), TOCOORD(ds->h, y),
TILE_SIZE, TILE_SIZE, COL_GRID);
xl = (x % 5 == 0 ? 1 : 0);
yt = (y % 5 == 0 ? 1 : 0);
xr = (x % 5 == 4 || x == ds->w-1 ? 1 : 0);
yb = (y % 5 == 4 || y == ds->h-1 ? 1 : 0);
dx = TOCOORD(ds->w, x) + 1 + xl;
dy = TOCOORD(ds->h, y) + 1 + yt;
dw = TILE_SIZE - xl - xr - 1;
dh = TILE_SIZE - yt - yb - 1;
draw_rect(dr, dx, dy, dw, dh,
(state == GRID_FULL ? COL_FULL :
state == GRID_EMPTY ? COL_EMPTY : COL_UNKNOWN));
if (cur) {
draw_rect_outline(dr, dx, dy, dw, dh, COL_CURSOR);
draw_rect_outline(dr, dx+1, dy+1, dw-2, dh-2, COL_CURSOR);
}
draw_update(dr, TOCOORD(ds->w, x), TOCOORD(ds->h, y),
TILE_SIZE, TILE_SIZE);
}
/*
* Draw the numbers for a single row or column.
*/
static void draw_numbers(
drawing *dr, game_drawstate *ds, const game_state *state,
int i, bool erase, int colour)
{
int rowlen = state->common->rowlen[i];
int *rowdata = state->common->rowdata + state->common->rowsize * i;
int nfit;
int j;
int rx, ry, rw, rh;
int fontsize;
if (i < state->common->w) {
rx = TOCOORD(state->common->w, i);
ry = 0;
rw = TILE_SIZE;
rh = BORDER + TLBORDER(state->common->h) * TILE_SIZE;
} else {
rx = 0;
ry = TOCOORD(state->common->h, i - state->common->w);
rw = BORDER + TLBORDER(state->common->w) * TILE_SIZE;
rh = TILE_SIZE;
}
clip(dr, rx, ry, rw, rh);
if (erase)
draw_rect(dr, rx, ry, rw, rh, COL_BACKGROUND);
/*
* Choose a font size that's suitable for the lengths of clue.
* Only column clues are interesting because row clues can be
* spaced out independent of the tile size. For column clues, we
* want to go as large as practical while leaving decent space
* between horizintally adjacent clues. We currently distinguish
* two cases: FS_LARGE is when all column clues are single digits,
* and FS_SMALL in all other cases.
*
* If we assume that a digit is about 0.6em wide, and we want
* about that space between clues, then FS_SMALL should be
* TILESIZE/1.2. If we also assume that clues are at most two
* digits long then the case where adjacent clues are two digits
* long requries FS_LARGE to be TILESIZE/1.8.
*/
fontsize = (TILE_SIZE + 0.5F) /
(state->common->fontsize == FS_LARGE ? 1.2F : 1.8F);
/*
* Normally I space the numbers out by the same distance as the
* tile size. However, if there are more numbers than available
* spaces, I have to squash them up a bit.
*/
if (i < state->common->w)
nfit = TLBORDER(state->common->h);
else
nfit = TLBORDER(state->common->w);
nfit = max(rowlen, nfit) - 1;
assert(nfit > 0);
if (i < state->common->w) {
for (j = 0; j < rowlen; j++) {
int x, y;
char str[MAX_DIGITS(*rowdata) + 1];
x = rx;
y = BORDER + TILE_SIZE * (TLBORDER(state->common->h)-1);
y -= ((rowlen-j-1)*TILE_SIZE) * (TLBORDER(state->common->h)-1) / nfit;
sprintf(str, "%d", rowdata[j]);
draw_text(dr, x+TILE_SIZE/2, y+TILE_SIZE/2, FONT_VARIABLE,
fontsize, ALIGN_HCENTRE | ALIGN_VCENTRE, colour, str);
}
} else {
int x, y;
size_t off = 0;
assert(rowlen <= state->common->rowsize);
*ds->strbuf = '\0';
for (j = 0; j < rowlen; j++)
off += sprintf(ds->strbuf + off, "%s%d", j ? " " : "", rowdata[j]);
y = ry;
x = BORDER + TILE_SIZE * (TLBORDER(state->common->w)-1);
draw_text(dr, x+TILE_SIZE, y+TILE_SIZE/2, FONT_VARIABLE,
fontsize, ALIGN_HRIGHT | ALIGN_VCENTRE, colour, ds->strbuf);
}
unclip(dr);
draw_update(dr, rx, ry, rw, rh);
}
static void game_redraw(drawing *dr, game_drawstate *ds,
const game_state *oldstate, const game_state *state,
int dir, const game_ui *ui,
float animtime, float flashtime)
{
int i, j;
int x1, x2, y1, y2;
int cx, cy;
bool cmoved;
if (!ds->started) {
/*
* Draw the grid outline.
*/
draw_rect(dr, TOCOORD(ds->w, 0) - 1, TOCOORD(ds->h, 0) - 1,
ds->w * TILE_SIZE + 3, ds->h * TILE_SIZE + 3,
COL_GRID);
ds->started = true;
draw_update(dr, 0, 0, SIZE(ds->w), SIZE(ds->h));
}
if (ui->dragging) {
x1 = min(ui->drag_start_x, ui->drag_end_x);
x2 = max(ui->drag_start_x, ui->drag_end_x);
y1 = min(ui->drag_start_y, ui->drag_end_y);
y2 = max(ui->drag_start_y, ui->drag_end_y);
} else {
x1 = x2 = y1 = y2 = -1; /* placate gcc warnings */
}
if (ui->cur_visible) {
cx = ui->cur_x; cy = ui->cur_y;
} else {
cx = cy = -1;
}
cmoved = (cx != ds->cur_x || cy != ds->cur_y);
/*
* Now draw any grid squares which have changed since last
* redraw.
*/
for (i = 0; i < ds->h; i++) {
for (j = 0; j < ds->w; j++) {
int val;
bool cc = false;
/*
* Work out what state this square should be drawn in,
* taking any current drag operation into account.
*/
if (ui->dragging && x1 <= j && j <= x2 && y1 <= i && i <= y2 &&
!state->common->immutable[i * state->common->w + j])
val = ui->state;
else
val = state->grid[i * state->common->w + j];
if (cmoved) {
/* the cursor has moved; if we were the old or
* the new cursor position we need to redraw. */
if (j == cx && i == cy) cc = true;
if (j == ds->cur_x && i == ds->cur_y) cc = true;
}
/*
* Briefly invert everything twice during a completion
* flash.
*/
if (flashtime > 0 &&
(flashtime <= FLASH_TIME/3 || flashtime >= FLASH_TIME*2/3) &&
val != GRID_UNKNOWN)
val = (GRID_FULL ^ GRID_EMPTY) ^ val;
if (ds->visible[i * ds->w + j] != val || cc) {
grid_square(dr, ds, i, j, val,
(j == cx && i == cy));
ds->visible[i * ds->w + j] = val;
}
}
}
ds->cur_x = cx; ds->cur_y = cy;
/*
* Redraw any numbers which have changed their colour due to error
* indication.
*/
for (i = 0; i < state->common->w + state->common->h; i++) {
int colour = check_errors(state, i) ? COL_ERROR : COL_TEXT;
if (colour == COL_TEXT && ((cx >= 0 && i == cx) || (cy >= 0 && i == cy + ds->w))) {
colour = COL_CURSOR_GUIDE;
}
if (ds->numcolours[i] != colour) {
draw_numbers(dr, ds, state, i, true, colour);
ds->numcolours[i] = colour;
}
}
}
static float game_anim_length(const game_state *oldstate,
const game_state *newstate, int dir, game_ui *ui)
{
return 0.0F;
}
static float game_flash_length(const game_state *oldstate,
const game_state *newstate, int dir, game_ui *ui)
{
if (!oldstate->completed && newstate->completed &&
!oldstate->cheated && !newstate->cheated)
return FLASH_TIME;
return 0.0F;
}
static void game_get_cursor_location(const game_ui *ui,
const game_drawstate *ds,
const game_state *state,
const game_params *params,
int *x, int *y, int *w, int *h)
{
if(ui->cur_visible) {
*x = TOCOORD(ds->w, ui->cur_x);
*y = TOCOORD(ds->h, ui->cur_y);
*w = *h = TILE_SIZE;
}
}
static int game_status(const game_state *state)
{
return state->completed ? +1 : 0;
}
static void game_print_size(const game_params *params, float *x, float *y)
{
int pw, ph;
/*
* I'll use 5mm squares by default.
*/
game_compute_size(params, 500, &pw, &ph);
*x = pw / 100.0F;
*y = ph / 100.0F;
}
static void game_print(drawing *dr, const game_state *state, int tilesize)
{
int w = state->common->w, h = state->common->h;
int ink = print_mono_colour(dr, 0);
int x, y, i;
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
game_drawstate ads, *ds = &ads;
game_set_size(dr, ds, NULL, tilesize);
/*
* Border.
*/
print_line_width(dr, TILE_SIZE / 16);
draw_rect_outline(dr, TOCOORD(w, 0), TOCOORD(h, 0),
w*TILE_SIZE, h*TILE_SIZE, ink);
/*
* Grid.
*/
for (x = 1; x < w; x++) {
print_line_width(dr, TILE_SIZE / (x % 5 ? 128 : 24));
draw_line(dr, TOCOORD(w, x), TOCOORD(h, 0),
TOCOORD(w, x), TOCOORD(h, h), ink);
}
for (y = 1; y < h; y++) {
print_line_width(dr, TILE_SIZE / (y % 5 ? 128 : 24));
draw_line(dr, TOCOORD(w, 0), TOCOORD(h, y),
TOCOORD(w, w), TOCOORD(h, y), ink);
}
/*
* Clues.
*/
for (i = 0; i < state->common->w + state->common->h; i++)
draw_numbers(dr, ds, state, i, false, ink);
/*
* Solution.
*/
print_line_width(dr, TILE_SIZE / 128);
for (y = 0; y < h; y++)
for (x = 0; x < w; x++) {
if (state->grid[y*w+x] == GRID_FULL)
draw_rect(dr, TOCOORD(w, x), TOCOORD(h, y),
TILE_SIZE, TILE_SIZE, ink);
else if (state->grid[y*w+x] == GRID_EMPTY)
draw_circle(dr, TOCOORD(w, x) + TILE_SIZE/2,
TOCOORD(h, y) + TILE_SIZE/2,
TILE_SIZE/12, ink, ink);
}
}
#ifdef COMBINED
#define thegame pattern
#endif
const struct game thegame = {
"Pattern", "games.pattern", "pattern",
default_params,
game_fetch_preset, NULL,
decode_params,
encode_params,
free_params,
dup_params,
true, game_configure, custom_params,
validate_params,
new_game_desc,
validate_desc,
new_game,
dup_game,
free_game,
true, solve_game,
true, game_can_format_as_text_now, game_text_format,
new_ui,
free_ui,
encode_ui,
decode_ui,
NULL, /* game_request_keys */
game_changed_state,
current_key_label,
interpret_move,
execute_move,
PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
game_colours,
game_new_drawstate,
game_free_drawstate,
game_redraw,
game_anim_length,
game_flash_length,
game_get_cursor_location,
game_status,
true, false, game_print_size, game_print,
false, /* wants_statusbar */
false, NULL, /* timing_state */
REQUIRE_RBUTTON, /* flags */
};
#ifdef STANDALONE_SOLVER
int main(int argc, char **argv)
{
game_params *p;
game_state *s;
char *id = NULL, *desc;
const char *err;
while (--argc > 0) {
char *p = *++argv;
if (*p == '-') {
if (!strcmp(p, "-v")) {
verbose = true;
} else {
fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
return 1;
}
} else {
id = p;
}
}
if (!id) {
fprintf(stderr, "usage: %s <game_id>\n", argv[0]);
return 1;
}
desc = strchr(id, ':');
if (!desc) {
fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
return 1;
}
*desc++ = '\0';
p = default_params();
decode_params(p, id);
err = validate_desc(p, desc);
if (err) {
fprintf(stderr, "%s: %s\n", argv[0], err);
return 1;
}
s = new_game(NULL, p, desc);
{
int w = p->w, h = p->h, i, j, max, cluewid = 0;
unsigned char *matrix, *workspace;
unsigned int *changed_h, *changed_w;
int *rowdata;
matrix = snewn(w*h, unsigned char);
max = max(w, h);
workspace = snewn(max*7, unsigned char);
changed_h = snewn(max+1, unsigned int);
changed_w = snewn(max+1, unsigned int);
rowdata = snewn(max+1, int);
if (verbose) {
int thiswid;
/*
* Work out the maximum text width of the clue numbers
* in a row or column, so we can print the solver's
* working in a nicely lined up way.
*/
for (i = 0; i < (w+h); i++) {
char buf[80];
for (thiswid = -1, j = 0; j < s->common->rowlen[i]; j++)
thiswid += sprintf
(buf, " %d",
s->common->rowdata[s->common->rowsize*i+j]);
if (cluewid < thiswid)
cluewid = thiswid;
}
}
solve_puzzle(s, NULL, w, h, matrix, workspace,
changed_h, changed_w, rowdata, cluewid);
for (i = 0; i < h; i++) {
for (j = 0; j < w; j++) {
int c = (matrix[i*w+j] == UNKNOWN ? '?' :
matrix[i*w+j] == BLOCK ? '#' :
matrix[i*w+j] == DOT ? '.' :
'!');
putchar(c);
}
printf("\n");
}
}
return 0;
}
#endif
#ifdef STANDALONE_PICTURE_GENERATOR
/*
* Main program for the standalone picture generator. To use it,
* simply provide it with an XBM-format bitmap file (note XBM, not
* XPM) on standard input, and it will output a game ID in return.
* For example:
*
* $ ./patternpicture < calligraphic-A.xbm
* 15x15:2/4/2/2/2/3/3/3.1/3.1/3.1/11/14/12/6/1/2/2/3/4/5/1.3/2.3/1.3/2.3/1.4/9/1.1.3/2.2.3/5.4/3.2
*
* That looks easy, of course - all the program has done is to count
* up the clue numbers! But in fact, it's done more than that: it's
* also checked that the result is uniquely soluble from just the
* numbers. If it hadn't been, then it would have also left some
* filled squares in the playing area as extra clues.
*
* $ ./patternpicture < cube.xbm
* 15x15:10/2.1/1.1.1/1.1.1/1.1.1/1.1.1/1.1.1/1.1.1/1.1.1/1.10/1.1.1/1.1.1/1.1.1/2.1/10/10/1.2/1.1.1/1.1.1/1.1.1/10.1/1.1.1/1.1.1/1.1.1/1.1.1/1.1.1/1.1.1/1.1.1/1.2/10,TNINzzzzGNzw
*
* This enables a reasonably convenient design workflow for coming up
* with pictorial Pattern puzzles which _are_ uniquely soluble without
* those inelegant pre-filled squares. Fire up a bitmap editor (X11
* bitmap(1) is good enough), save a trial .xbm, and then test it by
* running a command along the lines of
*
* $ ./pattern $(./patternpicture < test.xbm)
*
* If the resulting window pops up with some pre-filled squares, then
* that tells you which parts of the image are giving rise to
* ambiguities, so try making tweaks in those areas, try the test
* command again, and see if it helps. Once you have a design for
* which the Pattern starting grid comes out empty, there's your game
* ID.
*/
#include <time.h>
int main(int argc, char **argv)
{
game_params *par;
char *params, *desc;
random_state *rs;
time_t seed = time(NULL);
char buf[4096];
int i;
int x, y;
par = default_params();
if (argc > 1)
decode_params(par, argv[1]); /* get difficulty */
par->w = par->h = -1;
/*
* Now read an XBM file from standard input. This is simple and
* hacky and will do very little error detection, so don't feed
* it bogus data.
*/
picture = NULL;
x = y = 0;
while (fgets(buf, sizeof(buf), stdin)) {
buf[strcspn(buf, "\r\n")] = '\0';
if (!strncmp(buf, "#define", 7)) {
/*
* Lines starting `#define' give the width and height.
*/
char *num = buf + strlen(buf);
char *symend;
while (num > buf && isdigit((unsigned char)num[-1]))
num--;
symend = num;
while (symend > buf && isspace((unsigned char)symend[-1]))
symend--;
if (symend-5 >= buf && !strncmp(symend-5, "width", 5))
par->w = atoi(num);
else if (symend-6 >= buf && !strncmp(symend-6, "height", 6))
par->h = atoi(num);
} else {
/*
* Otherwise, break the string up into words and take
* any word of the form `0x' plus hex digits to be a
* byte.
*/
char *p, *wordstart;
if (!picture) {
if (par->w < 0 || par->h < 0) {
printf("failed to read width and height\n");
return 1;
}
picture = snewn(par->w * par->h, unsigned char);
for (i = 0; i < par->w * par->h; i++)
picture[i] = GRID_UNKNOWN;
}
p = buf;
while (*p) {
while (*p && (*p == ',' || isspace((unsigned char)*p)))
p++;
wordstart = p;
while (*p && !(*p == ',' || *p == '}' ||
isspace((unsigned char)*p)))
p++;
if (*p)
*p++ = '\0';
if (wordstart[0] == '0' &&
(wordstart[1] == 'x' || wordstart[1] == 'X') &&
!wordstart[2 + strspn(wordstart+2,
"0123456789abcdefABCDEF")]) {
unsigned long byte = strtoul(wordstart+2, NULL, 16);
for (i = 0; i < 8; i++) {
int bit = (byte >> i) & 1;
if (y < par->h && x < par->w)
picture[y * par->w + x] =
bit ? GRID_FULL : GRID_EMPTY;
x++;
}
if (x >= par->w) {
x = 0;
y++;
}
}
}
}
}
for (i = 0; i < par->w * par->h; i++)
if (picture[i] == GRID_UNKNOWN) {
fprintf(stderr, "failed to read enough bitmap data\n");
return 1;
}
rs = random_new((void*)&seed, sizeof(time_t));
desc = new_game_desc(par, rs, NULL, false);
params = encode_params(par, false);
printf("%s:%s\n", params, desc);
sfree(desc);
sfree(params);
free_params(par);
random_free(rs);
return 0;
}
#endif
/* vim: set shiftwidth=4 tabstop=8: */