Files
puzzles/sixteen.c
Ben Harris 5ec86c03a8 move_cursor(): handle visible flag; return useful value
This adds an extra parameter to move_cursor() that's an optional pointer
to a bool indicating whether the cursor is visible.  This allows for
centralising the common idiom of having the keyboard cursor become
visible when a cursor key is pressed.  Consistently with the vast
majority of existing puzzles, the cursor moves even if it was invisible
before, and becomes visible even if it can't move.

The function now also returns one of the special constants that can be
returned by interpret_move(), so that the caller can correctly return
MOVE_UI_UPDATE or MOVE_NO_EFFECT without needing to carefully check for
changes itself.

Callers are updated only to the extent that they all pass NULL as the
new argument.  Most of them could now be substantially simplified.
2023-08-09 11:44:25 +01:00

1220 lines
31 KiB
C

/*
* sixteen.c: `16-puzzle', a sliding-tiles jigsaw which differs
* from the 15-puzzle in that you toroidally rotate a row or column
* at a time.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <ctype.h>
#include <limits.h>
#ifdef NO_TGMATH_H
# include <math.h>
#else
# include <tgmath.h>
#endif
#include "puzzles.h"
#define PREFERRED_TILE_SIZE 48
#define TILE_SIZE (ds->tilesize)
#define BORDER TILE_SIZE
#define HIGHLIGHT_WIDTH (TILE_SIZE / 20)
#define COORD(x) ( (x) * TILE_SIZE + BORDER )
#define FROMCOORD(x) ( ((x) - BORDER + 2*TILE_SIZE) / TILE_SIZE - 2 )
#define ANIM_TIME 0.13F
#define FLASH_FRAME 0.13F
#define X(state, i) ( (i) % (state)->w )
#define Y(state, i) ( (i) / (state)->w )
#define C(state, x, y) ( (y) * (state)->w + (x) )
#define TILE_CURSOR(i, state, x, y) ((i) == C((state), (x), (y)) && \
0 <= (x) && (x) < (state)->w && \
0 <= (y) && (y) < (state)->h)
enum {
COL_BACKGROUND,
COL_TEXT,
COL_HIGHLIGHT,
COL_LOWLIGHT,
NCOLOURS
};
struct game_params {
int w, h;
int movetarget;
};
struct game_state {
int w, h, n;
int *tiles;
int completed;
bool used_solve; /* used to suppress completion flash */
int movecount, movetarget;
int last_movement_sense;
};
static game_params *default_params(void)
{
game_params *ret = snew(game_params);
ret->w = ret->h = 4;
ret->movetarget = 0;
return ret;
}
static bool game_fetch_preset(int i, char **name, game_params **params)
{
game_params *ret;
int w, h;
char buf[80];
switch (i) {
case 0: w = 3, h = 3; break;
case 1: w = 4, h = 3; break;
case 2: w = 4, h = 4; break;
case 3: w = 5, h = 4; break;
case 4: w = 5, h = 5; break;
default: return false;
}
sprintf(buf, "%dx%d", w, h);
*name = dupstr(buf);
*params = ret = snew(game_params);
ret->w = w;
ret->h = h;
ret->movetarget = 0;
return true;
}
static void free_params(game_params *params)
{
sfree(params);
}
static game_params *dup_params(const game_params *params)
{
game_params *ret = snew(game_params);
*ret = *params; /* structure copy */
return ret;
}
static void decode_params(game_params *ret, char const *string)
{
ret->w = ret->h = atoi(string);
ret->movetarget = 0;
while (*string && isdigit((unsigned char)*string)) string++;
if (*string == 'x') {
string++;
ret->h = atoi(string);
while (*string && isdigit((unsigned char)*string))
string++;
}
if (*string == 'm') {
string++;
ret->movetarget = atoi(string);
while (*string && isdigit((unsigned char)*string))
string++;
}
}
static char *encode_params(const game_params *params, bool full)
{
char data[256];
sprintf(data, "%dx%d", params->w, params->h);
/* Shuffle limit is part of the limited parameters, because we have to
* supply the target move count. */
if (params->movetarget)
sprintf(data + strlen(data), "m%d", params->movetarget);
return dupstr(data);
}
static config_item *game_configure(const game_params *params)
{
config_item *ret;
char buf[80];
ret = snewn(4, config_item);
ret[0].name = "Width";
ret[0].type = C_STRING;
sprintf(buf, "%d", params->w);
ret[0].u.string.sval = dupstr(buf);
ret[1].name = "Height";
ret[1].type = C_STRING;
sprintf(buf, "%d", params->h);
ret[1].u.string.sval = dupstr(buf);
ret[2].name = "Number of shuffling moves";
ret[2].type = C_STRING;
sprintf(buf, "%d", params->movetarget);
ret[2].u.string.sval = dupstr(buf);
ret[3].name = NULL;
ret[3].type = C_END;
return ret;
}
static game_params *custom_params(const config_item *cfg)
{
game_params *ret = snew(game_params);
ret->w = atoi(cfg[0].u.string.sval);
ret->h = atoi(cfg[1].u.string.sval);
ret->movetarget = atoi(cfg[2].u.string.sval);
return ret;
}
static const char *validate_params(const game_params *params, bool full)
{
if (params->w < 2 || params->h < 2)
return "Width and height must both be at least two";
if (params->w > INT_MAX / params->h)
return "Width times height must not be unreasonably large";
return NULL;
}
static int perm_parity(int *perm, int n)
{
int i, j, ret;
ret = 0;
for (i = 0; i < n-1; i++)
for (j = i+1; j < n; j++)
if (perm[i] > perm[j])
ret = !ret;
return ret;
}
static char *new_game_desc(const game_params *params, random_state *rs,
char **aux, bool interactive)
{
int stop, n, i, x;
int x1, x2, p1, p2;
int *tiles;
bool *used;
char *ret;
int retlen;
n = params->w * params->h;
tiles = snewn(n, int);
if (params->movetarget) {
int prevoffset = -1;
int max = (params->w > params->h ? params->w : params->h);
int *prevmoves = snewn(max, int);
/*
* Shuffle the old-fashioned way, by making a series of
* single moves on the grid.
*/
for (i = 0; i < n; i++)
tiles[i] = i;
for (i = 0; i < params->movetarget; i++) {
int start, offset, len, direction, index;
int j, tmp;
/*
* Choose a move to make. We can choose from any row
* or any column.
*/
while (1) {
j = random_upto(rs, params->w + params->h);
if (j < params->w) {
/* Column. */
index = j;
start = j;
offset = params->w;
len = params->h;
} else {
/* Row. */
index = j - params->w;
start = index * params->w;
offset = 1;
len = params->w;
}
direction = -1 + 2 * random_upto(rs, 2);
/*
* To at least _try_ to avoid boring cases, check
* that this move doesn't directly undo a previous
* one, or repeat it so many times as to turn it
* into fewer moves in the opposite direction. (For
* example, in a row of length 4, we're allowed to
* move it the same way twice, but not three
* times.)
*
* We track this for each individual row/column,
* and clear all the counters as soon as a
* perpendicular move is made. This isn't perfect
* (it _can't_ guaranteeably be perfect - there
* will always come a move count beyond which a
* shorter solution will be possible than the one
* which constructed the position) but it should
* sort out all the obvious cases.
*/
if (offset == prevoffset) {
tmp = prevmoves[index] + direction;
if (abs(2*tmp) > len || abs(tmp) < abs(prevmoves[index]))
continue;
}
/* If we didn't `continue', we've found an OK move to make. */
if (offset != prevoffset) {
int i;
for (i = 0; i < max; i++)
prevmoves[i] = 0;
prevoffset = offset;
}
prevmoves[index] += direction;
break;
}
/*
* Make the move.
*/
if (direction < 0) {
start += (len-1) * offset;
offset = -offset;
}
tmp = tiles[start];
for (j = 0; j+1 < len; j++)
tiles[start + j*offset] = tiles[start + (j+1)*offset];
tiles[start + (len-1) * offset] = tmp;
}
sfree(prevmoves);
} else {
used = snewn(n, bool);
for (i = 0; i < n; i++) {
tiles[i] = -1;
used[i] = false;
}
/*
* If both dimensions are odd, there is a parity
* constraint.
*/
if (params->w & params->h & 1)
stop = 2;
else
stop = 0;
/*
* Place everything except (possibly) the last two tiles.
*/
for (x = 0, i = n; i > stop; i--) {
int k = i > 1 ? random_upto(rs, i) : 0;
int j;
for (j = 0; j < n; j++)
if (!used[j] && (k-- == 0))
break;
assert(j < n && !used[j]);
used[j] = true;
while (tiles[x] >= 0)
x++;
assert(x < n);
tiles[x] = j;
}
if (stop) {
/*
* Find the last two locations, and the last two
* pieces.
*/
while (tiles[x] >= 0)
x++;
assert(x < n);
x1 = x;
x++;
while (tiles[x] >= 0)
x++;
assert(x < n);
x2 = x;
for (i = 0; i < n; i++)
if (!used[i])
break;
p1 = i;
for (i = p1+1; i < n; i++)
if (!used[i])
break;
p2 = i;
/*
* Try the last two tiles one way round. If that fails,
* swap them.
*/
tiles[x1] = p1;
tiles[x2] = p2;
if (perm_parity(tiles, n) != 0) {
tiles[x1] = p2;
tiles[x2] = p1;
assert(perm_parity(tiles, n) == 0);
}
}
sfree(used);
}
/*
* Now construct the game description, by describing the tile
* array as a simple sequence of comma-separated integers.
*/
ret = NULL;
retlen = 0;
for (i = 0; i < n; i++) {
char buf[80];
int k;
k = sprintf(buf, "%d,", tiles[i]+1);
ret = sresize(ret, retlen + k + 1, char);
strcpy(ret + retlen, buf);
retlen += k;
}
ret[retlen-1] = '\0'; /* delete last comma */
sfree(tiles);
return ret;
}
static const char *validate_desc(const game_params *params, const char *desc)
{
const char *p, *err;
int i, area;
bool *used;
area = params->w * params->h;
p = desc;
err = NULL;
used = snewn(area, bool);
for (i = 0; i < area; i++)
used[i] = false;
for (i = 0; i < area; i++) {
const char *q = p;
int n;
if (*p < '0' || *p > '9') {
err = "Not enough numbers in string";
goto leave;
}
while (*p >= '0' && *p <= '9')
p++;
if (i < area-1 && *p != ',') {
err = "Expected comma after number";
goto leave;
}
else if (i == area-1 && *p) {
err = "Excess junk at end of string";
goto leave;
}
n = atoi(q);
if (n < 1 || n > area) {
err = "Number out of range";
goto leave;
}
if (used[n-1]) {
err = "Number used twice";
goto leave;
}
used[n-1] = true;
if (*p) p++; /* eat comma */
}
leave:
sfree(used);
return err;
}
static game_state *new_game(midend *me, const game_params *params,
const char *desc)
{
game_state *state = snew(game_state);
int i;
const char *p;
state->w = params->w;
state->h = params->h;
state->n = params->w * params->h;
state->tiles = snewn(state->n, int);
p = desc;
i = 0;
for (i = 0; i < state->n; i++) {
assert(*p);
state->tiles[i] = atoi(p);
while (*p && *p != ',')
p++;
if (*p) p++; /* eat comma */
}
assert(!*p);
state->completed = state->movecount = 0;
state->movetarget = params->movetarget;
state->used_solve = false;
state->last_movement_sense = 0;
return state;
}
static game_state *dup_game(const game_state *state)
{
game_state *ret = snew(game_state);
ret->w = state->w;
ret->h = state->h;
ret->n = state->n;
ret->tiles = snewn(state->w * state->h, int);
memcpy(ret->tiles, state->tiles, state->w * state->h * sizeof(int));
ret->completed = state->completed;
ret->movecount = state->movecount;
ret->movetarget = state->movetarget;
ret->used_solve = state->used_solve;
ret->last_movement_sense = state->last_movement_sense;
return ret;
}
static void free_game(game_state *state)
{
sfree(state->tiles);
sfree(state);
}
static char *solve_game(const game_state *state, const game_state *currstate,
const char *aux, const char **error)
{
return dupstr("S");
}
static bool game_can_format_as_text_now(const game_params *params)
{
return true;
}
static char *game_text_format(const game_state *state)
{
char *ret, *p, buf[80];
int x, y, col, maxlen;
/*
* First work out how many characters we need to display each
* number.
*/
col = sprintf(buf, "%d", state->n);
/*
* Now we know the exact total size of the grid we're going to
* produce: it's got h rows, each containing w lots of col, w-1
* spaces and a trailing newline.
*/
maxlen = state->h * state->w * (col+1);
ret = snewn(maxlen+1, char);
p = ret;
for (y = 0; y < state->h; y++) {
for (x = 0; x < state->w; x++) {
int v = state->tiles[state->w*y+x];
sprintf(buf, "%*d", col, v);
memcpy(p, buf, col);
p += col;
if (x+1 == state->w)
*p++ = '\n';
else
*p++ = ' ';
}
}
assert(p - ret == maxlen);
*p = '\0';
return ret;
}
enum cursor_mode { unlocked, lock_tile, lock_position };
struct game_ui {
int cur_x, cur_y;
bool cur_visible;
enum cursor_mode cur_mode;
};
static game_ui *new_ui(const game_state *state)
{
game_ui *ui = snew(game_ui);
ui->cur_x = 0;
ui->cur_y = 0;
ui->cur_visible = getenv_bool("PUZZLES_SHOW_CURSOR", false);
ui->cur_mode = unlocked;
return ui;
}
static void free_ui(game_ui *ui)
{
sfree(ui);
}
static void game_changed_state(game_ui *ui, const game_state *oldstate,
const game_state *newstate)
{
}
static const char *current_key_label(const game_ui *ui,
const game_state *state, int button)
{
if (IS_CURSOR_SELECT(button) && ui->cur_visible) {
if (ui->cur_x == -1 || ui->cur_x == state->w ||
ui->cur_y == -1 || ui->cur_y == state->h)
return button == CURSOR_SELECT2 ? "Back" : "Slide";
if (button == CURSOR_SELECT)
return ui->cur_mode == lock_tile ? "Unlock" : "Lock tile";
if (button == CURSOR_SELECT2)
return ui->cur_mode == lock_position ? "Unlock" : "Lock pos";
}
return "";
}
struct game_drawstate {
bool started;
int w, h, bgcolour;
int *tiles;
int tilesize;
int cur_x, cur_y;
};
static char *interpret_move(const game_state *state, game_ui *ui,
const game_drawstate *ds,
int x, int y, int button)
{
int cx = -1, cy = -1, dx, dy;
char buf[80];
bool shift = button & MOD_SHFT, control = button & MOD_CTRL;
int pad = button & MOD_NUM_KEYPAD;
button &= ~MOD_MASK;
if (IS_CURSOR_MOVE(button) || pad) {
if (!ui->cur_visible) {
ui->cur_visible = true;
return MOVE_UI_UPDATE;
}
if (control || shift || ui->cur_mode) {
int x = ui->cur_x, y = ui->cur_y, xwrap = x, ywrap = y;
if (x < 0 || x >= state->w || y < 0 || y >= state->h)
return NULL;
move_cursor(button | pad, &x, &y,
state->w, state->h, false, NULL);
move_cursor(button | pad, &xwrap, &ywrap,
state->w, state->h, true, NULL);
if (x != xwrap) {
sprintf(buf, "R%d,%c1", y, x ? '+' : '-');
} else if (y != ywrap) {
sprintf(buf, "C%d,%c1", x, y ? '+' : '-');
} else if (x == ui->cur_x)
sprintf(buf, "C%d,%d", x, y - ui->cur_y);
else
sprintf(buf, "R%d,%d", y, x - ui->cur_x);
if (control || (!shift && ui->cur_mode == lock_tile)) {
ui->cur_x = xwrap;
ui->cur_y = ywrap;
}
return dupstr(buf);
} else {
int x = ui->cur_x + 1, y = ui->cur_y + 1;
move_cursor(button | pad, &x, &y,
state->w + 2, state->h + 2, false, NULL);
if (x == 0 && y == 0) {
int t = ui->cur_x;
ui->cur_x = ui->cur_y;
ui->cur_y = t;
} else if (x == 0 && y == state->h + 1) {
int t = ui->cur_x;
ui->cur_x = (state->h - 1) - ui->cur_y;
ui->cur_y = (state->h - 1) - t;
} else if (x == state->w + 1 && y == 0) {
int t = ui->cur_x;
ui->cur_x = (state->w - 1) - ui->cur_y;
ui->cur_y = (state->w - 1) - t;
} else if (x == state->w + 1 && y == state->h + 1) {
int t = ui->cur_x;
ui->cur_x = state->w - state->h + ui->cur_y;
ui->cur_y = state->h - state->w + t;
} else {
ui->cur_x = x - 1;
ui->cur_y = y - 1;
}
ui->cur_visible = true;
return MOVE_UI_UPDATE;
}
}
if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
cx = FROMCOORD(x);
cy = FROMCOORD(y);
ui->cur_visible = false;
} else if (IS_CURSOR_SELECT(button)) {
if (ui->cur_visible) {
if (ui->cur_x == -1 || ui->cur_x == state->w ||
ui->cur_y == -1 || ui->cur_y == state->h) {
cx = ui->cur_x;
cy = ui->cur_y;
} else {
const enum cursor_mode m = (button == CURSOR_SELECT2 ?
lock_position : lock_tile);
ui->cur_mode = (ui->cur_mode == m ? unlocked : m);
return MOVE_UI_UPDATE;
}
} else {
ui->cur_visible = true;
return MOVE_UI_UPDATE;
}
} else {
return NULL;
}
if (cx == -1 && cy >= 0 && cy < state->h)
dx = -1, dy = 0;
else if (cx == state->w && cy >= 0 && cy < state->h)
dx = +1, dy = 0;
else if (cy == -1 && cx >= 0 && cx < state->w)
dy = -1, dx = 0;
else if (cy == state->h && cx >= 0 && cx < state->w)
dy = +1, dx = 0;
else
return MOVE_UI_UPDATE; /* invalid click location */
/* reverse direction if right hand button is pressed */
if (button == RIGHT_BUTTON || button == CURSOR_SELECT2) {
dx = -dx;
dy = -dy;
}
if (dx)
sprintf(buf, "R%d,%d", cy, dx);
else
sprintf(buf, "C%d,%d", cx, dy);
return dupstr(buf);
}
static game_state *execute_move(const game_state *from, const char *move)
{
int cx, cy, dx, dy;
int tx, ty, n;
game_state *ret;
if (!strcmp(move, "S")) {
int i;
ret = dup_game(from);
/*
* Simply replace the grid with a solved one. For this game,
* this isn't a useful operation for actually telling the user
* what they should have done, but it is useful for
* conveniently being able to get hold of a clean state from
* which to practise manoeuvres.
*/
for (i = 0; i < ret->n; i++)
ret->tiles[i] = i+1;
ret->used_solve = true;
ret->completed = ret->movecount = 1;
return ret;
}
if (move[0] == 'R' && sscanf(move+1, "%d,%d", &cy, &dx) == 2 &&
cy >= 0 && cy < from->h && -from->h <= dx && dx <= from->w ) {
cx = dy = 0;
n = from->w;
} else if (move[0] == 'C' && sscanf(move+1, "%d,%d", &cx, &dy) == 2 &&
cx >= 0 && cx < from->w && -from->h <= dy && dy <= from->h) {
cy = dx = 0;
n = from->h;
} else
return NULL;
ret = dup_game(from);
do {
tx = (cx - dx + from->w) % from->w;
ty = (cy - dy + from->h) % from->h;
ret->tiles[C(ret, cx, cy)] = from->tiles[C(from, tx, ty)];
cx = tx;
cy = ty;
} while (--n > 0);
ret->movecount++;
ret->last_movement_sense = dx+dy;
/*
* See if the game has been completed.
*/
if (!ret->completed) {
ret->completed = ret->movecount;
for (n = 0; n < ret->n; n++)
if (ret->tiles[n] != n+1)
ret->completed = 0;
}
return ret;
}
/* ----------------------------------------------------------------------
* Drawing routines.
*/
static void game_compute_size(const game_params *params, int tilesize,
const game_ui *ui, int *x, int *y)
{
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
struct { int tilesize; } ads, *ds = &ads;
ads.tilesize = tilesize;
*x = TILE_SIZE * params->w + 2 * BORDER;
*y = TILE_SIZE * params->h + 2 * BORDER;
}
static void game_set_size(drawing *dr, game_drawstate *ds,
const game_params *params, int tilesize)
{
ds->tilesize = tilesize;
}
static float *game_colours(frontend *fe, int *ncolours)
{
float *ret = snewn(3 * NCOLOURS, float);
int i;
game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT);
for (i = 0; i < 3; i++)
ret[COL_TEXT * 3 + i] = 0.0;
*ncolours = NCOLOURS;
return ret;
}
static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state)
{
struct game_drawstate *ds = snew(struct game_drawstate);
int i;
ds->started = false;
ds->w = state->w;
ds->h = state->h;
ds->bgcolour = COL_BACKGROUND;
ds->tiles = snewn(ds->w*ds->h, int);
ds->tilesize = 0; /* haven't decided yet */
for (i = 0; i < ds->w*ds->h; i++)
ds->tiles[i] = -1;
ds->cur_x = ds->cur_y = -1;
return ds;
}
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
{
sfree(ds->tiles);
sfree(ds);
}
static void draw_tile(drawing *dr, game_drawstate *ds,
const game_state *state, int x, int y,
int tile, int flash_colour)
{
if (tile == 0) {
draw_rect(dr, x, y, TILE_SIZE, TILE_SIZE,
flash_colour);
} else {
int coords[6];
char str[40];
coords[0] = x + TILE_SIZE - 1;
coords[1] = y + TILE_SIZE - 1;
coords[2] = x + TILE_SIZE - 1;
coords[3] = y;
coords[4] = x;
coords[5] = y + TILE_SIZE - 1;
draw_polygon(dr, coords, 3, COL_LOWLIGHT, COL_LOWLIGHT);
coords[0] = x;
coords[1] = y;
draw_polygon(dr, coords, 3, COL_HIGHLIGHT, COL_HIGHLIGHT);
draw_rect(dr, x + HIGHLIGHT_WIDTH, y + HIGHLIGHT_WIDTH,
TILE_SIZE - 2*HIGHLIGHT_WIDTH, TILE_SIZE - 2*HIGHLIGHT_WIDTH,
flash_colour);
sprintf(str, "%d", tile);
draw_text(dr, x + TILE_SIZE/2, y + TILE_SIZE/2,
FONT_VARIABLE, TILE_SIZE/3, ALIGN_VCENTRE | ALIGN_HCENTRE,
COL_TEXT, str);
}
draw_update(dr, x, y, TILE_SIZE, TILE_SIZE);
}
static void draw_arrow(drawing *dr, game_drawstate *ds,
int x, int y, int xdx, int xdy, bool cur)
{
int coords[14];
int ydy = -xdx, ydx = xdy;
#define POINT(n, xx, yy) ( \
coords[2*(n)+0] = x + (xx)*xdx + (yy)*ydx, \
coords[2*(n)+1] = y + (xx)*xdy + (yy)*ydy)
POINT(0, TILE_SIZE / 2, 3 * TILE_SIZE / 4); /* top of arrow */
POINT(1, 3 * TILE_SIZE / 4, TILE_SIZE / 2); /* right corner */
POINT(2, 5 * TILE_SIZE / 8, TILE_SIZE / 2); /* right concave */
POINT(3, 5 * TILE_SIZE / 8, TILE_SIZE / 4); /* bottom right */
POINT(4, 3 * TILE_SIZE / 8, TILE_SIZE / 4); /* bottom left */
POINT(5, 3 * TILE_SIZE / 8, TILE_SIZE / 2); /* left concave */
POINT(6, TILE_SIZE / 4, TILE_SIZE / 2); /* left corner */
draw_polygon(dr, coords, 7, cur ? COL_HIGHLIGHT : COL_LOWLIGHT, COL_TEXT);
}
static void draw_arrow_for_cursor(drawing *dr, game_drawstate *ds,
int cur_x, int cur_y, bool cur)
{
if (cur_x == -1 && cur_y == -1)
return; /* 'no cursur here */
else if (cur_x == -1) /* LH column. */
draw_arrow(dr, ds, COORD(0), COORD(cur_y+1), 0, -1, cur);
else if (cur_x == ds->w) /* RH column */
draw_arrow(dr, ds, COORD(ds->w), COORD(cur_y), 0, +1, cur);
else if (cur_y == -1) /* Top row */
draw_arrow(dr, ds, COORD(cur_x), COORD(0), +1, 0, cur);
else if (cur_y == ds->h) /* Bottom row */
draw_arrow(dr, ds, COORD(cur_x+1), COORD(ds->h), -1, 0, cur);
else
return;
draw_update(dr, COORD(cur_x), COORD(cur_y),
TILE_SIZE, TILE_SIZE);
}
static void game_redraw(drawing *dr, game_drawstate *ds,
const game_state *oldstate, const game_state *state,
int dir, const game_ui *ui,
float animtime, float flashtime)
{
int i, bgcolour;
int cur_x = -1, cur_y = -1;
if (flashtime > 0) {
int frame = (int)(flashtime / FLASH_FRAME);
bgcolour = (frame % 2 ? COL_LOWLIGHT : COL_HIGHLIGHT);
} else
bgcolour = COL_BACKGROUND;
if (!ds->started) {
int coords[10];
/*
* Recessed area containing the whole puzzle.
*/
coords[0] = COORD(state->w) + HIGHLIGHT_WIDTH - 1;
coords[1] = COORD(state->h) + HIGHLIGHT_WIDTH - 1;
coords[2] = COORD(state->w) + HIGHLIGHT_WIDTH - 1;
coords[3] = COORD(0) - HIGHLIGHT_WIDTH;
coords[4] = coords[2] - TILE_SIZE;
coords[5] = coords[3] + TILE_SIZE;
coords[8] = COORD(0) - HIGHLIGHT_WIDTH;
coords[9] = COORD(state->h) + HIGHLIGHT_WIDTH - 1;
coords[6] = coords[8] + TILE_SIZE;
coords[7] = coords[9] - TILE_SIZE;
draw_polygon(dr, coords, 5, COL_HIGHLIGHT, COL_HIGHLIGHT);
coords[1] = COORD(0) - HIGHLIGHT_WIDTH;
coords[0] = COORD(0) - HIGHLIGHT_WIDTH;
draw_polygon(dr, coords, 5, COL_LOWLIGHT, COL_LOWLIGHT);
/*
* Arrows for making moves.
*/
for (i = 0; i < state->w; i++) {
draw_arrow(dr, ds, COORD(i), COORD(0), +1, 0, false);
draw_arrow(dr, ds, COORD(i+1), COORD(state->h), -1, 0, false);
}
for (i = 0; i < state->h; i++) {
draw_arrow(dr, ds, COORD(state->w), COORD(i), 0, +1, false);
draw_arrow(dr, ds, COORD(0), COORD(i+1), 0, -1, false);
}
ds->started = true;
}
/*
* Cursor (highlighted arrow around edge)
*/
if (ui->cur_visible) {
cur_x = ui->cur_x; cur_y = ui->cur_y;
}
if (cur_x != ds->cur_x || cur_y != ds->cur_y) {
/* Cursor has changed; redraw two (prev and curr) arrows. */
draw_arrow_for_cursor(dr, ds, cur_x, cur_y, true);
draw_arrow_for_cursor(dr, ds, ds->cur_x, ds->cur_y, false);
}
/*
* Now draw each tile.
*/
clip(dr, COORD(0), COORD(0), TILE_SIZE*state->w, TILE_SIZE*state->h);
for (i = 0; i < state->n; i++) {
int t, t0;
/*
* Figure out what should be displayed at this
* location. It's either a simple tile, or it's a
* transition between two tiles (in which case we say
* -1 because it must always be drawn).
*/
if (oldstate && oldstate->tiles[i] != state->tiles[i])
t = -1;
else
t = state->tiles[i];
t0 = t;
if (ds->bgcolour != bgcolour || /* always redraw when flashing */
ds->tiles[i] != t || ds->tiles[i] == -1 || t == -1 ||
((ds->cur_x != cur_x || ds->cur_y != cur_y) && /* cursor moved */
(TILE_CURSOR(i, state, ds->cur_x, ds->cur_y) ||
TILE_CURSOR(i, state, cur_x, cur_y)))) {
int x, y, x2, y2;
/*
* Figure out what to _actually_ draw, and where to
* draw it.
*/
if (t == -1) {
int x0, y0, x1, y1, dx, dy;
int j;
float c;
int sense;
if (dir < 0) {
assert(oldstate);
sense = -oldstate->last_movement_sense;
} else {
sense = state->last_movement_sense;
}
t = state->tiles[i];
/*
* FIXME: must be prepared to draw a double
* tile in some situations.
*/
/*
* Find the coordinates of this tile in the old and
* new states.
*/
x1 = COORD(X(state, i));
y1 = COORD(Y(state, i));
for (j = 0; j < oldstate->n; j++)
if (oldstate->tiles[j] == state->tiles[i])
break;
assert(j < oldstate->n);
x0 = COORD(X(state, j));
y0 = COORD(Y(state, j));
dx = (x1 - x0);
if (dx != 0 &&
dx != TILE_SIZE * sense) {
dx = (dx < 0 ? dx + TILE_SIZE * state->w :
dx - TILE_SIZE * state->w);
assert(abs(dx) == TILE_SIZE);
}
dy = (y1 - y0);
if (dy != 0 &&
dy != TILE_SIZE * sense) {
dy = (dy < 0 ? dy + TILE_SIZE * state->h :
dy - TILE_SIZE * state->h);
assert(abs(dy) == TILE_SIZE);
}
c = (animtime / ANIM_TIME);
if (c < 0.0F) c = 0.0F;
if (c > 1.0F) c = 1.0F;
x = x0 + (int)(c * dx);
y = y0 + (int)(c * dy);
x2 = x1 - dx + (int)(c * dx);
y2 = y1 - dy + (int)(c * dy);
} else {
x = COORD(X(state, i));
y = COORD(Y(state, i));
x2 = y2 = -1;
}
draw_tile(dr, ds, state, x, y, t,
(x2 == -1 && TILE_CURSOR(i, state, cur_x, cur_y)) ?
COL_LOWLIGHT : bgcolour);
if (x2 != -1 || y2 != -1)
draw_tile(dr, ds, state, x2, y2, t, bgcolour);
}
ds->tiles[i] = t0;
}
ds->cur_x = cur_x;
ds->cur_y = cur_y;
unclip(dr);
ds->bgcolour = bgcolour;
/*
* Update the status bar.
*/
{
char statusbuf[256];
/*
* Don't show the new status until we're also showing the
* new _state_ - after the game animation is complete.
*/
if (oldstate)
state = oldstate;
if (state->used_solve)
sprintf(statusbuf, "Moves since auto-solve: %d",
state->movecount - state->completed);
else {
sprintf(statusbuf, "%sMoves: %d",
(state->completed ? "COMPLETED! " : ""),
(state->completed ? state->completed : state->movecount));
if (state->movetarget)
sprintf(statusbuf+strlen(statusbuf), " (target %d)",
state->movetarget);
}
status_bar(dr, statusbuf);
}
}
static float game_anim_length(const game_state *oldstate,
const game_state *newstate, int dir, game_ui *ui)
{
return ANIM_TIME;
}
static float game_flash_length(const game_state *oldstate,
const game_state *newstate, int dir, game_ui *ui)
{
if (!oldstate->completed && newstate->completed &&
!oldstate->used_solve && !newstate->used_solve)
return 2 * FLASH_FRAME;
else
return 0.0F;
}
static void game_get_cursor_location(const game_ui *ui,
const game_drawstate *ds,
const game_state *state,
const game_params *params,
int *x, int *y, int *w, int *h)
{
if(ui->cur_visible) {
*x = COORD(ui->cur_x);
*y = COORD(ui->cur_y);
*w = *h = TILE_SIZE;
}
}
static int game_status(const game_state *state)
{
return state->completed ? +1 : 0;
}
#ifdef COMBINED
#define thegame sixteen
#endif
const struct game thegame = {
"Sixteen", "games.sixteen", "sixteen",
default_params,
game_fetch_preset, NULL,
decode_params,
encode_params,
free_params,
dup_params,
true, game_configure, custom_params,
validate_params,
new_game_desc,
validate_desc,
new_game,
dup_game,
free_game,
true, solve_game,
true, game_can_format_as_text_now, game_text_format,
NULL, NULL, /* get_prefs, set_prefs */
new_ui,
free_ui,
NULL, /* encode_ui */
NULL, /* decode_ui */
NULL, /* game_request_keys */
game_changed_state,
current_key_label,
interpret_move,
execute_move,
PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
game_colours,
game_new_drawstate,
game_free_drawstate,
game_redraw,
game_anim_length,
game_flash_length,
game_get_cursor_location,
game_status,
false, false, NULL, NULL, /* print_size, print */
true, /* wants_statusbar */
false, NULL, /* timing_state */
0, /* flags */
};
/* vim: set shiftwidth=4 tabstop=8: */