mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-21 08:01:30 -07:00
Files
2874 lines
87 KiB
C
2874 lines
87 KiB
C
/*
|
|
* rect.c: Puzzle from nikoli.co.jp. You have a square grid with
|
|
* numbers in some squares; you must divide the square grid up into
|
|
* variously sized rectangles, such that every rectangle contains
|
|
* exactly one numbered square and the area of each rectangle is
|
|
* equal to the number contained in it.
|
|
*/
|
|
|
|
/*
|
|
* TODO:
|
|
*
|
|
* - Improve singleton removal.
|
|
* + It would be nice to limit the size of the generated
|
|
* rectangles in accordance with existing constraints such as
|
|
* the maximum rectangle size and the one about not
|
|
* generating a rectangle the full width or height of the
|
|
* grid.
|
|
* + This could be achieved by making a less random choice
|
|
* about which of the available options to use.
|
|
* + Alternatively, we could create our rectangle and then
|
|
* split it up.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <ctype.h>
|
|
#include <math.h>
|
|
|
|
#include "puzzles.h"
|
|
|
|
enum {
|
|
COL_BACKGROUND,
|
|
COL_CORRECT,
|
|
COL_LINE,
|
|
COL_TEXT,
|
|
COL_GRID,
|
|
COL_DRAG,
|
|
NCOLOURS
|
|
};
|
|
|
|
struct game_params {
|
|
int w, h;
|
|
float expandfactor;
|
|
int unique;
|
|
};
|
|
|
|
#define INDEX(state, x, y) (((y) * (state)->w) + (x))
|
|
#define index(state, a, x, y) ((a) [ INDEX(state,x,y) ])
|
|
#define grid(state,x,y) index(state, (state)->grid, x, y)
|
|
#define vedge(state,x,y) index(state, (state)->vedge, x, y)
|
|
#define hedge(state,x,y) index(state, (state)->hedge, x, y)
|
|
|
|
#define CRANGE(state,x,y,dx,dy) ( (x) >= dx && (x) < (state)->w && \
|
|
(y) >= dy && (y) < (state)->h )
|
|
#define RANGE(state,x,y) CRANGE(state,x,y,0,0)
|
|
#define HRANGE(state,x,y) CRANGE(state,x,y,0,1)
|
|
#define VRANGE(state,x,y) CRANGE(state,x,y,1,0)
|
|
|
|
#define PREFERRED_TILE_SIZE 24
|
|
#define TILE_SIZE (ds->tilesize)
|
|
#define BORDER (TILE_SIZE * 3 / 4)
|
|
|
|
#define CORNER_TOLERANCE 0.15F
|
|
#define CENTRE_TOLERANCE 0.15F
|
|
|
|
#define FLASH_TIME 0.13F
|
|
|
|
#define COORD(x) ( (x) * TILE_SIZE + BORDER )
|
|
#define FROMCOORD(x) ( ((x) - BORDER) / TILE_SIZE )
|
|
|
|
struct game_state {
|
|
int w, h;
|
|
int *grid; /* contains the numbers */
|
|
unsigned char *vedge; /* (w+1) x h */
|
|
unsigned char *hedge; /* w x (h+1) */
|
|
int completed, cheated;
|
|
unsigned char *correct;
|
|
};
|
|
|
|
static game_params *default_params(void)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->w = ret->h = 7;
|
|
ret->expandfactor = 0.0F;
|
|
ret->unique = TRUE;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int game_fetch_preset(int i, char **name, game_params **params)
|
|
{
|
|
game_params *ret;
|
|
int w, h;
|
|
char buf[80];
|
|
|
|
switch (i) {
|
|
case 0: w = 7, h = 7; break;
|
|
case 1: w = 9, h = 9; break;
|
|
case 2: w = 11, h = 11; break;
|
|
case 3: w = 13, h = 13; break;
|
|
case 4: w = 15, h = 15; break;
|
|
case 5: w = 17, h = 17; break;
|
|
case 6: w = 19, h = 19; break;
|
|
default: return FALSE;
|
|
}
|
|
|
|
sprintf(buf, "%dx%d", w, h);
|
|
*name = dupstr(buf);
|
|
*params = ret = snew(game_params);
|
|
ret->w = w;
|
|
ret->h = h;
|
|
ret->expandfactor = 0.0F;
|
|
ret->unique = TRUE;
|
|
return TRUE;
|
|
}
|
|
|
|
static void free_params(game_params *params)
|
|
{
|
|
sfree(params);
|
|
}
|
|
|
|
static game_params *dup_params(game_params *params)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
*ret = *params; /* structure copy */
|
|
return ret;
|
|
}
|
|
|
|
static void decode_params(game_params *ret, char const *string)
|
|
{
|
|
ret->w = ret->h = atoi(string);
|
|
while (*string && isdigit((unsigned char)*string)) string++;
|
|
if (*string == 'x') {
|
|
string++;
|
|
ret->h = atoi(string);
|
|
while (*string && isdigit((unsigned char)*string)) string++;
|
|
}
|
|
if (*string == 'e') {
|
|
string++;
|
|
ret->expandfactor = atof(string);
|
|
while (*string &&
|
|
(*string == '.' || isdigit((unsigned char)*string))) string++;
|
|
}
|
|
if (*string == 'a') {
|
|
string++;
|
|
ret->unique = FALSE;
|
|
}
|
|
}
|
|
|
|
static char *encode_params(game_params *params, int full)
|
|
{
|
|
char data[256];
|
|
|
|
sprintf(data, "%dx%d", params->w, params->h);
|
|
if (full && params->expandfactor)
|
|
sprintf(data + strlen(data), "e%g", params->expandfactor);
|
|
if (full && !params->unique)
|
|
strcat(data, "a");
|
|
|
|
return dupstr(data);
|
|
}
|
|
|
|
static config_item *game_configure(game_params *params)
|
|
{
|
|
config_item *ret;
|
|
char buf[80];
|
|
|
|
ret = snewn(5, config_item);
|
|
|
|
ret[0].name = "Width";
|
|
ret[0].type = C_STRING;
|
|
sprintf(buf, "%d", params->w);
|
|
ret[0].sval = dupstr(buf);
|
|
ret[0].ival = 0;
|
|
|
|
ret[1].name = "Height";
|
|
ret[1].type = C_STRING;
|
|
sprintf(buf, "%d", params->h);
|
|
ret[1].sval = dupstr(buf);
|
|
ret[1].ival = 0;
|
|
|
|
ret[2].name = "Expansion factor";
|
|
ret[2].type = C_STRING;
|
|
sprintf(buf, "%g", params->expandfactor);
|
|
ret[2].sval = dupstr(buf);
|
|
ret[2].ival = 0;
|
|
|
|
ret[3].name = "Ensure unique solution";
|
|
ret[3].type = C_BOOLEAN;
|
|
ret[3].sval = NULL;
|
|
ret[3].ival = params->unique;
|
|
|
|
ret[4].name = NULL;
|
|
ret[4].type = C_END;
|
|
ret[4].sval = NULL;
|
|
ret[4].ival = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static game_params *custom_params(config_item *cfg)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->w = atoi(cfg[0].sval);
|
|
ret->h = atoi(cfg[1].sval);
|
|
ret->expandfactor = atof(cfg[2].sval);
|
|
ret->unique = cfg[3].ival;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static char *validate_params(game_params *params, int full)
|
|
{
|
|
if (params->w <= 0 || params->h <= 0)
|
|
return "Width and height must both be greater than zero";
|
|
if (params->w*params->h < 2)
|
|
return "Grid area must be greater than one";
|
|
if (params->expandfactor < 0.0F)
|
|
return "Expansion factor may not be negative";
|
|
return NULL;
|
|
}
|
|
|
|
struct point {
|
|
int x, y;
|
|
};
|
|
|
|
struct rect {
|
|
int x, y;
|
|
int w, h;
|
|
};
|
|
|
|
struct rectlist {
|
|
struct rect *rects;
|
|
int n;
|
|
};
|
|
|
|
struct numberdata {
|
|
int area;
|
|
int npoints;
|
|
struct point *points;
|
|
};
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Solver for Rectangles games.
|
|
*
|
|
* This solver is souped up beyond the needs of actually _solving_
|
|
* a puzzle. It is also designed to cope with uncertainty about
|
|
* where the numbers have been placed. This is because I run it on
|
|
* my generated grids _before_ placing the numbers, and have it
|
|
* tell me where I need to place the numbers to ensure a unique
|
|
* solution.
|
|
*/
|
|
|
|
static void remove_rect_placement(int w, int h,
|
|
struct rectlist *rectpositions,
|
|
int *overlaps,
|
|
int rectnum, int placement)
|
|
{
|
|
int x, y, xx, yy;
|
|
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("ruling out rect %d placement at %d,%d w=%d h=%d\n", rectnum,
|
|
rectpositions[rectnum].rects[placement].x,
|
|
rectpositions[rectnum].rects[placement].y,
|
|
rectpositions[rectnum].rects[placement].w,
|
|
rectpositions[rectnum].rects[placement].h);
|
|
#endif
|
|
|
|
/*
|
|
* Decrement each entry in the overlaps array to reflect the
|
|
* removal of this rectangle placement.
|
|
*/
|
|
for (yy = 0; yy < rectpositions[rectnum].rects[placement].h; yy++) {
|
|
y = yy + rectpositions[rectnum].rects[placement].y;
|
|
for (xx = 0; xx < rectpositions[rectnum].rects[placement].w; xx++) {
|
|
x = xx + rectpositions[rectnum].rects[placement].x;
|
|
|
|
assert(overlaps[(rectnum * h + y) * w + x] != 0);
|
|
|
|
if (overlaps[(rectnum * h + y) * w + x] > 0)
|
|
overlaps[(rectnum * h + y) * w + x]--;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Remove the placement from the list of positions for that
|
|
* rectangle, by interchanging it with the one on the end.
|
|
*/
|
|
if (placement < rectpositions[rectnum].n - 1) {
|
|
struct rect t;
|
|
|
|
t = rectpositions[rectnum].rects[rectpositions[rectnum].n - 1];
|
|
rectpositions[rectnum].rects[rectpositions[rectnum].n - 1] =
|
|
rectpositions[rectnum].rects[placement];
|
|
rectpositions[rectnum].rects[placement] = t;
|
|
}
|
|
rectpositions[rectnum].n--;
|
|
}
|
|
|
|
static void remove_number_placement(int w, int h, struct numberdata *number,
|
|
int index, int *rectbyplace)
|
|
{
|
|
/*
|
|
* Remove the entry from the rectbyplace array.
|
|
*/
|
|
rectbyplace[number->points[index].y * w + number->points[index].x] = -1;
|
|
|
|
/*
|
|
* Remove the placement from the list of candidates for that
|
|
* number, by interchanging it with the one on the end.
|
|
*/
|
|
if (index < number->npoints - 1) {
|
|
struct point t;
|
|
|
|
t = number->points[number->npoints - 1];
|
|
number->points[number->npoints - 1] = number->points[index];
|
|
number->points[index] = t;
|
|
}
|
|
number->npoints--;
|
|
}
|
|
|
|
static int rect_solver(int w, int h, int nrects, struct numberdata *numbers,
|
|
unsigned char *hedge, unsigned char *vedge,
|
|
random_state *rs)
|
|
{
|
|
struct rectlist *rectpositions;
|
|
int *overlaps, *rectbyplace, *workspace;
|
|
int i, ret;
|
|
|
|
/*
|
|
* Start by setting up a list of candidate positions for each
|
|
* rectangle.
|
|
*/
|
|
rectpositions = snewn(nrects, struct rectlist);
|
|
for (i = 0; i < nrects; i++) {
|
|
int rw, rh, area = numbers[i].area;
|
|
int j, minx, miny, maxx, maxy;
|
|
struct rect *rlist;
|
|
int rlistn, rlistsize;
|
|
|
|
/*
|
|
* For each rectangle, begin by finding the bounding
|
|
* rectangle of its candidate number placements.
|
|
*/
|
|
maxx = maxy = -1;
|
|
minx = w;
|
|
miny = h;
|
|
for (j = 0; j < numbers[i].npoints; j++) {
|
|
if (minx > numbers[i].points[j].x) minx = numbers[i].points[j].x;
|
|
if (miny > numbers[i].points[j].y) miny = numbers[i].points[j].y;
|
|
if (maxx < numbers[i].points[j].x) maxx = numbers[i].points[j].x;
|
|
if (maxy < numbers[i].points[j].y) maxy = numbers[i].points[j].y;
|
|
}
|
|
|
|
/*
|
|
* Now loop over all possible rectangle placements
|
|
* overlapping a point within that bounding rectangle;
|
|
* ensure each one actually contains a candidate number
|
|
* placement, and add it to the list.
|
|
*/
|
|
rlist = NULL;
|
|
rlistn = rlistsize = 0;
|
|
|
|
for (rw = 1; rw <= area && rw <= w; rw++) {
|
|
int x, y;
|
|
|
|
if (area % rw)
|
|
continue;
|
|
rh = area / rw;
|
|
if (rh > h)
|
|
continue;
|
|
|
|
for (y = miny - rh + 1; y <= maxy; y++) {
|
|
if (y < 0 || y+rh > h)
|
|
continue;
|
|
|
|
for (x = minx - rw + 1; x <= maxx; x++) {
|
|
if (x < 0 || x+rw > w)
|
|
continue;
|
|
|
|
/*
|
|
* See if we can find a candidate number
|
|
* placement within this rectangle.
|
|
*/
|
|
for (j = 0; j < numbers[i].npoints; j++)
|
|
if (numbers[i].points[j].x >= x &&
|
|
numbers[i].points[j].x < x+rw &&
|
|
numbers[i].points[j].y >= y &&
|
|
numbers[i].points[j].y < y+rh)
|
|
break;
|
|
|
|
if (j < numbers[i].npoints) {
|
|
/*
|
|
* Add this to the list of candidate
|
|
* placements for this rectangle.
|
|
*/
|
|
if (rlistn >= rlistsize) {
|
|
rlistsize = rlistn + 32;
|
|
rlist = sresize(rlist, rlistsize, struct rect);
|
|
}
|
|
rlist[rlistn].x = x;
|
|
rlist[rlistn].y = y;
|
|
rlist[rlistn].w = rw;
|
|
rlist[rlistn].h = rh;
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("rect %d [area %d]: candidate position at"
|
|
" %d,%d w=%d h=%d\n",
|
|
i, area, x, y, rw, rh);
|
|
#endif
|
|
rlistn++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
rectpositions[i].rects = rlist;
|
|
rectpositions[i].n = rlistn;
|
|
}
|
|
|
|
/*
|
|
* Next, construct a multidimensional array tracking how many
|
|
* candidate positions for each rectangle overlap each square.
|
|
*
|
|
* Indexing of this array is by the formula
|
|
*
|
|
* overlaps[(rectindex * h + y) * w + x]
|
|
*/
|
|
overlaps = snewn(nrects * w * h, int);
|
|
memset(overlaps, 0, nrects * w * h * sizeof(int));
|
|
for (i = 0; i < nrects; i++) {
|
|
int j;
|
|
|
|
for (j = 0; j < rectpositions[i].n; j++) {
|
|
int xx, yy;
|
|
|
|
for (yy = 0; yy < rectpositions[i].rects[j].h; yy++)
|
|
for (xx = 0; xx < rectpositions[i].rects[j].w; xx++)
|
|
overlaps[(i * h + yy+rectpositions[i].rects[j].y) * w +
|
|
xx+rectpositions[i].rects[j].x]++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Also we want an array covering the grid once, to make it
|
|
* easy to figure out which squares are candidate number
|
|
* placements for which rectangles. (The existence of this
|
|
* single array assumes that no square starts off as a
|
|
* candidate number placement for more than one rectangle. This
|
|
* assumption is justified, because this solver is _either_
|
|
* used to solve real problems - in which case there is a
|
|
* single placement for every number - _or_ used to decide on
|
|
* number placements for a new puzzle, in which case each
|
|
* number's placements are confined to the intended position of
|
|
* the rectangle containing that number.)
|
|
*/
|
|
rectbyplace = snewn(w * h, int);
|
|
for (i = 0; i < w*h; i++)
|
|
rectbyplace[i] = -1;
|
|
|
|
for (i = 0; i < nrects; i++) {
|
|
int j;
|
|
|
|
for (j = 0; j < numbers[i].npoints; j++) {
|
|
int x = numbers[i].points[j].x;
|
|
int y = numbers[i].points[j].y;
|
|
|
|
assert(rectbyplace[y * w + x] == -1);
|
|
rectbyplace[y * w + x] = i;
|
|
}
|
|
}
|
|
|
|
workspace = snewn(nrects, int);
|
|
|
|
/*
|
|
* Now run the actual deduction loop.
|
|
*/
|
|
while (1) {
|
|
int done_something = FALSE;
|
|
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("starting deduction loop\n");
|
|
|
|
for (i = 0; i < nrects; i++) {
|
|
printf("rect %d overlaps:\n", i);
|
|
{
|
|
int x, y;
|
|
for (y = 0; y < h; y++) {
|
|
for (x = 0; x < w; x++) {
|
|
printf("%3d", overlaps[(i * h + y) * w + x]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
}
|
|
}
|
|
printf("rectbyplace:\n");
|
|
{
|
|
int x, y;
|
|
for (y = 0; y < h; y++) {
|
|
for (x = 0; x < w; x++) {
|
|
printf("%3d", rectbyplace[y * w + x]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Housekeeping. Look for rectangles whose number has only
|
|
* one candidate position left, and mark that square as
|
|
* known if it isn't already.
|
|
*/
|
|
for (i = 0; i < nrects; i++) {
|
|
if (numbers[i].npoints == 1) {
|
|
int x = numbers[i].points[0].x;
|
|
int y = numbers[i].points[0].y;
|
|
if (overlaps[(i * h + y) * w + x] >= -1) {
|
|
int j;
|
|
|
|
assert(overlaps[(i * h + y) * w + x] > 0);
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("marking %d,%d as known for rect %d"
|
|
" (sole remaining number position)\n", x, y, i);
|
|
#endif
|
|
|
|
for (j = 0; j < nrects; j++)
|
|
overlaps[(j * h + y) * w + x] = -1;
|
|
|
|
overlaps[(i * h + y) * w + x] = -2;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now look at the intersection of all possible placements
|
|
* for each rectangle, and mark all squares in that
|
|
* intersection as known for that rectangle if they aren't
|
|
* already.
|
|
*/
|
|
for (i = 0; i < nrects; i++) {
|
|
int minx, miny, maxx, maxy, xx, yy, j;
|
|
|
|
minx = miny = 0;
|
|
maxx = w;
|
|
maxy = h;
|
|
|
|
for (j = 0; j < rectpositions[i].n; j++) {
|
|
int x = rectpositions[i].rects[j].x;
|
|
int y = rectpositions[i].rects[j].y;
|
|
int w = rectpositions[i].rects[j].w;
|
|
int h = rectpositions[i].rects[j].h;
|
|
|
|
if (minx < x) minx = x;
|
|
if (miny < y) miny = y;
|
|
if (maxx > x+w) maxx = x+w;
|
|
if (maxy > y+h) maxy = y+h;
|
|
}
|
|
|
|
for (yy = miny; yy < maxy; yy++)
|
|
for (xx = minx; xx < maxx; xx++)
|
|
if (overlaps[(i * h + yy) * w + xx] >= -1) {
|
|
assert(overlaps[(i * h + yy) * w + xx] > 0);
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("marking %d,%d as known for rect %d"
|
|
" (intersection of all placements)\n",
|
|
xx, yy, i);
|
|
#endif
|
|
|
|
for (j = 0; j < nrects; j++)
|
|
overlaps[(j * h + yy) * w + xx] = -1;
|
|
|
|
overlaps[(i * h + yy) * w + xx] = -2;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Rectangle-focused deduction. Look at each rectangle in
|
|
* turn and try to rule out some of its candidate
|
|
* placements.
|
|
*/
|
|
for (i = 0; i < nrects; i++) {
|
|
int j;
|
|
|
|
for (j = 0; j < rectpositions[i].n; j++) {
|
|
int xx, yy, k;
|
|
int del = FALSE;
|
|
|
|
for (k = 0; k < nrects; k++)
|
|
workspace[k] = 0;
|
|
|
|
for (yy = 0; yy < rectpositions[i].rects[j].h; yy++) {
|
|
int y = yy + rectpositions[i].rects[j].y;
|
|
for (xx = 0; xx < rectpositions[i].rects[j].w; xx++) {
|
|
int x = xx + rectpositions[i].rects[j].x;
|
|
|
|
if (overlaps[(i * h + y) * w + x] == -1) {
|
|
/*
|
|
* This placement overlaps a square
|
|
* which is _known_ to be part of
|
|
* another rectangle. Therefore we must
|
|
* rule it out.
|
|
*/
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("rect %d placement at %d,%d w=%d h=%d "
|
|
"contains %d,%d which is known-other\n", i,
|
|
rectpositions[i].rects[j].x,
|
|
rectpositions[i].rects[j].y,
|
|
rectpositions[i].rects[j].w,
|
|
rectpositions[i].rects[j].h,
|
|
x, y);
|
|
#endif
|
|
del = TRUE;
|
|
}
|
|
|
|
if (rectbyplace[y * w + x] != -1) {
|
|
/*
|
|
* This placement overlaps one of the
|
|
* candidate number placements for some
|
|
* rectangle. Count it.
|
|
*/
|
|
workspace[rectbyplace[y * w + x]]++;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!del) {
|
|
/*
|
|
* If we haven't ruled this placement out
|
|
* already, see if it overlaps _all_ of the
|
|
* candidate number placements for any
|
|
* rectangle. If so, we can rule it out.
|
|
*/
|
|
for (k = 0; k < nrects; k++)
|
|
if (k != i && workspace[k] == numbers[k].npoints) {
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("rect %d placement at %d,%d w=%d h=%d "
|
|
"contains all number points for rect %d\n",
|
|
i,
|
|
rectpositions[i].rects[j].x,
|
|
rectpositions[i].rects[j].y,
|
|
rectpositions[i].rects[j].w,
|
|
rectpositions[i].rects[j].h,
|
|
k);
|
|
#endif
|
|
del = TRUE;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Failing that, see if it overlaps at least
|
|
* one of the candidate number placements for
|
|
* itself! (This might not be the case if one
|
|
* of those number placements has been removed
|
|
* recently.).
|
|
*/
|
|
if (!del && workspace[i] == 0) {
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("rect %d placement at %d,%d w=%d h=%d "
|
|
"contains none of its own number points\n",
|
|
i,
|
|
rectpositions[i].rects[j].x,
|
|
rectpositions[i].rects[j].y,
|
|
rectpositions[i].rects[j].w,
|
|
rectpositions[i].rects[j].h);
|
|
#endif
|
|
del = TRUE;
|
|
}
|
|
}
|
|
|
|
if (del) {
|
|
remove_rect_placement(w, h, rectpositions, overlaps, i, j);
|
|
|
|
j--; /* don't skip over next placement */
|
|
|
|
done_something = TRUE;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Square-focused deduction. Look at each square not marked
|
|
* as known, and see if there are any which can only be
|
|
* part of a single rectangle.
|
|
*/
|
|
{
|
|
int x, y, n, index;
|
|
for (y = 0; y < h; y++) for (x = 0; x < w; x++) {
|
|
/* Known squares are marked as <0 everywhere, so we only need
|
|
* to check the overlaps entry for rect 0. */
|
|
if (overlaps[y * w + x] < 0)
|
|
continue; /* known already */
|
|
|
|
n = 0;
|
|
index = -1;
|
|
for (i = 0; i < nrects; i++)
|
|
if (overlaps[(i * h + y) * w + x] > 0)
|
|
n++, index = i;
|
|
|
|
if (n == 1) {
|
|
int j;
|
|
|
|
/*
|
|
* Now we can rule out all placements for
|
|
* rectangle `index' which _don't_ contain
|
|
* square x,y.
|
|
*/
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("square %d,%d can only be in rectangle %d\n",
|
|
x, y, index);
|
|
#endif
|
|
for (j = 0; j < rectpositions[index].n; j++) {
|
|
struct rect *r = &rectpositions[index].rects[j];
|
|
if (x >= r->x && x < r->x + r->w &&
|
|
y >= r->y && y < r->y + r->h)
|
|
continue; /* this one is OK */
|
|
remove_rect_placement(w, h, rectpositions, overlaps,
|
|
index, j);
|
|
j--; /* don't skip over next placement */
|
|
done_something = TRUE;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we've managed to deduce anything by normal means,
|
|
* loop round again and see if there's more to be done.
|
|
* Only if normal deduction has completely failed us should
|
|
* we now move on to narrowing down the possible number
|
|
* placements.
|
|
*/
|
|
if (done_something)
|
|
continue;
|
|
|
|
/*
|
|
* Now we have done everything we can with the current set
|
|
* of number placements. So we need to winnow the number
|
|
* placements so as to narrow down the possibilities. We do
|
|
* this by searching for a candidate placement (of _any_
|
|
* rectangle) which overlaps a candidate placement of the
|
|
* number for some other rectangle.
|
|
*/
|
|
if (rs) {
|
|
struct rpn {
|
|
int rect;
|
|
int placement;
|
|
int number;
|
|
} *rpns = NULL;
|
|
size_t nrpns = 0, rpnsize = 0;
|
|
int j;
|
|
|
|
for (i = 0; i < nrects; i++) {
|
|
for (j = 0; j < rectpositions[i].n; j++) {
|
|
int xx, yy;
|
|
|
|
for (yy = 0; yy < rectpositions[i].rects[j].h; yy++) {
|
|
int y = yy + rectpositions[i].rects[j].y;
|
|
for (xx = 0; xx < rectpositions[i].rects[j].w; xx++) {
|
|
int x = xx + rectpositions[i].rects[j].x;
|
|
|
|
if (rectbyplace[y * w + x] >= 0 &&
|
|
rectbyplace[y * w + x] != i) {
|
|
/*
|
|
* Add this to the list of
|
|
* winnowing possibilities.
|
|
*/
|
|
if (nrpns >= rpnsize) {
|
|
rpnsize = rpnsize * 3 / 2 + 32;
|
|
rpns = sresize(rpns, rpnsize, struct rpn);
|
|
}
|
|
rpns[nrpns].rect = i;
|
|
rpns[nrpns].placement = j;
|
|
rpns[nrpns].number = rectbyplace[y * w + x];
|
|
nrpns++;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("%d candidate rect placements we could eliminate\n", nrpns);
|
|
#endif
|
|
if (nrpns > 0) {
|
|
/*
|
|
* Now choose one of these unwanted rectangle
|
|
* placements, and eliminate it.
|
|
*/
|
|
int index = random_upto(rs, nrpns);
|
|
int k, m;
|
|
struct rpn rpn = rpns[index];
|
|
struct rect r;
|
|
sfree(rpns);
|
|
|
|
i = rpn.rect;
|
|
j = rpn.placement;
|
|
k = rpn.number;
|
|
r = rectpositions[i].rects[j];
|
|
|
|
/*
|
|
* We rule out placement j of rectangle i by means
|
|
* of removing all of rectangle k's candidate
|
|
* number placements which do _not_ overlap it.
|
|
* This will ensure that it is eliminated during
|
|
* the next pass of rectangle-focused deduction.
|
|
*/
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("ensuring number for rect %d is within"
|
|
" rect %d's placement at %d,%d w=%d h=%d\n",
|
|
k, i, r.x, r.y, r.w, r.h);
|
|
#endif
|
|
|
|
for (m = 0; m < numbers[k].npoints; m++) {
|
|
int x = numbers[k].points[m].x;
|
|
int y = numbers[k].points[m].y;
|
|
|
|
if (x < r.x || x >= r.x + r.w ||
|
|
y < r.y || y >= r.y + r.h) {
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("eliminating number for rect %d at %d,%d\n",
|
|
k, x, y);
|
|
#endif
|
|
remove_number_placement(w, h, &numbers[k],
|
|
m, rectbyplace);
|
|
m--; /* don't skip the next one */
|
|
done_something = TRUE;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!done_something) {
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("terminating deduction loop\n");
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
|
|
ret = TRUE;
|
|
for (i = 0; i < nrects; i++) {
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("rect %d has %d possible placements\n",
|
|
i, rectpositions[i].n);
|
|
#endif
|
|
assert(rectpositions[i].n > 0);
|
|
if (rectpositions[i].n > 1) {
|
|
ret = FALSE;
|
|
} else if (hedge && vedge) {
|
|
/*
|
|
* Place the rectangle in its only possible position.
|
|
*/
|
|
int x, y;
|
|
struct rect *r = &rectpositions[i].rects[0];
|
|
|
|
for (y = 0; y < r->h; y++) {
|
|
if (r->x > 0)
|
|
vedge[(r->y+y) * w + r->x] = 1;
|
|
if (r->x+r->w < w)
|
|
vedge[(r->y+y) * w + r->x+r->w] = 1;
|
|
}
|
|
for (x = 0; x < r->w; x++) {
|
|
if (r->y > 0)
|
|
hedge[r->y * w + r->x+x] = 1;
|
|
if (r->y+r->h < h)
|
|
hedge[(r->y+r->h) * w + r->x+x] = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Free up all allocated storage.
|
|
*/
|
|
sfree(workspace);
|
|
sfree(rectbyplace);
|
|
sfree(overlaps);
|
|
for (i = 0; i < nrects; i++)
|
|
sfree(rectpositions[i].rects);
|
|
sfree(rectpositions);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Grid generation code.
|
|
*/
|
|
|
|
/*
|
|
* This function does one of two things. If passed r==NULL, it
|
|
* counts the number of possible rectangles which cover the given
|
|
* square, and returns it in *n. If passed r!=NULL then it _reads_
|
|
* *n to find an index, counts the possible rectangles until it
|
|
* reaches the nth, and writes it into r.
|
|
*
|
|
* `scratch' is expected to point to an array of 2 * params->w
|
|
* ints, used internally as scratch space (and passed in like this
|
|
* to avoid re-allocating and re-freeing it every time round a
|
|
* tight loop).
|
|
*/
|
|
static void enum_rects(game_params *params, int *grid, struct rect *r, int *n,
|
|
int sx, int sy, int *scratch)
|
|
{
|
|
int rw, rh, mw, mh;
|
|
int x, y, dx, dy;
|
|
int maxarea, realmaxarea;
|
|
int index = 0;
|
|
int *top, *bottom;
|
|
|
|
/*
|
|
* Maximum rectangle area is 1/6 of total grid size, unless
|
|
* this means we can't place any rectangles at all in which
|
|
* case we set it to 2 at minimum.
|
|
*/
|
|
maxarea = params->w * params->h / 6;
|
|
if (maxarea < 2)
|
|
maxarea = 2;
|
|
|
|
/*
|
|
* Scan the grid to find the limits of the region within which
|
|
* any rectangle containing this point must fall. This will
|
|
* save us trawling the inside of every rectangle later on to
|
|
* see if it contains any used squares.
|
|
*/
|
|
top = scratch;
|
|
bottom = scratch + params->w;
|
|
for (dy = -1; dy <= +1; dy += 2) {
|
|
int *array = (dy == -1 ? top : bottom);
|
|
for (dx = -1; dx <= +1; dx += 2) {
|
|
for (x = sx; x >= 0 && x < params->w; x += dx) {
|
|
array[x] = -2 * params->h * dy;
|
|
for (y = sy; y >= 0 && y < params->h; y += dy) {
|
|
if (index(params, grid, x, y) == -1 &&
|
|
(x == sx || dy*y <= dy*array[x-dx]))
|
|
array[x] = y;
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now scan again to work out the largest rectangles we can fit
|
|
* in the grid, so that we can terminate the following loops
|
|
* early once we get down to not having much space left in the
|
|
* grid.
|
|
*/
|
|
realmaxarea = 0;
|
|
for (x = 0; x < params->w; x++) {
|
|
int x2;
|
|
|
|
rh = bottom[x] - top[x] + 1;
|
|
if (rh <= 0)
|
|
continue; /* no rectangles can start here */
|
|
|
|
dx = (x > sx ? -1 : +1);
|
|
for (x2 = x; x2 >= 0 && x2 < params->w; x2 += dx)
|
|
if (bottom[x2] < bottom[x] || top[x2] > top[x])
|
|
break;
|
|
|
|
rw = abs(x2 - x);
|
|
if (realmaxarea < rw * rh)
|
|
realmaxarea = rw * rh;
|
|
}
|
|
|
|
if (realmaxarea > maxarea)
|
|
realmaxarea = maxarea;
|
|
|
|
/*
|
|
* Rectangles which go right the way across the grid are
|
|
* boring, although they can't be helped in the case of
|
|
* extremely small grids. (Also they might be generated later
|
|
* on by the singleton-removal process; we can't help that.)
|
|
*/
|
|
mw = params->w - 1;
|
|
if (mw < 3) mw++;
|
|
mh = params->h - 1;
|
|
if (mh < 3) mh++;
|
|
|
|
for (rw = 1; rw <= mw; rw++)
|
|
for (rh = 1; rh <= mh; rh++) {
|
|
if (rw * rh > realmaxarea)
|
|
continue;
|
|
if (rw * rh == 1)
|
|
continue;
|
|
for (x = max(sx - rw + 1, 0); x <= min(sx, params->w - rw); x++)
|
|
for (y = max(sy - rh + 1, 0); y <= min(sy, params->h - rh);
|
|
y++) {
|
|
/*
|
|
* Check this rectangle against the region we
|
|
* defined above.
|
|
*/
|
|
if (top[x] <= y && top[x+rw-1] <= y &&
|
|
bottom[x] >= y+rh-1 && bottom[x+rw-1] >= y+rh-1) {
|
|
if (r && index == *n) {
|
|
r->x = x;
|
|
r->y = y;
|
|
r->w = rw;
|
|
r->h = rh;
|
|
return;
|
|
}
|
|
index++;
|
|
}
|
|
}
|
|
}
|
|
|
|
assert(!r);
|
|
*n = index;
|
|
}
|
|
|
|
static void place_rect(game_params *params, int *grid, struct rect r)
|
|
{
|
|
int idx = INDEX(params, r.x, r.y);
|
|
int x, y;
|
|
|
|
for (x = r.x; x < r.x+r.w; x++)
|
|
for (y = r.y; y < r.y+r.h; y++) {
|
|
index(params, grid, x, y) = idx;
|
|
}
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
printf(" placing rectangle at (%d,%d) size %d x %d\n",
|
|
r.x, r.y, r.w, r.h);
|
|
#endif
|
|
}
|
|
|
|
static struct rect find_rect(game_params *params, int *grid, int x, int y)
|
|
{
|
|
int idx, w, h;
|
|
struct rect r;
|
|
|
|
/*
|
|
* Find the top left of the rectangle.
|
|
*/
|
|
idx = index(params, grid, x, y);
|
|
|
|
if (idx < 0) {
|
|
r.x = x;
|
|
r.y = y;
|
|
r.w = r.h = 1;
|
|
return r; /* 1x1 singleton here */
|
|
}
|
|
|
|
y = idx / params->w;
|
|
x = idx % params->w;
|
|
|
|
/*
|
|
* Find the width and height of the rectangle.
|
|
*/
|
|
for (w = 1;
|
|
(x+w < params->w && index(params,grid,x+w,y)==idx);
|
|
w++);
|
|
for (h = 1;
|
|
(y+h < params->h && index(params,grid,x,y+h)==idx);
|
|
h++);
|
|
|
|
r.x = x;
|
|
r.y = y;
|
|
r.w = w;
|
|
r.h = h;
|
|
|
|
return r;
|
|
}
|
|
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
static void display_grid(game_params *params, int *grid, int *numbers, int all)
|
|
{
|
|
unsigned char *egrid = snewn((params->w*2+3) * (params->h*2+3),
|
|
unsigned char);
|
|
int x, y;
|
|
int r = (params->w*2+3);
|
|
|
|
memset(egrid, 0, (params->w*2+3) * (params->h*2+3));
|
|
|
|
for (x = 0; x < params->w; x++)
|
|
for (y = 0; y < params->h; y++) {
|
|
int i = index(params, grid, x, y);
|
|
if (x == 0 || index(params, grid, x-1, y) != i)
|
|
egrid[(2*y+2) * r + (2*x+1)] = 1;
|
|
if (x == params->w-1 || index(params, grid, x+1, y) != i)
|
|
egrid[(2*y+2) * r + (2*x+3)] = 1;
|
|
if (y == 0 || index(params, grid, x, y-1) != i)
|
|
egrid[(2*y+1) * r + (2*x+2)] = 1;
|
|
if (y == params->h-1 || index(params, grid, x, y+1) != i)
|
|
egrid[(2*y+3) * r + (2*x+2)] = 1;
|
|
}
|
|
|
|
for (y = 1; y < 2*params->h+2; y++) {
|
|
for (x = 1; x < 2*params->w+2; x++) {
|
|
if (!((y|x)&1)) {
|
|
int k = numbers ? index(params, numbers, x/2-1, y/2-1) : 0;
|
|
if (k || (all && numbers)) printf("%2d", k); else printf(" ");
|
|
} else if (!((y&x)&1)) {
|
|
int v = egrid[y*r+x];
|
|
if ((y&1) && v) v = '-';
|
|
if ((x&1) && v) v = '|';
|
|
if (!v) v = ' ';
|
|
putchar(v);
|
|
if (!(x&1)) putchar(v);
|
|
} else {
|
|
int c, d = 0;
|
|
if (egrid[y*r+(x+1)]) d |= 1;
|
|
if (egrid[(y-1)*r+x]) d |= 2;
|
|
if (egrid[y*r+(x-1)]) d |= 4;
|
|
if (egrid[(y+1)*r+x]) d |= 8;
|
|
c = " ??+?-++?+|+++++"[d];
|
|
putchar(c);
|
|
if (!(x&1)) putchar(c);
|
|
}
|
|
}
|
|
putchar('\n');
|
|
}
|
|
|
|
sfree(egrid);
|
|
}
|
|
#endif
|
|
|
|
static char *new_game_desc(game_params *params, random_state *rs,
|
|
char **aux, int interactive)
|
|
{
|
|
int *grid, *numbers = NULL;
|
|
int x, y, y2, y2last, yx, run, i, nsquares;
|
|
char *desc, *p;
|
|
int *enum_rects_scratch;
|
|
game_params params2real, *params2 = ¶ms2real;
|
|
|
|
while (1) {
|
|
/*
|
|
* Set up the smaller width and height which we will use to
|
|
* generate the base grid.
|
|
*/
|
|
params2->w = params->w / (1.0F + params->expandfactor);
|
|
if (params2->w < 2 && params->w >= 2) params2->w = 2;
|
|
params2->h = params->h / (1.0F + params->expandfactor);
|
|
if (params2->h < 2 && params->h >= 2) params2->h = 2;
|
|
|
|
grid = snewn(params2->w * params2->h, int);
|
|
|
|
enum_rects_scratch = snewn(2 * params2->w, int);
|
|
|
|
nsquares = 0;
|
|
for (y = 0; y < params2->h; y++)
|
|
for (x = 0; x < params2->w; x++) {
|
|
index(params2, grid, x, y) = -1;
|
|
nsquares++;
|
|
}
|
|
|
|
/*
|
|
* Place rectangles until we can't any more. We do this by
|
|
* finding a square we haven't yet covered, and randomly
|
|
* choosing a rectangle to cover it.
|
|
*/
|
|
|
|
while (nsquares > 0) {
|
|
int square = random_upto(rs, nsquares);
|
|
int n;
|
|
struct rect r;
|
|
|
|
x = params2->w;
|
|
y = params2->h;
|
|
for (y = 0; y < params2->h; y++) {
|
|
for (x = 0; x < params2->w; x++) {
|
|
if (index(params2, grid, x, y) == -1 && square-- == 0)
|
|
break;
|
|
}
|
|
if (x < params2->w)
|
|
break;
|
|
}
|
|
assert(x < params2->w && y < params2->h);
|
|
|
|
/*
|
|
* Now see how many rectangles fit around this one.
|
|
*/
|
|
enum_rects(params2, grid, NULL, &n, x, y, enum_rects_scratch);
|
|
|
|
if (!n) {
|
|
/*
|
|
* There are no possible rectangles covering this
|
|
* square, meaning it must be a singleton. Mark it
|
|
* -2 so we know not to keep trying.
|
|
*/
|
|
index(params2, grid, x, y) = -2;
|
|
nsquares--;
|
|
} else {
|
|
/*
|
|
* Pick one at random.
|
|
*/
|
|
n = random_upto(rs, n);
|
|
enum_rects(params2, grid, &r, &n, x, y, enum_rects_scratch);
|
|
|
|
/*
|
|
* Place it.
|
|
*/
|
|
place_rect(params2, grid, r);
|
|
nsquares -= r.w * r.h;
|
|
}
|
|
}
|
|
|
|
sfree(enum_rects_scratch);
|
|
|
|
/*
|
|
* Deal with singleton spaces remaining in the grid, one by
|
|
* one.
|
|
*
|
|
* We do this by making a local change to the layout. There are
|
|
* several possibilities:
|
|
*
|
|
* +-----+-----+ Here, we can remove the singleton by
|
|
* | | | extending the 1x2 rectangle below it
|
|
* +--+--+-----+ into a 1x3.
|
|
* | | | |
|
|
* | +--+ |
|
|
* | | | |
|
|
* | | | |
|
|
* | | | |
|
|
* +--+--+-----+
|
|
*
|
|
* +--+--+--+ Here, that trick doesn't work: there's no
|
|
* | | | 1 x n rectangle with the singleton at one
|
|
* | | | end. Instead, we extend a 1 x n rectangle
|
|
* | | | _out_ from the singleton, shaving a layer
|
|
* +--+--+ | off the end of another rectangle. So if we
|
|
* | | | | extended up, we'd make our singleton part
|
|
* | +--+--+ of a 1x3 and generate a 1x2 where the 2x2
|
|
* | | | used to be; or we could extend right into
|
|
* +--+-----+ a 2x1, turning the 1x3 into a 1x2.
|
|
*
|
|
* +-----+--+ Here, we can't even do _that_, since any
|
|
* | | | direction we choose to extend the singleton
|
|
* +--+--+ | will produce a new singleton as a result of
|
|
* | | | | truncating one of the size-2 rectangles.
|
|
* | +--+--+ Fortunately, this case can _only_ occur when
|
|
* | | | a singleton is surrounded by four size-2s
|
|
* +--+-----+ in this fashion; so instead we can simply
|
|
* replace the whole section with a single 3x3.
|
|
*/
|
|
for (x = 0; x < params2->w; x++) {
|
|
for (y = 0; y < params2->h; y++) {
|
|
if (index(params2, grid, x, y) < 0) {
|
|
int dirs[4], ndirs;
|
|
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
display_grid(params2, grid, NULL, FALSE);
|
|
printf("singleton at %d,%d\n", x, y);
|
|
#endif
|
|
|
|
/*
|
|
* Check in which directions we can feasibly extend
|
|
* the singleton. We can extend in a particular
|
|
* direction iff either:
|
|
*
|
|
* - the rectangle on that side of the singleton
|
|
* is not 2x1, and we are at one end of the edge
|
|
* of it we are touching
|
|
*
|
|
* - it is 2x1 but we are on its short side.
|
|
*
|
|
* FIXME: we could plausibly choose between these
|
|
* based on the sizes of the rectangles they would
|
|
* create?
|
|
*/
|
|
ndirs = 0;
|
|
if (x < params2->w-1) {
|
|
struct rect r = find_rect(params2, grid, x+1, y);
|
|
if ((r.w * r.h > 2 && (r.y==y || r.y+r.h-1==y)) || r.h==1)
|
|
dirs[ndirs++] = 1; /* right */
|
|
}
|
|
if (y > 0) {
|
|
struct rect r = find_rect(params2, grid, x, y-1);
|
|
if ((r.w * r.h > 2 && (r.x==x || r.x+r.w-1==x)) || r.w==1)
|
|
dirs[ndirs++] = 2; /* up */
|
|
}
|
|
if (x > 0) {
|
|
struct rect r = find_rect(params2, grid, x-1, y);
|
|
if ((r.w * r.h > 2 && (r.y==y || r.y+r.h-1==y)) || r.h==1)
|
|
dirs[ndirs++] = 4; /* left */
|
|
}
|
|
if (y < params2->h-1) {
|
|
struct rect r = find_rect(params2, grid, x, y+1);
|
|
if ((r.w * r.h > 2 && (r.x==x || r.x+r.w-1==x)) || r.w==1)
|
|
dirs[ndirs++] = 8; /* down */
|
|
}
|
|
|
|
if (ndirs > 0) {
|
|
int which, dir;
|
|
struct rect r1, r2;
|
|
|
|
which = random_upto(rs, ndirs);
|
|
dir = dirs[which];
|
|
|
|
switch (dir) {
|
|
case 1: /* right */
|
|
assert(x < params2->w+1);
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
printf("extending right\n");
|
|
#endif
|
|
r1 = find_rect(params2, grid, x+1, y);
|
|
r2.x = x;
|
|
r2.y = y;
|
|
r2.w = 1 + r1.w;
|
|
r2.h = 1;
|
|
if (r1.y == y)
|
|
r1.y++;
|
|
r1.h--;
|
|
break;
|
|
case 2: /* up */
|
|
assert(y > 0);
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
printf("extending up\n");
|
|
#endif
|
|
r1 = find_rect(params2, grid, x, y-1);
|
|
r2.x = x;
|
|
r2.y = r1.y;
|
|
r2.w = 1;
|
|
r2.h = 1 + r1.h;
|
|
if (r1.x == x)
|
|
r1.x++;
|
|
r1.w--;
|
|
break;
|
|
case 4: /* left */
|
|
assert(x > 0);
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
printf("extending left\n");
|
|
#endif
|
|
r1 = find_rect(params2, grid, x-1, y);
|
|
r2.x = r1.x;
|
|
r2.y = y;
|
|
r2.w = 1 + r1.w;
|
|
r2.h = 1;
|
|
if (r1.y == y)
|
|
r1.y++;
|
|
r1.h--;
|
|
break;
|
|
case 8: /* down */
|
|
assert(y < params2->h+1);
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
printf("extending down\n");
|
|
#endif
|
|
r1 = find_rect(params2, grid, x, y+1);
|
|
r2.x = x;
|
|
r2.y = y;
|
|
r2.w = 1;
|
|
r2.h = 1 + r1.h;
|
|
if (r1.x == x)
|
|
r1.x++;
|
|
r1.w--;
|
|
break;
|
|
default: /* should never happen */
|
|
assert(!"invalid direction");
|
|
}
|
|
if (r1.h > 0 && r1.w > 0)
|
|
place_rect(params2, grid, r1);
|
|
place_rect(params2, grid, r2);
|
|
} else {
|
|
#ifndef NDEBUG
|
|
/*
|
|
* Sanity-check that there really is a 3x3
|
|
* rectangle surrounding this singleton and it
|
|
* contains absolutely everything we could
|
|
* possibly need.
|
|
*/
|
|
{
|
|
int xx, yy;
|
|
assert(x > 0 && x < params2->w-1);
|
|
assert(y > 0 && y < params2->h-1);
|
|
|
|
for (xx = x-1; xx <= x+1; xx++)
|
|
for (yy = y-1; yy <= y+1; yy++) {
|
|
struct rect r = find_rect(params2,grid,xx,yy);
|
|
assert(r.x >= x-1);
|
|
assert(r.y >= y-1);
|
|
assert(r.x+r.w-1 <= x+1);
|
|
assert(r.y+r.h-1 <= y+1);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
printf("need the 3x3 trick\n");
|
|
#endif
|
|
|
|
/*
|
|
* FIXME: If the maximum rectangle area for
|
|
* this grid is less than 9, we ought to
|
|
* subdivide the 3x3 in some fashion. There are
|
|
* five other possibilities:
|
|
*
|
|
* - a 6 and a 3
|
|
* - a 4, a 3 and a 2
|
|
* - three 3s
|
|
* - a 3 and three 2s (two different arrangements).
|
|
*/
|
|
|
|
{
|
|
struct rect r;
|
|
r.x = x-1;
|
|
r.y = y-1;
|
|
r.w = r.h = 3;
|
|
place_rect(params2, grid, r);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We have now constructed a grid of the size specified in
|
|
* params2. Now we extend it into a grid of the size specified
|
|
* in params. We do this in two passes: we extend it vertically
|
|
* until it's the right height, then we transpose it, then
|
|
* extend it vertically again (getting it effectively the right
|
|
* width), then finally transpose again.
|
|
*/
|
|
for (i = 0; i < 2; i++) {
|
|
int *grid2, *expand, *where;
|
|
game_params params3real, *params3 = ¶ms3real;
|
|
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
printf("before expansion:\n");
|
|
display_grid(params2, grid, NULL, TRUE);
|
|
#endif
|
|
|
|
/*
|
|
* Set up the new grid.
|
|
*/
|
|
grid2 = snewn(params2->w * params->h, int);
|
|
expand = snewn(params2->h-1, int);
|
|
where = snewn(params2->w, int);
|
|
params3->w = params2->w;
|
|
params3->h = params->h;
|
|
|
|
/*
|
|
* Decide which horizontal edges are going to get expanded,
|
|
* and by how much.
|
|
*/
|
|
for (y = 0; y < params2->h-1; y++)
|
|
expand[y] = 0;
|
|
for (y = params2->h; y < params->h; y++) {
|
|
x = random_upto(rs, params2->h-1);
|
|
expand[x]++;
|
|
}
|
|
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
printf("expand[] = {");
|
|
for (y = 0; y < params2->h-1; y++)
|
|
printf(" %d", expand[y]);
|
|
printf(" }\n");
|
|
#endif
|
|
|
|
/*
|
|
* Perform the expansion. The way this works is that we
|
|
* alternately:
|
|
*
|
|
* - copy a row from grid into grid2
|
|
*
|
|
* - invent some number of additional rows in grid2 where
|
|
* there was previously only a horizontal line between
|
|
* rows in grid, and make random decisions about where
|
|
* among these to place each rectangle edge that ran
|
|
* along this line.
|
|
*/
|
|
for (y = y2 = y2last = 0; y < params2->h; y++) {
|
|
/*
|
|
* Copy a single line from row y of grid into row y2 of
|
|
* grid2.
|
|
*/
|
|
for (x = 0; x < params2->w; x++) {
|
|
int val = index(params2, grid, x, y);
|
|
if (val / params2->w == y && /* rect starts on this line */
|
|
(y2 == 0 || /* we're at the very top, or... */
|
|
index(params3, grid2, x, y2-1) / params3->w < y2last
|
|
/* this rect isn't already started */))
|
|
index(params3, grid2, x, y2) =
|
|
INDEX(params3, val % params2->w, y2);
|
|
else
|
|
index(params3, grid2, x, y2) =
|
|
index(params3, grid2, x, y2-1);
|
|
}
|
|
|
|
/*
|
|
* If that was the last line, terminate the loop early.
|
|
*/
|
|
if (++y2 == params3->h)
|
|
break;
|
|
|
|
y2last = y2;
|
|
|
|
/*
|
|
* Invent some number of additional lines. First walk
|
|
* along this line working out where to put all the
|
|
* edges that coincide with it.
|
|
*/
|
|
yx = -1;
|
|
for (x = 0; x < params2->w; x++) {
|
|
if (index(params2, grid, x, y) !=
|
|
index(params2, grid, x, y+1)) {
|
|
/*
|
|
* This is a horizontal edge, so it needs
|
|
* placing.
|
|
*/
|
|
if (x == 0 ||
|
|
(index(params2, grid, x-1, y) !=
|
|
index(params2, grid, x, y) &&
|
|
index(params2, grid, x-1, y+1) !=
|
|
index(params2, grid, x, y+1))) {
|
|
/*
|
|
* Here we have the chance to make a new
|
|
* decision.
|
|
*/
|
|
yx = random_upto(rs, expand[y]+1);
|
|
} else {
|
|
/*
|
|
* Here we just reuse the previous value of
|
|
* yx.
|
|
*/
|
|
}
|
|
} else
|
|
yx = -1;
|
|
where[x] = yx;
|
|
}
|
|
|
|
for (yx = 0; yx < expand[y]; yx++) {
|
|
/*
|
|
* Invent a single row. For each square in the row,
|
|
* we copy the grid entry from the square above it,
|
|
* unless we're starting the new rectangle here.
|
|
*/
|
|
for (x = 0; x < params2->w; x++) {
|
|
if (yx == where[x]) {
|
|
int val = index(params2, grid, x, y+1);
|
|
val %= params2->w;
|
|
val = INDEX(params3, val, y2);
|
|
index(params3, grid2, x, y2) = val;
|
|
} else
|
|
index(params3, grid2, x, y2) =
|
|
index(params3, grid2, x, y2-1);
|
|
}
|
|
|
|
y2++;
|
|
}
|
|
}
|
|
|
|
sfree(expand);
|
|
sfree(where);
|
|
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
printf("after expansion:\n");
|
|
display_grid(params3, grid2, NULL, TRUE);
|
|
#endif
|
|
/*
|
|
* Transpose.
|
|
*/
|
|
params2->w = params3->h;
|
|
params2->h = params3->w;
|
|
sfree(grid);
|
|
grid = snewn(params2->w * params2->h, int);
|
|
for (x = 0; x < params2->w; x++)
|
|
for (y = 0; y < params2->h; y++) {
|
|
int idx1 = INDEX(params2, x, y);
|
|
int idx2 = INDEX(params3, y, x);
|
|
int tmp;
|
|
|
|
tmp = grid2[idx2];
|
|
tmp = (tmp % params3->w) * params2->w + (tmp / params3->w);
|
|
grid[idx1] = tmp;
|
|
}
|
|
|
|
sfree(grid2);
|
|
|
|
{
|
|
int tmp;
|
|
tmp = params->w;
|
|
params->w = params->h;
|
|
params->h = tmp;
|
|
}
|
|
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
printf("after transposition:\n");
|
|
display_grid(params2, grid, NULL, TRUE);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Run the solver to narrow down the possible number
|
|
* placements.
|
|
*/
|
|
{
|
|
struct numberdata *nd;
|
|
int nnumbers, i, ret;
|
|
|
|
/* Count the rectangles. */
|
|
nnumbers = 0;
|
|
for (y = 0; y < params->h; y++) {
|
|
for (x = 0; x < params->w; x++) {
|
|
int idx = INDEX(params, x, y);
|
|
if (index(params, grid, x, y) == idx)
|
|
nnumbers++;
|
|
}
|
|
}
|
|
|
|
nd = snewn(nnumbers, struct numberdata);
|
|
|
|
/* Now set up each number's candidate position list. */
|
|
i = 0;
|
|
for (y = 0; y < params->h; y++) {
|
|
for (x = 0; x < params->w; x++) {
|
|
int idx = INDEX(params, x, y);
|
|
if (index(params, grid, x, y) == idx) {
|
|
struct rect r = find_rect(params, grid, x, y);
|
|
int j, k, m;
|
|
|
|
nd[i].area = r.w * r.h;
|
|
nd[i].npoints = nd[i].area;
|
|
nd[i].points = snewn(nd[i].npoints, struct point);
|
|
m = 0;
|
|
for (j = 0; j < r.h; j++)
|
|
for (k = 0; k < r.w; k++) {
|
|
nd[i].points[m].x = k + r.x;
|
|
nd[i].points[m].y = j + r.y;
|
|
m++;
|
|
}
|
|
assert(m == nd[i].npoints);
|
|
|
|
i++;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (params->unique)
|
|
ret = rect_solver(params->w, params->h, nnumbers, nd,
|
|
NULL, NULL, rs);
|
|
else
|
|
ret = TRUE; /* allow any number placement at all */
|
|
|
|
if (ret) {
|
|
/*
|
|
* Now place the numbers according to the solver's
|
|
* recommendations.
|
|
*/
|
|
numbers = snewn(params->w * params->h, int);
|
|
|
|
for (y = 0; y < params->h; y++)
|
|
for (x = 0; x < params->w; x++) {
|
|
index(params, numbers, x, y) = 0;
|
|
}
|
|
|
|
for (i = 0; i < nnumbers; i++) {
|
|
int idx = random_upto(rs, nd[i].npoints);
|
|
int x = nd[i].points[idx].x;
|
|
int y = nd[i].points[idx].y;
|
|
index(params,numbers,x,y) = nd[i].area;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Clean up.
|
|
*/
|
|
for (i = 0; i < nnumbers; i++)
|
|
sfree(nd[i].points);
|
|
sfree(nd);
|
|
|
|
/*
|
|
* If we've succeeded, then terminate the loop.
|
|
*/
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Give up and go round again.
|
|
*/
|
|
sfree(grid);
|
|
}
|
|
|
|
/*
|
|
* Store the solution in aux.
|
|
*/
|
|
{
|
|
char *ai;
|
|
int len;
|
|
|
|
len = 2 + (params->w-1)*params->h + (params->h-1)*params->w;
|
|
ai = snewn(len, char);
|
|
|
|
ai[0] = 'S';
|
|
|
|
p = ai+1;
|
|
|
|
for (y = 0; y < params->h; y++)
|
|
for (x = 1; x < params->w; x++)
|
|
*p++ = (index(params, grid, x, y) !=
|
|
index(params, grid, x-1, y) ? '1' : '0');
|
|
|
|
for (y = 1; y < params->h; y++)
|
|
for (x = 0; x < params->w; x++)
|
|
*p++ = (index(params, grid, x, y) !=
|
|
index(params, grid, x, y-1) ? '1' : '0');
|
|
|
|
assert(p - ai == len-1);
|
|
*p = '\0';
|
|
|
|
*aux = ai;
|
|
}
|
|
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
display_grid(params, grid, numbers, FALSE);
|
|
#endif
|
|
|
|
desc = snewn(11 * params->w * params->h, char);
|
|
p = desc;
|
|
run = 0;
|
|
for (i = 0; i <= params->w * params->h; i++) {
|
|
int n = (i < params->w * params->h ? numbers[i] : -1);
|
|
|
|
if (!n)
|
|
run++;
|
|
else {
|
|
if (run) {
|
|
while (run > 0) {
|
|
int c = 'a' - 1 + run;
|
|
if (run > 26)
|
|
c = 'z';
|
|
*p++ = c;
|
|
run -= c - ('a' - 1);
|
|
}
|
|
} else {
|
|
/*
|
|
* If there's a number in the very top left or
|
|
* bottom right, there's no point putting an
|
|
* unnecessary _ before or after it.
|
|
*/
|
|
if (p > desc && n > 0)
|
|
*p++ = '_';
|
|
}
|
|
if (n > 0)
|
|
p += sprintf(p, "%d", n);
|
|
run = 0;
|
|
}
|
|
}
|
|
*p = '\0';
|
|
|
|
sfree(grid);
|
|
sfree(numbers);
|
|
|
|
return desc;
|
|
}
|
|
|
|
static char *validate_desc(game_params *params, char *desc)
|
|
{
|
|
int area = params->w * params->h;
|
|
int squares = 0;
|
|
|
|
while (*desc) {
|
|
int n = *desc++;
|
|
if (n >= 'a' && n <= 'z') {
|
|
squares += n - 'a' + 1;
|
|
} else if (n == '_') {
|
|
/* do nothing */;
|
|
} else if (n > '0' && n <= '9') {
|
|
squares++;
|
|
while (*desc >= '0' && *desc <= '9')
|
|
desc++;
|
|
} else
|
|
return "Invalid character in game description";
|
|
}
|
|
|
|
if (squares < area)
|
|
return "Not enough data to fill grid";
|
|
|
|
if (squares > area)
|
|
return "Too much data to fit in grid";
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static unsigned char *get_correct(game_state *state)
|
|
{
|
|
unsigned char *ret;
|
|
int x, y;
|
|
|
|
ret = snewn(state->w * state->h, unsigned char);
|
|
memset(ret, 0xFF, state->w * state->h);
|
|
|
|
for (x = 0; x < state->w; x++)
|
|
for (y = 0; y < state->h; y++)
|
|
if (index(state,ret,x,y) == 0xFF) {
|
|
int rw, rh;
|
|
int xx, yy;
|
|
int num, area, valid;
|
|
|
|
/*
|
|
* Find a rectangle starting at this point.
|
|
*/
|
|
rw = 1;
|
|
while (x+rw < state->w && !vedge(state,x+rw,y))
|
|
rw++;
|
|
rh = 1;
|
|
while (y+rh < state->h && !hedge(state,x,y+rh))
|
|
rh++;
|
|
|
|
/*
|
|
* We know what the dimensions of the rectangle
|
|
* should be if it's there at all. Find out if we
|
|
* really have a valid rectangle.
|
|
*/
|
|
valid = TRUE;
|
|
/* Check the horizontal edges. */
|
|
for (xx = x; xx < x+rw; xx++) {
|
|
for (yy = y; yy <= y+rh; yy++) {
|
|
int e = !HRANGE(state,xx,yy) || hedge(state,xx,yy);
|
|
int ec = (yy == y || yy == y+rh);
|
|
if (e != ec)
|
|
valid = FALSE;
|
|
}
|
|
}
|
|
/* Check the vertical edges. */
|
|
for (yy = y; yy < y+rh; yy++) {
|
|
for (xx = x; xx <= x+rw; xx++) {
|
|
int e = !VRANGE(state,xx,yy) || vedge(state,xx,yy);
|
|
int ec = (xx == x || xx == x+rw);
|
|
if (e != ec)
|
|
valid = FALSE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If this is not a valid rectangle with no other
|
|
* edges inside it, we just mark this square as not
|
|
* complete and proceed to the next square.
|
|
*/
|
|
if (!valid) {
|
|
index(state, ret, x, y) = 0;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* We have a rectangle. Now see what its area is,
|
|
* and how many numbers are in it.
|
|
*/
|
|
num = 0;
|
|
area = 0;
|
|
for (xx = x; xx < x+rw; xx++) {
|
|
for (yy = y; yy < y+rh; yy++) {
|
|
area++;
|
|
if (grid(state,xx,yy)) {
|
|
if (num > 0)
|
|
valid = FALSE; /* two numbers */
|
|
num = grid(state,xx,yy);
|
|
}
|
|
}
|
|
}
|
|
if (num != area)
|
|
valid = FALSE;
|
|
|
|
/*
|
|
* Now fill in the whole rectangle based on the
|
|
* value of `valid'.
|
|
*/
|
|
for (xx = x; xx < x+rw; xx++) {
|
|
for (yy = y; yy < y+rh; yy++) {
|
|
index(state, ret, xx, yy) = valid;
|
|
}
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static game_state *new_game(midend *me, game_params *params, char *desc)
|
|
{
|
|
game_state *state = snew(game_state);
|
|
int x, y, i, area;
|
|
|
|
state->w = params->w;
|
|
state->h = params->h;
|
|
|
|
area = state->w * state->h;
|
|
|
|
state->grid = snewn(area, int);
|
|
state->vedge = snewn(area, unsigned char);
|
|
state->hedge = snewn(area, unsigned char);
|
|
state->completed = state->cheated = FALSE;
|
|
|
|
i = 0;
|
|
while (*desc) {
|
|
int n = *desc++;
|
|
if (n >= 'a' && n <= 'z') {
|
|
int run = n - 'a' + 1;
|
|
assert(i + run <= area);
|
|
while (run-- > 0)
|
|
state->grid[i++] = 0;
|
|
} else if (n == '_') {
|
|
/* do nothing */;
|
|
} else if (n > '0' && n <= '9') {
|
|
assert(i < area);
|
|
state->grid[i++] = atoi(desc-1);
|
|
while (*desc >= '0' && *desc <= '9')
|
|
desc++;
|
|
} else {
|
|
assert(!"We can't get here");
|
|
}
|
|
}
|
|
assert(i == area);
|
|
|
|
for (y = 0; y < state->h; y++)
|
|
for (x = 0; x < state->w; x++)
|
|
vedge(state,x,y) = hedge(state,x,y) = 0;
|
|
|
|
state->correct = get_correct(state);
|
|
|
|
return state;
|
|
}
|
|
|
|
static game_state *dup_game(game_state *state)
|
|
{
|
|
game_state *ret = snew(game_state);
|
|
|
|
ret->w = state->w;
|
|
ret->h = state->h;
|
|
|
|
ret->vedge = snewn(state->w * state->h, unsigned char);
|
|
ret->hedge = snewn(state->w * state->h, unsigned char);
|
|
ret->grid = snewn(state->w * state->h, int);
|
|
ret->correct = snewn(ret->w * ret->h, unsigned char);
|
|
|
|
ret->completed = state->completed;
|
|
ret->cheated = state->cheated;
|
|
|
|
memcpy(ret->grid, state->grid, state->w * state->h * sizeof(int));
|
|
memcpy(ret->vedge, state->vedge, state->w*state->h*sizeof(unsigned char));
|
|
memcpy(ret->hedge, state->hedge, state->w*state->h*sizeof(unsigned char));
|
|
|
|
memcpy(ret->correct, state->correct, state->w*state->h*sizeof(unsigned char));
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void free_game(game_state *state)
|
|
{
|
|
sfree(state->grid);
|
|
sfree(state->vedge);
|
|
sfree(state->hedge);
|
|
sfree(state->correct);
|
|
sfree(state);
|
|
}
|
|
|
|
static char *solve_game(game_state *state, game_state *currstate,
|
|
char *ai, char **error)
|
|
{
|
|
unsigned char *vedge, *hedge;
|
|
int x, y, len;
|
|
char *ret, *p;
|
|
int i, j, n;
|
|
struct numberdata *nd;
|
|
|
|
if (ai)
|
|
return dupstr(ai);
|
|
|
|
/*
|
|
* Attempt the in-built solver.
|
|
*/
|
|
|
|
/* Set up each number's (very short) candidate position list. */
|
|
for (i = n = 0; i < state->h * state->w; i++)
|
|
if (state->grid[i])
|
|
n++;
|
|
|
|
nd = snewn(n, struct numberdata);
|
|
|
|
for (i = j = 0; i < state->h * state->w; i++)
|
|
if (state->grid[i]) {
|
|
nd[j].area = state->grid[i];
|
|
nd[j].npoints = 1;
|
|
nd[j].points = snewn(1, struct point);
|
|
nd[j].points[0].x = i % state->w;
|
|
nd[j].points[0].y = i / state->w;
|
|
j++;
|
|
}
|
|
|
|
assert(j == n);
|
|
|
|
vedge = snewn(state->w * state->h, unsigned char);
|
|
hedge = snewn(state->w * state->h, unsigned char);
|
|
memset(vedge, 0, state->w * state->h);
|
|
memset(hedge, 0, state->w * state->h);
|
|
|
|
rect_solver(state->w, state->h, n, nd, hedge, vedge, NULL);
|
|
|
|
/*
|
|
* Clean up.
|
|
*/
|
|
for (i = 0; i < n; i++)
|
|
sfree(nd[i].points);
|
|
sfree(nd);
|
|
|
|
len = 2 + (state->w-1)*state->h + (state->h-1)*state->w;
|
|
ret = snewn(len, char);
|
|
|
|
p = ret;
|
|
*p++ = 'S';
|
|
for (y = 0; y < state->h; y++)
|
|
for (x = 1; x < state->w; x++)
|
|
*p++ = vedge[y*state->w+x] ? '1' : '0';
|
|
for (y = 1; y < state->h; y++)
|
|
for (x = 0; x < state->w; x++)
|
|
*p++ = hedge[y*state->w+x] ? '1' : '0';
|
|
*p++ = '\0';
|
|
assert(p - ret == len);
|
|
|
|
sfree(vedge);
|
|
sfree(hedge);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static char *game_text_format(game_state *state)
|
|
{
|
|
char *ret, *p, buf[80];
|
|
int i, x, y, col, maxlen;
|
|
|
|
/*
|
|
* First determine the number of spaces required to display a
|
|
* number. We'll use at least two, because one looks a bit
|
|
* silly.
|
|
*/
|
|
col = 2;
|
|
for (i = 0; i < state->w * state->h; i++) {
|
|
x = sprintf(buf, "%d", state->grid[i]);
|
|
if (col < x) col = x;
|
|
}
|
|
|
|
/*
|
|
* Now we know the exact total size of the grid we're going to
|
|
* produce: it's got 2*h+1 rows, each containing w lots of col,
|
|
* w+1 boundary characters and a trailing newline.
|
|
*/
|
|
maxlen = (2*state->h+1) * (state->w * (col+1) + 2);
|
|
|
|
ret = snewn(maxlen+1, char);
|
|
p = ret;
|
|
|
|
for (y = 0; y <= 2*state->h; y++) {
|
|
for (x = 0; x <= 2*state->w; x++) {
|
|
if (x & y & 1) {
|
|
/*
|
|
* Display a number.
|
|
*/
|
|
int v = grid(state, x/2, y/2);
|
|
if (v)
|
|
sprintf(buf, "%*d", col, v);
|
|
else
|
|
sprintf(buf, "%*s", col, "");
|
|
memcpy(p, buf, col);
|
|
p += col;
|
|
} else if (x & 1) {
|
|
/*
|
|
* Display a horizontal edge or nothing.
|
|
*/
|
|
int h = (y==0 || y==2*state->h ? 1 :
|
|
HRANGE(state, x/2, y/2) && hedge(state, x/2, y/2));
|
|
int i;
|
|
if (h)
|
|
h = '-';
|
|
else
|
|
h = ' ';
|
|
for (i = 0; i < col; i++)
|
|
*p++ = h;
|
|
} else if (y & 1) {
|
|
/*
|
|
* Display a vertical edge or nothing.
|
|
*/
|
|
int v = (x==0 || x==2*state->w ? 1 :
|
|
VRANGE(state, x/2, y/2) && vedge(state, x/2, y/2));
|
|
if (v)
|
|
*p++ = '|';
|
|
else
|
|
*p++ = ' ';
|
|
} else {
|
|
/*
|
|
* Display a corner, or a vertical edge, or a
|
|
* horizontal edge, or nothing.
|
|
*/
|
|
int hl = (y==0 || y==2*state->h ? 1 :
|
|
HRANGE(state, (x-1)/2, y/2) && hedge(state, (x-1)/2, y/2));
|
|
int hr = (y==0 || y==2*state->h ? 1 :
|
|
HRANGE(state, (x+1)/2, y/2) && hedge(state, (x+1)/2, y/2));
|
|
int vu = (x==0 || x==2*state->w ? 1 :
|
|
VRANGE(state, x/2, (y-1)/2) && vedge(state, x/2, (y-1)/2));
|
|
int vd = (x==0 || x==2*state->w ? 1 :
|
|
VRANGE(state, x/2, (y+1)/2) && vedge(state, x/2, (y+1)/2));
|
|
if (!hl && !hr && !vu && !vd)
|
|
*p++ = ' ';
|
|
else if (hl && hr && !vu && !vd)
|
|
*p++ = '-';
|
|
else if (!hl && !hr && vu && vd)
|
|
*p++ = '|';
|
|
else
|
|
*p++ = '+';
|
|
}
|
|
}
|
|
*p++ = '\n';
|
|
}
|
|
|
|
assert(p - ret == maxlen);
|
|
*p = '\0';
|
|
return ret;
|
|
}
|
|
|
|
struct game_ui {
|
|
/*
|
|
* These coordinates are 2 times the obvious grid coordinates.
|
|
* Hence, the top left of the grid is (0,0), the grid point to
|
|
* the right of that is (2,0), the one _below that_ is (2,2)
|
|
* and so on. This is so that we can specify a drag start point
|
|
* on an edge (one odd coordinate) or in the middle of a square
|
|
* (two odd coordinates) rather than always at a corner.
|
|
*
|
|
* -1,-1 means no drag is in progress.
|
|
*/
|
|
int drag_start_x;
|
|
int drag_start_y;
|
|
int drag_end_x;
|
|
int drag_end_y;
|
|
/*
|
|
* This flag is set as soon as a dragging action moves the
|
|
* mouse pointer away from its starting point, so that even if
|
|
* the pointer _returns_ to its starting point the action is
|
|
* treated as a small drag rather than a click.
|
|
*/
|
|
int dragged;
|
|
/*
|
|
* These are the co-ordinates of the top-left and bottom-right squares
|
|
* in the drag box, respectively, or -1 otherwise.
|
|
*/
|
|
int x1;
|
|
int y1;
|
|
int x2;
|
|
int y2;
|
|
};
|
|
|
|
static game_ui *new_ui(game_state *state)
|
|
{
|
|
game_ui *ui = snew(game_ui);
|
|
ui->drag_start_x = -1;
|
|
ui->drag_start_y = -1;
|
|
ui->drag_end_x = -1;
|
|
ui->drag_end_y = -1;
|
|
ui->dragged = FALSE;
|
|
ui->x1 = -1;
|
|
ui->y1 = -1;
|
|
ui->x2 = -1;
|
|
ui->y2 = -1;
|
|
return ui;
|
|
}
|
|
|
|
static void free_ui(game_ui *ui)
|
|
{
|
|
sfree(ui);
|
|
}
|
|
|
|
static char *encode_ui(game_ui *ui)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static void decode_ui(game_ui *ui, char *encoding)
|
|
{
|
|
}
|
|
|
|
static void coord_round(float x, float y, int *xr, int *yr)
|
|
{
|
|
float xs, ys, xv, yv, dx, dy, dist;
|
|
|
|
/*
|
|
* Find the nearest square-centre.
|
|
*/
|
|
xs = (float)floor(x) + 0.5F;
|
|
ys = (float)floor(y) + 0.5F;
|
|
|
|
/*
|
|
* And find the nearest grid vertex.
|
|
*/
|
|
xv = (float)floor(x + 0.5F);
|
|
yv = (float)floor(y + 0.5F);
|
|
|
|
/*
|
|
* We allocate clicks in parts of the grid square to either
|
|
* corners, edges or square centres, as follows:
|
|
*
|
|
* +--+--------+--+
|
|
* | | | |
|
|
* +--+ +--+
|
|
* | `. ,' |
|
|
* | +--+ |
|
|
* | | | |
|
|
* | +--+ |
|
|
* | ,' `. |
|
|
* +--+ +--+
|
|
* | | | |
|
|
* +--+--------+--+
|
|
*
|
|
* (Not to scale!)
|
|
*
|
|
* In other words: we measure the square distance (i.e.
|
|
* max(dx,dy)) from the click to the nearest corner, and if
|
|
* it's within CORNER_TOLERANCE then we return a corner click.
|
|
* We measure the square distance from the click to the nearest
|
|
* centre, and if that's within CENTRE_TOLERANCE we return a
|
|
* centre click. Failing that, we find which of the two edge
|
|
* centres is nearer to the click and return that edge.
|
|
*/
|
|
|
|
/*
|
|
* Check for corner click.
|
|
*/
|
|
dx = (float)fabs(x - xv);
|
|
dy = (float)fabs(y - yv);
|
|
dist = (dx > dy ? dx : dy);
|
|
if (dist < CORNER_TOLERANCE) {
|
|
*xr = 2 * (int)xv;
|
|
*yr = 2 * (int)yv;
|
|
} else {
|
|
/*
|
|
* Check for centre click.
|
|
*/
|
|
dx = (float)fabs(x - xs);
|
|
dy = (float)fabs(y - ys);
|
|
dist = (dx > dy ? dx : dy);
|
|
if (dist < CENTRE_TOLERANCE) {
|
|
*xr = 1 + 2 * (int)xs;
|
|
*yr = 1 + 2 * (int)ys;
|
|
} else {
|
|
/*
|
|
* Failing both of those, see which edge we're closer to.
|
|
* Conveniently, this is simply done by testing the relative
|
|
* magnitude of dx and dy (which are currently distances from
|
|
* the square centre).
|
|
*/
|
|
if (dx > dy) {
|
|
/* Vertical edge: x-coord of corner,
|
|
* y-coord of square centre. */
|
|
*xr = 2 * (int)xv;
|
|
*yr = 1 + 2 * (int)floor(ys);
|
|
} else {
|
|
/* Horizontal edge: x-coord of square centre,
|
|
* y-coord of corner. */
|
|
*xr = 1 + 2 * (int)floor(xs);
|
|
*yr = 2 * (int)yv;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Returns TRUE if it has made any change to the grid.
|
|
*/
|
|
static int grid_draw_rect(game_state *state,
|
|
unsigned char *hedge, unsigned char *vedge,
|
|
int c, int really,
|
|
int x1, int y1, int x2, int y2)
|
|
{
|
|
int x, y;
|
|
int changed = FALSE;
|
|
|
|
/*
|
|
* Draw horizontal edges of rectangles.
|
|
*/
|
|
for (x = x1; x < x2; x++)
|
|
for (y = y1; y <= y2; y++)
|
|
if (HRANGE(state,x,y)) {
|
|
int val = index(state,hedge,x,y);
|
|
if (y == y1 || y == y2)
|
|
val = c;
|
|
else if (c == 1)
|
|
val = 0;
|
|
changed = changed || (index(state,hedge,x,y) != val);
|
|
if (really)
|
|
index(state,hedge,x,y) = val;
|
|
}
|
|
|
|
/*
|
|
* Draw vertical edges of rectangles.
|
|
*/
|
|
for (y = y1; y < y2; y++)
|
|
for (x = x1; x <= x2; x++)
|
|
if (VRANGE(state,x,y)) {
|
|
int val = index(state,vedge,x,y);
|
|
if (x == x1 || x == x2)
|
|
val = c;
|
|
else if (c == 1)
|
|
val = 0;
|
|
changed = changed || (index(state,vedge,x,y) != val);
|
|
if (really)
|
|
index(state,vedge,x,y) = val;
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|
|
static int ui_draw_rect(game_state *state, game_ui *ui,
|
|
unsigned char *hedge, unsigned char *vedge, int c,
|
|
int really)
|
|
{
|
|
return grid_draw_rect(state, hedge, vedge, c, really,
|
|
ui->x1, ui->y1, ui->x2, ui->y2);
|
|
}
|
|
|
|
static void game_changed_state(game_ui *ui, game_state *oldstate,
|
|
game_state *newstate)
|
|
{
|
|
}
|
|
|
|
struct game_drawstate {
|
|
int started;
|
|
int w, h, tilesize;
|
|
unsigned long *visible;
|
|
};
|
|
|
|
static char *interpret_move(game_state *from, game_ui *ui, game_drawstate *ds,
|
|
int x, int y, int button)
|
|
{
|
|
int xc, yc;
|
|
int startdrag = FALSE, enddrag = FALSE, active = FALSE;
|
|
char buf[80], *ret;
|
|
|
|
button &= ~MOD_MASK;
|
|
|
|
if (button == LEFT_BUTTON) {
|
|
startdrag = TRUE;
|
|
} else if (button == LEFT_RELEASE) {
|
|
enddrag = TRUE;
|
|
} else if (button != LEFT_DRAG) {
|
|
return NULL;
|
|
}
|
|
|
|
coord_round(FROMCOORD((float)x), FROMCOORD((float)y), &xc, &yc);
|
|
|
|
if (startdrag &&
|
|
xc >= 0 && xc <= 2*from->w &&
|
|
yc >= 0 && yc <= 2*from->h) {
|
|
|
|
ui->drag_start_x = xc;
|
|
ui->drag_start_y = yc;
|
|
ui->drag_end_x = xc;
|
|
ui->drag_end_y = yc;
|
|
ui->dragged = FALSE;
|
|
active = TRUE;
|
|
}
|
|
|
|
if (ui->drag_start_x >= 0 &&
|
|
(xc != ui->drag_end_x || yc != ui->drag_end_y)) {
|
|
int t;
|
|
|
|
ui->drag_end_x = xc;
|
|
ui->drag_end_y = yc;
|
|
ui->dragged = TRUE;
|
|
active = TRUE;
|
|
|
|
if (xc >= 0 && xc <= 2*from->w &&
|
|
yc >= 0 && yc <= 2*from->h) {
|
|
ui->x1 = ui->drag_start_x;
|
|
ui->x2 = ui->drag_end_x;
|
|
if (ui->x2 < ui->x1) { t = ui->x1; ui->x1 = ui->x2; ui->x2 = t; }
|
|
|
|
ui->y1 = ui->drag_start_y;
|
|
ui->y2 = ui->drag_end_y;
|
|
if (ui->y2 < ui->y1) { t = ui->y1; ui->y1 = ui->y2; ui->y2 = t; }
|
|
|
|
ui->x1 = ui->x1 / 2; /* rounds down */
|
|
ui->x2 = (ui->x2+1) / 2; /* rounds up */
|
|
ui->y1 = ui->y1 / 2; /* rounds down */
|
|
ui->y2 = (ui->y2+1) / 2; /* rounds up */
|
|
} else {
|
|
ui->x1 = -1;
|
|
ui->y1 = -1;
|
|
ui->x2 = -1;
|
|
ui->y2 = -1;
|
|
}
|
|
}
|
|
|
|
ret = NULL;
|
|
|
|
if (enddrag && (ui->drag_start_x >= 0)) {
|
|
if (xc >= 0 && xc <= 2*from->w &&
|
|
yc >= 0 && yc <= 2*from->h) {
|
|
|
|
if (ui->dragged) {
|
|
if (ui_draw_rect(from, ui, from->hedge,
|
|
from->vedge, 1, FALSE)) {
|
|
sprintf(buf, "R%d,%d,%d,%d",
|
|
ui->x1, ui->y1, ui->x2 - ui->x1, ui->y2 - ui->y1);
|
|
ret = dupstr(buf);
|
|
}
|
|
} else {
|
|
if ((xc & 1) && !(yc & 1) && HRANGE(from,xc/2,yc/2)) {
|
|
sprintf(buf, "H%d,%d", xc/2, yc/2);
|
|
ret = dupstr(buf);
|
|
}
|
|
if ((yc & 1) && !(xc & 1) && VRANGE(from,xc/2,yc/2)) {
|
|
sprintf(buf, "V%d,%d", xc/2, yc/2);
|
|
ret = dupstr(buf);
|
|
}
|
|
}
|
|
}
|
|
|
|
ui->drag_start_x = -1;
|
|
ui->drag_start_y = -1;
|
|
ui->drag_end_x = -1;
|
|
ui->drag_end_y = -1;
|
|
ui->x1 = -1;
|
|
ui->y1 = -1;
|
|
ui->x2 = -1;
|
|
ui->y2 = -1;
|
|
ui->dragged = FALSE;
|
|
active = TRUE;
|
|
}
|
|
|
|
if (ret)
|
|
return ret; /* a move has been made */
|
|
else if (active)
|
|
return ""; /* UI activity has occurred */
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
static game_state *execute_move(game_state *from, char *move)
|
|
{
|
|
game_state *ret;
|
|
int x1, y1, x2, y2, mode;
|
|
|
|
if (move[0] == 'S') {
|
|
char *p = move+1;
|
|
int x, y;
|
|
|
|
ret = dup_game(from);
|
|
ret->cheated = TRUE;
|
|
|
|
for (y = 0; y < ret->h; y++)
|
|
for (x = 1; x < ret->w; x++) {
|
|
vedge(ret, x, y) = (*p == '1');
|
|
if (*p) p++;
|
|
}
|
|
for (y = 1; y < ret->h; y++)
|
|
for (x = 0; x < ret->w; x++) {
|
|
hedge(ret, x, y) = (*p == '1');
|
|
if (*p) p++;
|
|
}
|
|
|
|
sfree(ret->correct);
|
|
ret->correct = get_correct(ret);
|
|
|
|
return ret;
|
|
|
|
} else if (move[0] == 'R' &&
|
|
sscanf(move+1, "%d,%d,%d,%d", &x1, &y1, &x2, &y2) == 4 &&
|
|
x1 >= 0 && x2 >= 0 && x1+x2 <= from->w &&
|
|
y1 >= 0 && y2 >= 0 && y1+y2 <= from->h) {
|
|
x2 += x1;
|
|
y2 += y1;
|
|
mode = move[0];
|
|
} else if ((move[0] == 'H' || move[0] == 'V') &&
|
|
sscanf(move+1, "%d,%d", &x1, &y1) == 2 &&
|
|
(move[0] == 'H' ? HRANGE(from, x1, y1) :
|
|
VRANGE(from, x1, y1))) {
|
|
mode = move[0];
|
|
} else
|
|
return NULL; /* can't parse move string */
|
|
|
|
ret = dup_game(from);
|
|
|
|
if (mode == 'R') {
|
|
grid_draw_rect(ret, ret->hedge, ret->vedge, 1, TRUE, x1, y1, x2, y2);
|
|
} else if (mode == 'H') {
|
|
hedge(ret,x1,y1) = !hedge(ret,x1,y1);
|
|
} else if (mode == 'V') {
|
|
vedge(ret,x1,y1) = !vedge(ret,x1,y1);
|
|
}
|
|
|
|
sfree(ret->correct);
|
|
ret->correct = get_correct(ret);
|
|
|
|
/*
|
|
* We've made a real change to the grid. Check to see
|
|
* if the game has been completed.
|
|
*/
|
|
if (!ret->completed) {
|
|
int x, y, ok;
|
|
|
|
ok = TRUE;
|
|
for (x = 0; x < ret->w; x++)
|
|
for (y = 0; y < ret->h; y++)
|
|
if (!index(ret, ret->correct, x, y))
|
|
ok = FALSE;
|
|
|
|
if (ok)
|
|
ret->completed = TRUE;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Drawing routines.
|
|
*/
|
|
|
|
#define CORRECT (1L<<16)
|
|
|
|
#define COLOUR(k) ( (k)==1 ? COL_LINE : COL_DRAG )
|
|
#define MAX4(x,y,z,w) ( max(max(x,y),max(z,w)) )
|
|
|
|
static void game_compute_size(game_params *params, int tilesize,
|
|
int *x, int *y)
|
|
{
|
|
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
|
|
struct { int tilesize; } ads, *ds = &ads;
|
|
ads.tilesize = tilesize;
|
|
|
|
*x = params->w * TILE_SIZE + 2*BORDER + 1;
|
|
*y = params->h * TILE_SIZE + 2*BORDER + 1;
|
|
}
|
|
|
|
static void game_set_size(drawing *dr, game_drawstate *ds,
|
|
game_params *params, int tilesize)
|
|
{
|
|
ds->tilesize = tilesize;
|
|
}
|
|
|
|
static float *game_colours(frontend *fe, int *ncolours)
|
|
{
|
|
float *ret = snewn(3 * NCOLOURS, float);
|
|
|
|
frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
|
|
|
|
ret[COL_GRID * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
|
|
ret[COL_GRID * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
|
|
ret[COL_GRID * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2];
|
|
|
|
ret[COL_DRAG * 3 + 0] = 1.0F;
|
|
ret[COL_DRAG * 3 + 1] = 0.0F;
|
|
ret[COL_DRAG * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_CORRECT * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0];
|
|
ret[COL_CORRECT * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1];
|
|
ret[COL_CORRECT * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2];
|
|
|
|
ret[COL_LINE * 3 + 0] = 0.0F;
|
|
ret[COL_LINE * 3 + 1] = 0.0F;
|
|
ret[COL_LINE * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_TEXT * 3 + 0] = 0.0F;
|
|
ret[COL_TEXT * 3 + 1] = 0.0F;
|
|
ret[COL_TEXT * 3 + 2] = 0.0F;
|
|
|
|
*ncolours = NCOLOURS;
|
|
return ret;
|
|
}
|
|
|
|
static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
|
|
{
|
|
struct game_drawstate *ds = snew(struct game_drawstate);
|
|
int i;
|
|
|
|
ds->started = FALSE;
|
|
ds->w = state->w;
|
|
ds->h = state->h;
|
|
ds->visible = snewn(ds->w * ds->h, unsigned long);
|
|
ds->tilesize = 0; /* not decided yet */
|
|
for (i = 0; i < ds->w * ds->h; i++)
|
|
ds->visible[i] = 0xFFFF;
|
|
|
|
return ds;
|
|
}
|
|
|
|
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
|
|
{
|
|
sfree(ds->visible);
|
|
sfree(ds);
|
|
}
|
|
|
|
static void draw_tile(drawing *dr, game_drawstate *ds, game_state *state,
|
|
int x, int y, unsigned char *hedge, unsigned char *vedge,
|
|
unsigned char *corners, int correct)
|
|
{
|
|
int cx = COORD(x), cy = COORD(y);
|
|
char str[80];
|
|
|
|
draw_rect(dr, cx, cy, TILE_SIZE+1, TILE_SIZE+1, COL_GRID);
|
|
draw_rect(dr, cx+1, cy+1, TILE_SIZE-1, TILE_SIZE-1,
|
|
correct ? COL_CORRECT : COL_BACKGROUND);
|
|
|
|
if (grid(state,x,y)) {
|
|
sprintf(str, "%d", grid(state,x,y));
|
|
draw_text(dr, cx+TILE_SIZE/2, cy+TILE_SIZE/2, FONT_VARIABLE,
|
|
TILE_SIZE/2, ALIGN_HCENTRE | ALIGN_VCENTRE, COL_TEXT, str);
|
|
}
|
|
|
|
/*
|
|
* Draw edges.
|
|
*/
|
|
if (!HRANGE(state,x,y) || index(state,hedge,x,y))
|
|
draw_rect(dr, cx, cy, TILE_SIZE+1, 2,
|
|
HRANGE(state,x,y) ? COLOUR(index(state,hedge,x,y)) :
|
|
COL_LINE);
|
|
if (!HRANGE(state,x,y+1) || index(state,hedge,x,y+1))
|
|
draw_rect(dr, cx, cy+TILE_SIZE-1, TILE_SIZE+1, 2,
|
|
HRANGE(state,x,y+1) ? COLOUR(index(state,hedge,x,y+1)) :
|
|
COL_LINE);
|
|
if (!VRANGE(state,x,y) || index(state,vedge,x,y))
|
|
draw_rect(dr, cx, cy, 2, TILE_SIZE+1,
|
|
VRANGE(state,x,y) ? COLOUR(index(state,vedge,x,y)) :
|
|
COL_LINE);
|
|
if (!VRANGE(state,x+1,y) || index(state,vedge,x+1,y))
|
|
draw_rect(dr, cx+TILE_SIZE-1, cy, 2, TILE_SIZE+1,
|
|
VRANGE(state,x+1,y) ? COLOUR(index(state,vedge,x+1,y)) :
|
|
COL_LINE);
|
|
|
|
/*
|
|
* Draw corners.
|
|
*/
|
|
if (index(state,corners,x,y))
|
|
draw_rect(dr, cx, cy, 2, 2,
|
|
COLOUR(index(state,corners,x,y)));
|
|
if (x+1 < state->w && index(state,corners,x+1,y))
|
|
draw_rect(dr, cx+TILE_SIZE-1, cy, 2, 2,
|
|
COLOUR(index(state,corners,x+1,y)));
|
|
if (y+1 < state->h && index(state,corners,x,y+1))
|
|
draw_rect(dr, cx, cy+TILE_SIZE-1, 2, 2,
|
|
COLOUR(index(state,corners,x,y+1)));
|
|
if (x+1 < state->w && y+1 < state->h && index(state,corners,x+1,y+1))
|
|
draw_rect(dr, cx+TILE_SIZE-1, cy+TILE_SIZE-1, 2, 2,
|
|
COLOUR(index(state,corners,x+1,y+1)));
|
|
|
|
draw_update(dr, cx, cy, TILE_SIZE+1, TILE_SIZE+1);
|
|
}
|
|
|
|
static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
|
|
game_state *state, int dir, game_ui *ui,
|
|
float animtime, float flashtime)
|
|
{
|
|
int x, y;
|
|
unsigned char *hedge, *vedge, *corners;
|
|
|
|
if (ui->dragged) {
|
|
hedge = snewn(state->w*state->h, unsigned char);
|
|
vedge = snewn(state->w*state->h, unsigned char);
|
|
memcpy(hedge, state->hedge, state->w*state->h);
|
|
memcpy(vedge, state->vedge, state->w*state->h);
|
|
ui_draw_rect(state, ui, hedge, vedge, 2, TRUE);
|
|
} else {
|
|
hedge = state->hedge;
|
|
vedge = state->vedge;
|
|
}
|
|
|
|
corners = snewn(state->w * state->h, unsigned char);
|
|
memset(corners, 0, state->w * state->h);
|
|
for (x = 0; x < state->w; x++)
|
|
for (y = 0; y < state->h; y++) {
|
|
if (x > 0) {
|
|
int e = index(state, vedge, x, y);
|
|
if (index(state,corners,x,y) < e)
|
|
index(state,corners,x,y) = e;
|
|
if (y+1 < state->h &&
|
|
index(state,corners,x,y+1) < e)
|
|
index(state,corners,x,y+1) = e;
|
|
}
|
|
if (y > 0) {
|
|
int e = index(state, hedge, x, y);
|
|
if (index(state,corners,x,y) < e)
|
|
index(state,corners,x,y) = e;
|
|
if (x+1 < state->w &&
|
|
index(state,corners,x+1,y) < e)
|
|
index(state,corners,x+1,y) = e;
|
|
}
|
|
}
|
|
|
|
if (!ds->started) {
|
|
draw_rect(dr, 0, 0,
|
|
state->w * TILE_SIZE + 2*BORDER + 1,
|
|
state->h * TILE_SIZE + 2*BORDER + 1, COL_BACKGROUND);
|
|
draw_rect(dr, COORD(0)-1, COORD(0)-1,
|
|
ds->w*TILE_SIZE+3, ds->h*TILE_SIZE+3, COL_LINE);
|
|
ds->started = TRUE;
|
|
draw_update(dr, 0, 0,
|
|
state->w * TILE_SIZE + 2*BORDER + 1,
|
|
state->h * TILE_SIZE + 2*BORDER + 1);
|
|
}
|
|
|
|
for (x = 0; x < state->w; x++)
|
|
for (y = 0; y < state->h; y++) {
|
|
unsigned long c = 0;
|
|
|
|
if (HRANGE(state,x,y))
|
|
c |= index(state,hedge,x,y);
|
|
if (HRANGE(state,x,y+1))
|
|
c |= index(state,hedge,x,y+1) << 2;
|
|
if (VRANGE(state,x,y))
|
|
c |= index(state,vedge,x,y) << 4;
|
|
if (VRANGE(state,x+1,y))
|
|
c |= index(state,vedge,x+1,y) << 6;
|
|
c |= index(state,corners,x,y) << 8;
|
|
if (x+1 < state->w)
|
|
c |= index(state,corners,x+1,y) << 10;
|
|
if (y+1 < state->h)
|
|
c |= index(state,corners,x,y+1) << 12;
|
|
if (x+1 < state->w && y+1 < state->h)
|
|
/* cast to prevent 2<<14 sign-extending on promotion to long */
|
|
c |= (unsigned long)index(state,corners,x+1,y+1) << 14;
|
|
if (index(state, state->correct, x, y) && !flashtime)
|
|
c |= CORRECT;
|
|
|
|
if (index(ds,ds->visible,x,y) != c) {
|
|
draw_tile(dr, ds, state, x, y, hedge, vedge, corners,
|
|
(c & CORRECT) ? 1 : 0);
|
|
index(ds,ds->visible,x,y) = c;
|
|
}
|
|
}
|
|
|
|
{
|
|
char buf[256];
|
|
|
|
if (ui->x1 >= 0 && ui->y1 >= 0 &&
|
|
ui->x2 >= 0 && ui->y2 >= 0) {
|
|
sprintf(buf, "%dx%d ",
|
|
ui->x2-ui->x1,
|
|
ui->y2-ui->y1);
|
|
} else {
|
|
buf[0] = '\0';
|
|
}
|
|
|
|
if (state->cheated)
|
|
strcat(buf, "Auto-solved.");
|
|
else if (state->completed)
|
|
strcat(buf, "COMPLETED!");
|
|
|
|
status_bar(dr, buf);
|
|
}
|
|
|
|
if (hedge != state->hedge) {
|
|
sfree(hedge);
|
|
sfree(vedge);
|
|
}
|
|
|
|
sfree(corners);
|
|
}
|
|
|
|
static float game_anim_length(game_state *oldstate,
|
|
game_state *newstate, int dir, game_ui *ui)
|
|
{
|
|
return 0.0F;
|
|
}
|
|
|
|
static float game_flash_length(game_state *oldstate,
|
|
game_state *newstate, int dir, game_ui *ui)
|
|
{
|
|
if (!oldstate->completed && newstate->completed &&
|
|
!oldstate->cheated && !newstate->cheated)
|
|
return FLASH_TIME;
|
|
return 0.0F;
|
|
}
|
|
|
|
static int game_timing_state(game_state *state, game_ui *ui)
|
|
{
|
|
return TRUE;
|
|
}
|
|
|
|
static void game_print_size(game_params *params, float *x, float *y)
|
|
{
|
|
int pw, ph;
|
|
|
|
/*
|
|
* I'll use 5mm squares by default.
|
|
*/
|
|
game_compute_size(params, 500, &pw, &ph);
|
|
*x = pw / 100.0;
|
|
*y = ph / 100.0;
|
|
}
|
|
|
|
static void game_print(drawing *dr, game_state *state, int tilesize)
|
|
{
|
|
int w = state->w, h = state->h;
|
|
int ink = print_mono_colour(dr, 0);
|
|
int x, y;
|
|
|
|
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
|
|
game_drawstate ads, *ds = &ads;
|
|
game_set_size(dr, ds, NULL, tilesize);
|
|
|
|
/*
|
|
* Border.
|
|
*/
|
|
print_line_width(dr, TILE_SIZE / 10);
|
|
draw_rect_outline(dr, COORD(0), COORD(0), w*TILE_SIZE, h*TILE_SIZE, ink);
|
|
|
|
/*
|
|
* Grid. We have to make the grid lines particularly thin,
|
|
* because users will be drawing lines _along_ them and we want
|
|
* those lines to be visible.
|
|
*/
|
|
print_line_width(dr, TILE_SIZE / 256);
|
|
for (x = 1; x < w; x++)
|
|
draw_line(dr, COORD(x), COORD(0), COORD(x), COORD(h), ink);
|
|
for (y = 1; y < h; y++)
|
|
draw_line(dr, COORD(0), COORD(y), COORD(w), COORD(y), ink);
|
|
|
|
/*
|
|
* Solution.
|
|
*/
|
|
print_line_width(dr, TILE_SIZE / 10);
|
|
for (y = 0; y <= h; y++)
|
|
for (x = 0; x <= w; x++) {
|
|
if (HRANGE(state,x,y) && hedge(state,x,y))
|
|
draw_line(dr, COORD(x), COORD(y), COORD(x+1), COORD(y), ink);
|
|
if (VRANGE(state,x,y) && vedge(state,x,y))
|
|
draw_line(dr, COORD(x), COORD(y), COORD(x), COORD(y+1), ink);
|
|
}
|
|
|
|
/*
|
|
* Clues.
|
|
*/
|
|
for (y = 0; y < h; y++)
|
|
for (x = 0; x < w; x++)
|
|
if (grid(state,x,y)) {
|
|
char str[80];
|
|
sprintf(str, "%d", grid(state,x,y));
|
|
draw_text(dr, COORD(x)+TILE_SIZE/2, COORD(y)+TILE_SIZE/2,
|
|
FONT_VARIABLE, TILE_SIZE/2,
|
|
ALIGN_HCENTRE | ALIGN_VCENTRE, ink, str);
|
|
}
|
|
}
|
|
|
|
#ifdef COMBINED
|
|
#define thegame rect
|
|
#endif
|
|
|
|
const struct game thegame = {
|
|
"Rectangles", "games.rectangles", "rectangles",
|
|
default_params,
|
|
game_fetch_preset,
|
|
decode_params,
|
|
encode_params,
|
|
free_params,
|
|
dup_params,
|
|
TRUE, game_configure, custom_params,
|
|
validate_params,
|
|
new_game_desc,
|
|
validate_desc,
|
|
new_game,
|
|
dup_game,
|
|
free_game,
|
|
TRUE, solve_game,
|
|
TRUE, game_text_format,
|
|
new_ui,
|
|
free_ui,
|
|
encode_ui,
|
|
decode_ui,
|
|
game_changed_state,
|
|
interpret_move,
|
|
execute_move,
|
|
PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
|
|
game_colours,
|
|
game_new_drawstate,
|
|
game_free_drawstate,
|
|
game_redraw,
|
|
game_anim_length,
|
|
game_flash_length,
|
|
TRUE, FALSE, game_print_size, game_print,
|
|
TRUE, /* wants_statusbar */
|
|
FALSE, game_timing_state,
|
|
0, /* flags */
|
|
};
|