mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-21 08:01:30 -07:00
Files

a non-recursive level above Easy, which therefore moves the recursive Hard mode further up still. Play-testing suggests that in fact Tricky is often _harder_ than the old Hard mode, since the latter had limited depth of recursion and would therefore spot complex deductions only if it happened to start a recursion on the right square; Tricky may be limited in the sophistication of its complex deductions, but it never misses one, so its puzzles tend to be hard all over. Also in this checkin, a new source file `nullfe.c', containing all the annoying stub functions required to make command-line solvers link successfully. James wrote this for (the new) lightupsolver, and I've used it to simplify the other stand-alone solvers. [originally from svn r6254]
1371 lines
35 KiB
C
1371 lines
35 KiB
C
/*
|
|
* pattern.c: the pattern-reconstruction game known as `nonograms'.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <ctype.h>
|
|
#include <math.h>
|
|
|
|
#include "puzzles.h"
|
|
|
|
enum {
|
|
COL_BACKGROUND,
|
|
COL_EMPTY,
|
|
COL_FULL,
|
|
COL_TEXT,
|
|
COL_UNKNOWN,
|
|
COL_GRID,
|
|
NCOLOURS
|
|
};
|
|
|
|
#define PREFERRED_TILE_SIZE 24
|
|
#define TILE_SIZE (ds->tilesize)
|
|
#define BORDER (3 * TILE_SIZE / 4)
|
|
#define TLBORDER(d) ( (d) / 5 + 2 )
|
|
#define GUTTER (TILE_SIZE / 2)
|
|
|
|
#define FROMCOORD(d, x) \
|
|
( ((x) - (BORDER + GUTTER + TILE_SIZE * TLBORDER(d))) / TILE_SIZE )
|
|
|
|
#define SIZE(d) (2*BORDER + GUTTER + TILE_SIZE * (TLBORDER(d) + (d)))
|
|
#define GETTILESIZE(d, w) ((double)w / (2.0 + (double)TLBORDER(d) + (double)(d)))
|
|
|
|
#define TOCOORD(d, x) (BORDER + GUTTER + TILE_SIZE * (TLBORDER(d) + (x)))
|
|
|
|
struct game_params {
|
|
int w, h;
|
|
};
|
|
|
|
#define GRID_UNKNOWN 2
|
|
#define GRID_FULL 1
|
|
#define GRID_EMPTY 0
|
|
|
|
struct game_state {
|
|
int w, h;
|
|
unsigned char *grid;
|
|
int rowsize;
|
|
int *rowdata, *rowlen;
|
|
int completed, cheated;
|
|
};
|
|
|
|
#define FLASH_TIME 0.13F
|
|
|
|
static game_params *default_params(void)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->w = ret->h = 15;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct game_params pattern_presets[] = {
|
|
{10, 10},
|
|
{15, 15},
|
|
{20, 20},
|
|
#ifndef SLOW_SYSTEM
|
|
{25, 25},
|
|
{30, 30},
|
|
#endif
|
|
};
|
|
|
|
static int game_fetch_preset(int i, char **name, game_params **params)
|
|
{
|
|
game_params *ret;
|
|
char str[80];
|
|
|
|
if (i < 0 || i >= lenof(pattern_presets))
|
|
return FALSE;
|
|
|
|
ret = snew(game_params);
|
|
*ret = pattern_presets[i];
|
|
|
|
sprintf(str, "%dx%d", ret->w, ret->h);
|
|
|
|
*name = dupstr(str);
|
|
*params = ret;
|
|
return TRUE;
|
|
}
|
|
|
|
static void free_params(game_params *params)
|
|
{
|
|
sfree(params);
|
|
}
|
|
|
|
static game_params *dup_params(game_params *params)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
*ret = *params; /* structure copy */
|
|
return ret;
|
|
}
|
|
|
|
static void decode_params(game_params *ret, char const *string)
|
|
{
|
|
char const *p = string;
|
|
|
|
ret->w = atoi(p);
|
|
while (*p && isdigit((unsigned char)*p)) p++;
|
|
if (*p == 'x') {
|
|
p++;
|
|
ret->h = atoi(p);
|
|
while (*p && isdigit((unsigned char)*p)) p++;
|
|
} else {
|
|
ret->h = ret->w;
|
|
}
|
|
}
|
|
|
|
static char *encode_params(game_params *params, int full)
|
|
{
|
|
char ret[400];
|
|
int len;
|
|
|
|
len = sprintf(ret, "%dx%d", params->w, params->h);
|
|
assert(len < lenof(ret));
|
|
ret[len] = '\0';
|
|
|
|
return dupstr(ret);
|
|
}
|
|
|
|
static config_item *game_configure(game_params *params)
|
|
{
|
|
config_item *ret;
|
|
char buf[80];
|
|
|
|
ret = snewn(3, config_item);
|
|
|
|
ret[0].name = "Width";
|
|
ret[0].type = C_STRING;
|
|
sprintf(buf, "%d", params->w);
|
|
ret[0].sval = dupstr(buf);
|
|
ret[0].ival = 0;
|
|
|
|
ret[1].name = "Height";
|
|
ret[1].type = C_STRING;
|
|
sprintf(buf, "%d", params->h);
|
|
ret[1].sval = dupstr(buf);
|
|
ret[1].ival = 0;
|
|
|
|
ret[2].name = NULL;
|
|
ret[2].type = C_END;
|
|
ret[2].sval = NULL;
|
|
ret[2].ival = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static game_params *custom_params(config_item *cfg)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->w = atoi(cfg[0].sval);
|
|
ret->h = atoi(cfg[1].sval);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static char *validate_params(game_params *params, int full)
|
|
{
|
|
if (params->w <= 0 || params->h <= 0)
|
|
return "Width and height must both be greater than zero";
|
|
return NULL;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Puzzle generation code.
|
|
*
|
|
* For this particular puzzle, it seemed important to me to ensure
|
|
* a unique solution. I do this the brute-force way, by having a
|
|
* solver algorithm alongside the generator, and repeatedly
|
|
* generating a random grid until I find one whose solution is
|
|
* unique. It turns out that this isn't too onerous on a modern PC
|
|
* provided you keep grid size below around 30. Any offers of
|
|
* better algorithms, however, will be very gratefully received.
|
|
*
|
|
* Another annoyance of this approach is that it limits the
|
|
* available puzzles to those solvable by the algorithm I've used.
|
|
* My algorithm only ever considers a single row or column at any
|
|
* one time, which means it's incapable of solving the following
|
|
* difficult example (found by Bella Image around 1995/6, when she
|
|
* and I were both doing maths degrees):
|
|
*
|
|
* 2 1 2 1
|
|
*
|
|
* +--+--+--+--+
|
|
* 1 1 | | | | |
|
|
* +--+--+--+--+
|
|
* 2 | | | | |
|
|
* +--+--+--+--+
|
|
* 1 | | | | |
|
|
* +--+--+--+--+
|
|
* 1 | | | | |
|
|
* +--+--+--+--+
|
|
*
|
|
* Obviously this cannot be solved by a one-row-or-column-at-a-time
|
|
* algorithm (it would require at least one row or column reading
|
|
* `2 1', `1 2', `3' or `4' to get started). However, it can be
|
|
* proved to have a unique solution: if the top left square were
|
|
* empty, then the only option for the top row would be to fill the
|
|
* two squares in the 1 columns, which would imply the squares
|
|
* below those were empty, leaving no place for the 2 in the second
|
|
* row. Contradiction. Hence the top left square is full, and the
|
|
* unique solution follows easily from that starting point.
|
|
*
|
|
* (The game ID for this puzzle is 4x4:2/1/2/1/1.1/2/1/1 , in case
|
|
* it's useful to anyone.)
|
|
*/
|
|
|
|
static int float_compare(const void *av, const void *bv)
|
|
{
|
|
const float *a = (const float *)av;
|
|
const float *b = (const float *)bv;
|
|
if (*a < *b)
|
|
return -1;
|
|
else if (*a > *b)
|
|
return +1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static void generate(random_state *rs, int w, int h, unsigned char *retgrid)
|
|
{
|
|
float *fgrid;
|
|
float *fgrid2;
|
|
int step, i, j;
|
|
float threshold;
|
|
|
|
fgrid = snewn(w*h, float);
|
|
|
|
for (i = 0; i < h; i++) {
|
|
for (j = 0; j < w; j++) {
|
|
fgrid[i*w+j] = random_upto(rs, 100000000UL) / 100000000.F;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The above gives a completely random splattering of black and
|
|
* white cells. We want to gently bias this in favour of _some_
|
|
* reasonably thick areas of white and black, while retaining
|
|
* some randomness and fine detail.
|
|
*
|
|
* So we evolve the starting grid using a cellular automaton.
|
|
* Currently, I'm doing something very simple indeed, which is
|
|
* to set each square to the average of the surrounding nine
|
|
* cells (or the average of fewer, if we're on a corner).
|
|
*/
|
|
for (step = 0; step < 1; step++) {
|
|
fgrid2 = snewn(w*h, float);
|
|
|
|
for (i = 0; i < h; i++) {
|
|
for (j = 0; j < w; j++) {
|
|
float sx, xbar;
|
|
int n, p, q;
|
|
|
|
/*
|
|
* Compute the average of the surrounding cells.
|
|
*/
|
|
n = 0;
|
|
sx = 0.F;
|
|
for (p = -1; p <= +1; p++) {
|
|
for (q = -1; q <= +1; q++) {
|
|
if (i+p < 0 || i+p >= h || j+q < 0 || j+q >= w)
|
|
continue;
|
|
/*
|
|
* An additional special case not mentioned
|
|
* above: if a grid dimension is 2xn then
|
|
* we do not average across that dimension
|
|
* at all. Otherwise a 2x2 grid would
|
|
* contain four identical squares.
|
|
*/
|
|
if ((h==2 && p!=0) || (w==2 && q!=0))
|
|
continue;
|
|
n++;
|
|
sx += fgrid[(i+p)*w+(j+q)];
|
|
}
|
|
}
|
|
xbar = sx / n;
|
|
|
|
fgrid2[i*w+j] = xbar;
|
|
}
|
|
}
|
|
|
|
sfree(fgrid);
|
|
fgrid = fgrid2;
|
|
}
|
|
|
|
fgrid2 = snewn(w*h, float);
|
|
memcpy(fgrid2, fgrid, w*h*sizeof(float));
|
|
qsort(fgrid2, w*h, sizeof(float), float_compare);
|
|
threshold = fgrid2[w*h/2];
|
|
sfree(fgrid2);
|
|
|
|
for (i = 0; i < h; i++) {
|
|
for (j = 0; j < w; j++) {
|
|
retgrid[i*w+j] = (fgrid[i*w+j] >= threshold ? GRID_FULL :
|
|
GRID_EMPTY);
|
|
}
|
|
}
|
|
|
|
sfree(fgrid);
|
|
}
|
|
|
|
static int compute_rowdata(int *ret, unsigned char *start, int len, int step)
|
|
{
|
|
int i, n;
|
|
|
|
n = 0;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
if (start[i*step] == GRID_FULL) {
|
|
int runlen = 1;
|
|
while (i+runlen < len && start[(i+runlen)*step] == GRID_FULL)
|
|
runlen++;
|
|
ret[n++] = runlen;
|
|
i += runlen;
|
|
}
|
|
|
|
if (i < len && start[i*step] == GRID_UNKNOWN)
|
|
return -1;
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
#define UNKNOWN 0
|
|
#define BLOCK 1
|
|
#define DOT 2
|
|
#define STILL_UNKNOWN 3
|
|
|
|
static void do_recurse(unsigned char *known, unsigned char *deduced,
|
|
unsigned char *row, int *data, int len,
|
|
int freespace, int ndone, int lowest)
|
|
{
|
|
int i, j, k;
|
|
|
|
if (data[ndone]) {
|
|
for (i=0; i<=freespace; i++) {
|
|
j = lowest;
|
|
for (k=0; k<i; k++) row[j++] = DOT;
|
|
for (k=0; k<data[ndone]; k++) row[j++] = BLOCK;
|
|
if (j < len) row[j++] = DOT;
|
|
do_recurse(known, deduced, row, data, len,
|
|
freespace-i, ndone+1, j);
|
|
}
|
|
} else {
|
|
for (i=lowest; i<len; i++)
|
|
row[i] = DOT;
|
|
for (i=0; i<len; i++)
|
|
if (known[i] && known[i] != row[i])
|
|
return;
|
|
for (i=0; i<len; i++)
|
|
deduced[i] |= row[i];
|
|
}
|
|
}
|
|
|
|
static int do_row(unsigned char *known, unsigned char *deduced,
|
|
unsigned char *row,
|
|
unsigned char *start, int len, int step, int *data)
|
|
{
|
|
int rowlen, i, freespace, done_any;
|
|
|
|
freespace = len+1;
|
|
for (rowlen = 0; data[rowlen]; rowlen++)
|
|
freespace -= data[rowlen]+1;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
known[i] = start[i*step];
|
|
deduced[i] = 0;
|
|
}
|
|
|
|
do_recurse(known, deduced, row, data, len, freespace, 0, 0);
|
|
done_any = FALSE;
|
|
for (i=0; i<len; i++)
|
|
if (deduced[i] && deduced[i] != STILL_UNKNOWN && !known[i]) {
|
|
start[i*step] = deduced[i];
|
|
done_any = TRUE;
|
|
}
|
|
return done_any;
|
|
}
|
|
|
|
static unsigned char *generate_soluble(random_state *rs, int w, int h)
|
|
{
|
|
int i, j, done_any, ok, ntries, max;
|
|
unsigned char *grid, *matrix, *workspace;
|
|
int *rowdata;
|
|
|
|
grid = snewn(w*h, unsigned char);
|
|
matrix = snewn(w*h, unsigned char);
|
|
max = max(w, h);
|
|
workspace = snewn(max*3, unsigned char);
|
|
rowdata = snewn(max+1, int);
|
|
|
|
ntries = 0;
|
|
|
|
do {
|
|
ntries++;
|
|
|
|
generate(rs, w, h, grid);
|
|
|
|
/*
|
|
* The game is a bit too easy if any row or column is
|
|
* completely black or completely white. An exception is
|
|
* made for rows/columns that are under 3 squares,
|
|
* otherwise nothing will ever be successfully generated.
|
|
*/
|
|
ok = TRUE;
|
|
if (w > 2) {
|
|
for (i = 0; i < h; i++) {
|
|
int colours = 0;
|
|
for (j = 0; j < w; j++)
|
|
colours |= (grid[i*w+j] == GRID_FULL ? 2 : 1);
|
|
if (colours != 3)
|
|
ok = FALSE;
|
|
}
|
|
}
|
|
if (h > 2) {
|
|
for (j = 0; j < w; j++) {
|
|
int colours = 0;
|
|
for (i = 0; i < h; i++)
|
|
colours |= (grid[i*w+j] == GRID_FULL ? 2 : 1);
|
|
if (colours != 3)
|
|
ok = FALSE;
|
|
}
|
|
}
|
|
if (!ok)
|
|
continue;
|
|
|
|
memset(matrix, 0, w*h);
|
|
|
|
do {
|
|
done_any = 0;
|
|
for (i=0; i<h; i++) {
|
|
rowdata[compute_rowdata(rowdata, grid+i*w, w, 1)] = 0;
|
|
done_any |= do_row(workspace, workspace+max, workspace+2*max,
|
|
matrix+i*w, w, 1, rowdata);
|
|
}
|
|
for (i=0; i<w; i++) {
|
|
rowdata[compute_rowdata(rowdata, grid+i, h, w)] = 0;
|
|
done_any |= do_row(workspace, workspace+max, workspace+2*max,
|
|
matrix+i, h, w, rowdata);
|
|
}
|
|
} while (done_any);
|
|
|
|
ok = TRUE;
|
|
for (i=0; i<h; i++) {
|
|
for (j=0; j<w; j++) {
|
|
if (matrix[i*w+j] == UNKNOWN)
|
|
ok = FALSE;
|
|
}
|
|
}
|
|
} while (!ok);
|
|
|
|
sfree(matrix);
|
|
sfree(workspace);
|
|
sfree(rowdata);
|
|
return grid;
|
|
}
|
|
|
|
static char *new_game_desc(game_params *params, random_state *rs,
|
|
char **aux, int interactive)
|
|
{
|
|
unsigned char *grid;
|
|
int i, j, max, rowlen, *rowdata;
|
|
char intbuf[80], *desc;
|
|
int desclen, descpos;
|
|
|
|
grid = generate_soluble(rs, params->w, params->h);
|
|
max = max(params->w, params->h);
|
|
rowdata = snewn(max, int);
|
|
|
|
/*
|
|
* Save the solved game in aux.
|
|
*/
|
|
{
|
|
char *ai = snewn(params->w * params->h + 2, char);
|
|
|
|
/*
|
|
* String format is exactly the same as a solve move, so we
|
|
* can just dupstr this in solve_game().
|
|
*/
|
|
|
|
ai[0] = 'S';
|
|
|
|
for (i = 0; i < params->w * params->h; i++)
|
|
ai[i+1] = grid[i] ? '1' : '0';
|
|
|
|
ai[params->w * params->h + 1] = '\0';
|
|
|
|
*aux = ai;
|
|
}
|
|
|
|
/*
|
|
* Seed is a slash-separated list of row contents; each row
|
|
* contents section is a dot-separated list of integers. Row
|
|
* contents are listed in the order (columns left to right,
|
|
* then rows top to bottom).
|
|
*
|
|
* Simplest way to handle memory allocation is to make two
|
|
* passes, first computing the seed size and then writing it
|
|
* out.
|
|
*/
|
|
desclen = 0;
|
|
for (i = 0; i < params->w + params->h; i++) {
|
|
if (i < params->w)
|
|
rowlen = compute_rowdata(rowdata, grid+i, params->h, params->w);
|
|
else
|
|
rowlen = compute_rowdata(rowdata, grid+(i-params->w)*params->w,
|
|
params->w, 1);
|
|
if (rowlen > 0) {
|
|
for (j = 0; j < rowlen; j++) {
|
|
desclen += 1 + sprintf(intbuf, "%d", rowdata[j]);
|
|
}
|
|
} else {
|
|
desclen++;
|
|
}
|
|
}
|
|
desc = snewn(desclen, char);
|
|
descpos = 0;
|
|
for (i = 0; i < params->w + params->h; i++) {
|
|
if (i < params->w)
|
|
rowlen = compute_rowdata(rowdata, grid+i, params->h, params->w);
|
|
else
|
|
rowlen = compute_rowdata(rowdata, grid+(i-params->w)*params->w,
|
|
params->w, 1);
|
|
if (rowlen > 0) {
|
|
for (j = 0; j < rowlen; j++) {
|
|
int len = sprintf(desc+descpos, "%d", rowdata[j]);
|
|
if (j+1 < rowlen)
|
|
desc[descpos + len] = '.';
|
|
else
|
|
desc[descpos + len] = '/';
|
|
descpos += len+1;
|
|
}
|
|
} else {
|
|
desc[descpos++] = '/';
|
|
}
|
|
}
|
|
assert(descpos == desclen);
|
|
assert(desc[desclen-1] == '/');
|
|
desc[desclen-1] = '\0';
|
|
sfree(rowdata);
|
|
sfree(grid);
|
|
return desc;
|
|
}
|
|
|
|
static char *validate_desc(game_params *params, char *desc)
|
|
{
|
|
int i, n, rowspace;
|
|
char *p;
|
|
|
|
for (i = 0; i < params->w + params->h; i++) {
|
|
if (i < params->w)
|
|
rowspace = params->h + 1;
|
|
else
|
|
rowspace = params->w + 1;
|
|
|
|
if (*desc && isdigit((unsigned char)*desc)) {
|
|
do {
|
|
p = desc;
|
|
while (desc && isdigit((unsigned char)*desc)) desc++;
|
|
n = atoi(p);
|
|
rowspace -= n+1;
|
|
|
|
if (rowspace < 0) {
|
|
if (i < params->w)
|
|
return "at least one column contains more numbers than will fit";
|
|
else
|
|
return "at least one row contains more numbers than will fit";
|
|
}
|
|
} while (*desc++ == '.');
|
|
} else {
|
|
desc++; /* expect a slash immediately */
|
|
}
|
|
|
|
if (desc[-1] == '/') {
|
|
if (i+1 == params->w + params->h)
|
|
return "too many row/column specifications";
|
|
} else if (desc[-1] == '\0') {
|
|
if (i+1 < params->w + params->h)
|
|
return "too few row/column specifications";
|
|
} else
|
|
return "unrecognised character in game specification";
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static game_state *new_game(midend *me, game_params *params, char *desc)
|
|
{
|
|
int i;
|
|
char *p;
|
|
game_state *state = snew(game_state);
|
|
|
|
state->w = params->w;
|
|
state->h = params->h;
|
|
|
|
state->grid = snewn(state->w * state->h, unsigned char);
|
|
memset(state->grid, GRID_UNKNOWN, state->w * state->h);
|
|
|
|
state->rowsize = max(state->w, state->h);
|
|
state->rowdata = snewn(state->rowsize * (state->w + state->h), int);
|
|
state->rowlen = snewn(state->w + state->h, int);
|
|
|
|
state->completed = state->cheated = FALSE;
|
|
|
|
for (i = 0; i < params->w + params->h; i++) {
|
|
state->rowlen[i] = 0;
|
|
if (*desc && isdigit((unsigned char)*desc)) {
|
|
do {
|
|
p = desc;
|
|
while (desc && isdigit((unsigned char)*desc)) desc++;
|
|
state->rowdata[state->rowsize * i + state->rowlen[i]++] =
|
|
atoi(p);
|
|
} while (*desc++ == '.');
|
|
} else {
|
|
desc++; /* expect a slash immediately */
|
|
}
|
|
}
|
|
|
|
return state;
|
|
}
|
|
|
|
static game_state *dup_game(game_state *state)
|
|
{
|
|
game_state *ret = snew(game_state);
|
|
|
|
ret->w = state->w;
|
|
ret->h = state->h;
|
|
|
|
ret->grid = snewn(ret->w * ret->h, unsigned char);
|
|
memcpy(ret->grid, state->grid, ret->w * ret->h);
|
|
|
|
ret->rowsize = state->rowsize;
|
|
ret->rowdata = snewn(ret->rowsize * (ret->w + ret->h), int);
|
|
ret->rowlen = snewn(ret->w + ret->h, int);
|
|
memcpy(ret->rowdata, state->rowdata,
|
|
ret->rowsize * (ret->w + ret->h) * sizeof(int));
|
|
memcpy(ret->rowlen, state->rowlen,
|
|
(ret->w + ret->h) * sizeof(int));
|
|
|
|
ret->completed = state->completed;
|
|
ret->cheated = state->cheated;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void free_game(game_state *state)
|
|
{
|
|
sfree(state->rowdata);
|
|
sfree(state->rowlen);
|
|
sfree(state->grid);
|
|
sfree(state);
|
|
}
|
|
|
|
static char *solve_game(game_state *state, game_state *currstate,
|
|
char *ai, char **error)
|
|
{
|
|
unsigned char *matrix;
|
|
int w = state->w, h = state->h;
|
|
int i;
|
|
char *ret;
|
|
int done_any, max;
|
|
unsigned char *workspace;
|
|
int *rowdata;
|
|
|
|
/*
|
|
* If we already have the solved state in ai, copy it out.
|
|
*/
|
|
if (ai)
|
|
return dupstr(ai);
|
|
|
|
matrix = snewn(w*h, unsigned char);
|
|
max = max(w, h);
|
|
workspace = snewn(max*3, unsigned char);
|
|
rowdata = snewn(max+1, int);
|
|
|
|
memset(matrix, 0, w*h);
|
|
|
|
do {
|
|
done_any = 0;
|
|
for (i=0; i<h; i++) {
|
|
memcpy(rowdata, state->rowdata + state->rowsize*(w+i),
|
|
max*sizeof(int));
|
|
rowdata[state->rowlen[w+i]] = 0;
|
|
done_any |= do_row(workspace, workspace+max, workspace+2*max,
|
|
matrix+i*w, w, 1, rowdata);
|
|
}
|
|
for (i=0; i<w; i++) {
|
|
memcpy(rowdata, state->rowdata + state->rowsize*i, max*sizeof(int));
|
|
rowdata[state->rowlen[i]] = 0;
|
|
done_any |= do_row(workspace, workspace+max, workspace+2*max,
|
|
matrix+i, h, w, rowdata);
|
|
}
|
|
} while (done_any);
|
|
|
|
sfree(workspace);
|
|
sfree(rowdata);
|
|
|
|
for (i = 0; i < w*h; i++) {
|
|
if (matrix[i] != BLOCK && matrix[i] != DOT) {
|
|
sfree(matrix);
|
|
*error = "Solving algorithm cannot complete this puzzle";
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
ret = snewn(w*h+2, char);
|
|
ret[0] = 'S';
|
|
for (i = 0; i < w*h; i++) {
|
|
assert(matrix[i] == BLOCK || matrix[i] == DOT);
|
|
ret[i+1] = (matrix[i] == BLOCK ? '1' : '0');
|
|
}
|
|
ret[w*h+1] = '\0';
|
|
|
|
sfree(matrix);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static char *game_text_format(game_state *state)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
struct game_ui {
|
|
int dragging;
|
|
int drag_start_x;
|
|
int drag_start_y;
|
|
int drag_end_x;
|
|
int drag_end_y;
|
|
int drag, release, state;
|
|
};
|
|
|
|
static game_ui *new_ui(game_state *state)
|
|
{
|
|
game_ui *ret;
|
|
|
|
ret = snew(game_ui);
|
|
ret->dragging = FALSE;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void free_ui(game_ui *ui)
|
|
{
|
|
sfree(ui);
|
|
}
|
|
|
|
static char *encode_ui(game_ui *ui)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static void decode_ui(game_ui *ui, char *encoding)
|
|
{
|
|
}
|
|
|
|
static void game_changed_state(game_ui *ui, game_state *oldstate,
|
|
game_state *newstate)
|
|
{
|
|
}
|
|
|
|
struct game_drawstate {
|
|
int started;
|
|
int w, h;
|
|
int tilesize;
|
|
unsigned char *visible;
|
|
};
|
|
|
|
static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
|
|
int x, int y, int button)
|
|
{
|
|
button &= ~MOD_MASK;
|
|
|
|
x = FROMCOORD(state->w, x);
|
|
y = FROMCOORD(state->h, y);
|
|
|
|
if (x >= 0 && x < state->w && y >= 0 && y < state->h &&
|
|
(button == LEFT_BUTTON || button == RIGHT_BUTTON ||
|
|
button == MIDDLE_BUTTON)) {
|
|
|
|
ui->dragging = TRUE;
|
|
|
|
if (button == LEFT_BUTTON) {
|
|
ui->drag = LEFT_DRAG;
|
|
ui->release = LEFT_RELEASE;
|
|
ui->state = GRID_FULL;
|
|
} else if (button == RIGHT_BUTTON) {
|
|
ui->drag = RIGHT_DRAG;
|
|
ui->release = RIGHT_RELEASE;
|
|
ui->state = GRID_EMPTY;
|
|
} else /* if (button == MIDDLE_BUTTON) */ {
|
|
ui->drag = MIDDLE_DRAG;
|
|
ui->release = MIDDLE_RELEASE;
|
|
ui->state = GRID_UNKNOWN;
|
|
}
|
|
|
|
ui->drag_start_x = ui->drag_end_x = x;
|
|
ui->drag_start_y = ui->drag_end_y = y;
|
|
|
|
return ""; /* UI activity occurred */
|
|
}
|
|
|
|
if (ui->dragging && button == ui->drag) {
|
|
/*
|
|
* There doesn't seem much point in allowing a rectangle
|
|
* drag; people will generally only want to drag a single
|
|
* horizontal or vertical line, so we make that easy by
|
|
* snapping to it.
|
|
*
|
|
* Exception: if we're _middle_-button dragging to tag
|
|
* things as UNKNOWN, we may well want to trash an entire
|
|
* area and start over!
|
|
*/
|
|
if (ui->state != GRID_UNKNOWN) {
|
|
if (abs(x - ui->drag_start_x) > abs(y - ui->drag_start_y))
|
|
y = ui->drag_start_y;
|
|
else
|
|
x = ui->drag_start_x;
|
|
}
|
|
|
|
if (x < 0) x = 0;
|
|
if (y < 0) y = 0;
|
|
if (x >= state->w) x = state->w - 1;
|
|
if (y >= state->h) y = state->h - 1;
|
|
|
|
ui->drag_end_x = x;
|
|
ui->drag_end_y = y;
|
|
|
|
return ""; /* UI activity occurred */
|
|
}
|
|
|
|
if (ui->dragging && button == ui->release) {
|
|
int x1, x2, y1, y2, xx, yy;
|
|
int move_needed = FALSE;
|
|
|
|
x1 = min(ui->drag_start_x, ui->drag_end_x);
|
|
x2 = max(ui->drag_start_x, ui->drag_end_x);
|
|
y1 = min(ui->drag_start_y, ui->drag_end_y);
|
|
y2 = max(ui->drag_start_y, ui->drag_end_y);
|
|
|
|
for (yy = y1; yy <= y2; yy++)
|
|
for (xx = x1; xx <= x2; xx++)
|
|
if (state->grid[yy * state->w + xx] != ui->state)
|
|
move_needed = TRUE;
|
|
|
|
ui->dragging = FALSE;
|
|
|
|
if (move_needed) {
|
|
char buf[80];
|
|
sprintf(buf, "%c%d,%d,%d,%d",
|
|
(char)(ui->state == GRID_FULL ? 'F' :
|
|
ui->state == GRID_EMPTY ? 'E' : 'U'),
|
|
x1, y1, x2-x1+1, y2-y1+1);
|
|
return dupstr(buf);
|
|
} else
|
|
return ""; /* UI activity occurred */
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static game_state *execute_move(game_state *from, char *move)
|
|
{
|
|
game_state *ret;
|
|
int x1, x2, y1, y2, xx, yy;
|
|
int val;
|
|
|
|
if (move[0] == 'S' && strlen(move) == from->w * from->h + 1) {
|
|
int i;
|
|
|
|
ret = dup_game(from);
|
|
|
|
for (i = 0; i < ret->w * ret->h; i++)
|
|
ret->grid[i] = (move[i+1] == '1' ? GRID_FULL : GRID_EMPTY);
|
|
|
|
ret->completed = ret->cheated = TRUE;
|
|
|
|
return ret;
|
|
} else if ((move[0] == 'F' || move[0] == 'E' || move[0] == 'U') &&
|
|
sscanf(move+1, "%d,%d,%d,%d", &x1, &y1, &x2, &y2) == 4 &&
|
|
x1 >= 0 && x2 >= 0 && x1+x2 <= from->w &&
|
|
y1 >= 0 && y2 >= 0 && y1+y2 <= from->h) {
|
|
|
|
x2 += x1;
|
|
y2 += y1;
|
|
val = (move[0] == 'F' ? GRID_FULL :
|
|
move[0] == 'E' ? GRID_EMPTY : GRID_UNKNOWN);
|
|
|
|
ret = dup_game(from);
|
|
for (yy = y1; yy < y2; yy++)
|
|
for (xx = x1; xx < x2; xx++)
|
|
ret->grid[yy * ret->w + xx] = val;
|
|
|
|
/*
|
|
* An actual change, so check to see if we've completed the
|
|
* game.
|
|
*/
|
|
if (!ret->completed) {
|
|
int *rowdata = snewn(ret->rowsize, int);
|
|
int i, len;
|
|
|
|
ret->completed = TRUE;
|
|
|
|
for (i=0; i<ret->w; i++) {
|
|
len = compute_rowdata(rowdata,
|
|
ret->grid+i, ret->h, ret->w);
|
|
if (len != ret->rowlen[i] ||
|
|
memcmp(ret->rowdata+i*ret->rowsize, rowdata,
|
|
len * sizeof(int))) {
|
|
ret->completed = FALSE;
|
|
break;
|
|
}
|
|
}
|
|
for (i=0; i<ret->h; i++) {
|
|
len = compute_rowdata(rowdata,
|
|
ret->grid+i*ret->w, ret->w, 1);
|
|
if (len != ret->rowlen[i+ret->w] ||
|
|
memcmp(ret->rowdata+(i+ret->w)*ret->rowsize, rowdata,
|
|
len * sizeof(int))) {
|
|
ret->completed = FALSE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
sfree(rowdata);
|
|
}
|
|
|
|
return ret;
|
|
} else
|
|
return NULL;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Drawing routines.
|
|
*/
|
|
|
|
static void game_compute_size(game_params *params, int tilesize,
|
|
int *x, int *y)
|
|
{
|
|
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
|
|
struct { int tilesize; } ads, *ds = &ads;
|
|
ads.tilesize = tilesize;
|
|
|
|
*x = SIZE(params->w);
|
|
*y = SIZE(params->h);
|
|
}
|
|
|
|
static void game_set_size(drawing *dr, game_drawstate *ds,
|
|
game_params *params, int tilesize)
|
|
{
|
|
ds->tilesize = tilesize;
|
|
}
|
|
|
|
static float *game_colours(frontend *fe, game_state *state, int *ncolours)
|
|
{
|
|
float *ret = snewn(3 * NCOLOURS, float);
|
|
|
|
frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
|
|
|
|
ret[COL_GRID * 3 + 0] = 0.3F;
|
|
ret[COL_GRID * 3 + 1] = 0.3F;
|
|
ret[COL_GRID * 3 + 2] = 0.3F;
|
|
|
|
ret[COL_UNKNOWN * 3 + 0] = 0.5F;
|
|
ret[COL_UNKNOWN * 3 + 1] = 0.5F;
|
|
ret[COL_UNKNOWN * 3 + 2] = 0.5F;
|
|
|
|
ret[COL_TEXT * 3 + 0] = 0.0F;
|
|
ret[COL_TEXT * 3 + 1] = 0.0F;
|
|
ret[COL_TEXT * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_FULL * 3 + 0] = 0.0F;
|
|
ret[COL_FULL * 3 + 1] = 0.0F;
|
|
ret[COL_FULL * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_EMPTY * 3 + 0] = 1.0F;
|
|
ret[COL_EMPTY * 3 + 1] = 1.0F;
|
|
ret[COL_EMPTY * 3 + 2] = 1.0F;
|
|
|
|
*ncolours = NCOLOURS;
|
|
return ret;
|
|
}
|
|
|
|
static game_drawstate *game_new_drawstate(drawing *dr, game_state *state)
|
|
{
|
|
struct game_drawstate *ds = snew(struct game_drawstate);
|
|
|
|
ds->started = FALSE;
|
|
ds->w = state->w;
|
|
ds->h = state->h;
|
|
ds->visible = snewn(ds->w * ds->h, unsigned char);
|
|
ds->tilesize = 0; /* not decided yet */
|
|
memset(ds->visible, 255, ds->w * ds->h);
|
|
|
|
return ds;
|
|
}
|
|
|
|
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
|
|
{
|
|
sfree(ds->visible);
|
|
sfree(ds);
|
|
}
|
|
|
|
static void grid_square(drawing *dr, game_drawstate *ds,
|
|
int y, int x, int state)
|
|
{
|
|
int xl, xr, yt, yb;
|
|
|
|
draw_rect(dr, TOCOORD(ds->w, x), TOCOORD(ds->h, y),
|
|
TILE_SIZE, TILE_SIZE, COL_GRID);
|
|
|
|
xl = (x % 5 == 0 ? 1 : 0);
|
|
yt = (y % 5 == 0 ? 1 : 0);
|
|
xr = (x % 5 == 4 || x == ds->w-1 ? 1 : 0);
|
|
yb = (y % 5 == 4 || y == ds->h-1 ? 1 : 0);
|
|
|
|
draw_rect(dr, TOCOORD(ds->w, x) + 1 + xl, TOCOORD(ds->h, y) + 1 + yt,
|
|
TILE_SIZE - xl - xr - 1, TILE_SIZE - yt - yb - 1,
|
|
(state == GRID_FULL ? COL_FULL :
|
|
state == GRID_EMPTY ? COL_EMPTY : COL_UNKNOWN));
|
|
|
|
draw_update(dr, TOCOORD(ds->w, x), TOCOORD(ds->h, y),
|
|
TILE_SIZE, TILE_SIZE);
|
|
}
|
|
|
|
static void draw_numbers(drawing *dr, game_drawstate *ds, game_state *state,
|
|
int colour)
|
|
{
|
|
int i, j;
|
|
|
|
/*
|
|
* Draw the numbers.
|
|
*/
|
|
for (i = 0; i < state->w + state->h; i++) {
|
|
int rowlen = state->rowlen[i];
|
|
int *rowdata = state->rowdata + state->rowsize * i;
|
|
int nfit;
|
|
|
|
/*
|
|
* Normally I space the numbers out by the same
|
|
* distance as the tile size. However, if there are
|
|
* more numbers than available spaces, I have to squash
|
|
* them up a bit.
|
|
*/
|
|
nfit = max(rowlen, TLBORDER(state->h))-1;
|
|
assert(nfit > 0);
|
|
|
|
for (j = 0; j < rowlen; j++) {
|
|
int x, y;
|
|
char str[80];
|
|
|
|
if (i < state->w) {
|
|
x = TOCOORD(state->w, i);
|
|
y = BORDER + TILE_SIZE * (TLBORDER(state->h)-1);
|
|
y -= ((rowlen-j-1)*TILE_SIZE) * (TLBORDER(state->h)-1) / nfit;
|
|
} else {
|
|
y = TOCOORD(state->h, i - state->w);
|
|
x = BORDER + TILE_SIZE * (TLBORDER(state->w)-1);
|
|
x -= ((rowlen-j-1)*TILE_SIZE) * (TLBORDER(state->h)-1) / nfit;
|
|
}
|
|
|
|
sprintf(str, "%d", rowdata[j]);
|
|
draw_text(dr, x+TILE_SIZE/2, y+TILE_SIZE/2, FONT_VARIABLE,
|
|
TILE_SIZE/2, ALIGN_HCENTRE | ALIGN_VCENTRE, colour, str);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void game_redraw(drawing *dr, game_drawstate *ds, game_state *oldstate,
|
|
game_state *state, int dir, game_ui *ui,
|
|
float animtime, float flashtime)
|
|
{
|
|
int i, j;
|
|
int x1, x2, y1, y2;
|
|
|
|
if (!ds->started) {
|
|
/*
|
|
* The initial contents of the window are not guaranteed
|
|
* and can vary with front ends. To be on the safe side,
|
|
* all games should start by drawing a big background-
|
|
* colour rectangle covering the whole window.
|
|
*/
|
|
draw_rect(dr, 0, 0, SIZE(ds->w), SIZE(ds->h), COL_BACKGROUND);
|
|
|
|
/*
|
|
* Draw the numbers.
|
|
*/
|
|
draw_numbers(dr, ds, state, COL_TEXT);
|
|
|
|
/*
|
|
* Draw the grid outline.
|
|
*/
|
|
draw_rect(dr, TOCOORD(ds->w, 0) - 1, TOCOORD(ds->h, 0) - 1,
|
|
ds->w * TILE_SIZE + 3, ds->h * TILE_SIZE + 3,
|
|
COL_GRID);
|
|
|
|
ds->started = TRUE;
|
|
|
|
draw_update(dr, 0, 0, SIZE(ds->w), SIZE(ds->h));
|
|
}
|
|
|
|
if (ui->dragging) {
|
|
x1 = min(ui->drag_start_x, ui->drag_end_x);
|
|
x2 = max(ui->drag_start_x, ui->drag_end_x);
|
|
y1 = min(ui->drag_start_y, ui->drag_end_y);
|
|
y2 = max(ui->drag_start_y, ui->drag_end_y);
|
|
} else {
|
|
x1 = x2 = y1 = y2 = -1; /* placate gcc warnings */
|
|
}
|
|
|
|
/*
|
|
* Now draw any grid squares which have changed since last
|
|
* redraw.
|
|
*/
|
|
for (i = 0; i < ds->h; i++) {
|
|
for (j = 0; j < ds->w; j++) {
|
|
int val;
|
|
|
|
/*
|
|
* Work out what state this square should be drawn in,
|
|
* taking any current drag operation into account.
|
|
*/
|
|
if (ui->dragging && x1 <= j && j <= x2 && y1 <= i && i <= y2)
|
|
val = ui->state;
|
|
else
|
|
val = state->grid[i * state->w + j];
|
|
|
|
/*
|
|
* Briefly invert everything twice during a completion
|
|
* flash.
|
|
*/
|
|
if (flashtime > 0 &&
|
|
(flashtime <= FLASH_TIME/3 || flashtime >= FLASH_TIME*2/3) &&
|
|
val != GRID_UNKNOWN)
|
|
val = (GRID_FULL ^ GRID_EMPTY) ^ val;
|
|
|
|
if (ds->visible[i * ds->w + j] != val) {
|
|
grid_square(dr, ds, i, j, val);
|
|
ds->visible[i * ds->w + j] = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static float game_anim_length(game_state *oldstate,
|
|
game_state *newstate, int dir, game_ui *ui)
|
|
{
|
|
return 0.0F;
|
|
}
|
|
|
|
static float game_flash_length(game_state *oldstate,
|
|
game_state *newstate, int dir, game_ui *ui)
|
|
{
|
|
if (!oldstate->completed && newstate->completed &&
|
|
!oldstate->cheated && !newstate->cheated)
|
|
return FLASH_TIME;
|
|
return 0.0F;
|
|
}
|
|
|
|
static int game_wants_statusbar(void)
|
|
{
|
|
return FALSE;
|
|
}
|
|
|
|
static int game_timing_state(game_state *state, game_ui *ui)
|
|
{
|
|
return TRUE;
|
|
}
|
|
|
|
static void game_print_size(game_params *params, float *x, float *y)
|
|
{
|
|
int pw, ph;
|
|
|
|
/*
|
|
* I'll use 5mm squares by default.
|
|
*/
|
|
game_compute_size(params, 500, &pw, &ph);
|
|
*x = pw / 100.0;
|
|
*y = ph / 100.0;
|
|
}
|
|
|
|
static void game_print(drawing *dr, game_state *state, int tilesize)
|
|
{
|
|
int w = state->w, h = state->h;
|
|
int ink = print_mono_colour(dr, 0);
|
|
int x, y;
|
|
|
|
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
|
|
game_drawstate ads, *ds = &ads;
|
|
ads.tilesize = tilesize;
|
|
|
|
/*
|
|
* Border.
|
|
*/
|
|
print_line_width(dr, TILE_SIZE / 16);
|
|
draw_rect_outline(dr, TOCOORD(w, 0), TOCOORD(h, 0),
|
|
w*TILE_SIZE, h*TILE_SIZE, ink);
|
|
|
|
/*
|
|
* Grid.
|
|
*/
|
|
for (x = 1; x < w; x++) {
|
|
print_line_width(dr, TILE_SIZE / (x % 5 ? 128 : 24));
|
|
draw_line(dr, TOCOORD(w, x), TOCOORD(h, 0),
|
|
TOCOORD(w, x), TOCOORD(h, h), ink);
|
|
}
|
|
for (y = 1; y < h; y++) {
|
|
print_line_width(dr, TILE_SIZE / (y % 5 ? 128 : 24));
|
|
draw_line(dr, TOCOORD(w, 0), TOCOORD(h, y),
|
|
TOCOORD(w, w), TOCOORD(h, y), ink);
|
|
}
|
|
|
|
/*
|
|
* Clues.
|
|
*/
|
|
draw_numbers(dr, ds, state, ink);
|
|
|
|
/*
|
|
* Solution.
|
|
*/
|
|
print_line_width(dr, TILE_SIZE / 128);
|
|
for (y = 0; y < h; y++)
|
|
for (x = 0; x < w; x++) {
|
|
if (state->grid[y*w+x] == GRID_FULL)
|
|
draw_rect(dr, TOCOORD(w, x), TOCOORD(h, y),
|
|
TILE_SIZE, TILE_SIZE, ink);
|
|
else if (state->grid[y*w+x] == GRID_EMPTY)
|
|
draw_circle(dr, TOCOORD(w, x) + TILE_SIZE/2,
|
|
TOCOORD(h, y) + TILE_SIZE/2,
|
|
TILE_SIZE/12, ink, ink);
|
|
}
|
|
}
|
|
|
|
#ifdef COMBINED
|
|
#define thegame pattern
|
|
#endif
|
|
|
|
const struct game thegame = {
|
|
"Pattern", "games.pattern",
|
|
default_params,
|
|
game_fetch_preset,
|
|
decode_params,
|
|
encode_params,
|
|
free_params,
|
|
dup_params,
|
|
TRUE, game_configure, custom_params,
|
|
validate_params,
|
|
new_game_desc,
|
|
validate_desc,
|
|
new_game,
|
|
dup_game,
|
|
free_game,
|
|
TRUE, solve_game,
|
|
FALSE, game_text_format,
|
|
new_ui,
|
|
free_ui,
|
|
encode_ui,
|
|
decode_ui,
|
|
game_changed_state,
|
|
interpret_move,
|
|
execute_move,
|
|
PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
|
|
game_colours,
|
|
game_new_drawstate,
|
|
game_free_drawstate,
|
|
game_redraw,
|
|
game_anim_length,
|
|
game_flash_length,
|
|
TRUE, FALSE, game_print_size, game_print,
|
|
game_wants_statusbar,
|
|
FALSE, game_timing_state,
|
|
0, /* mouse_priorities */
|
|
};
|
|
|
|
#ifdef STANDALONE_SOLVER
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
game_params *p;
|
|
game_state *s;
|
|
char *id = NULL, *desc, *err;
|
|
|
|
while (--argc > 0) {
|
|
char *p = *++argv;
|
|
if (*p == '-') {
|
|
fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
|
|
return 1;
|
|
} else {
|
|
id = p;
|
|
}
|
|
}
|
|
|
|
if (!id) {
|
|
fprintf(stderr, "usage: %s <game_id>\n", argv[0]);
|
|
return 1;
|
|
}
|
|
|
|
desc = strchr(id, ':');
|
|
if (!desc) {
|
|
fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
|
|
return 1;
|
|
}
|
|
*desc++ = '\0';
|
|
|
|
p = default_params();
|
|
decode_params(p, id);
|
|
err = validate_desc(p, desc);
|
|
if (err) {
|
|
fprintf(stderr, "%s: %s\n", argv[0], err);
|
|
return 1;
|
|
}
|
|
s = new_game(NULL, p, desc);
|
|
|
|
{
|
|
int w = p->w, h = p->h, i, j, done_any, max;
|
|
unsigned char *matrix, *workspace;
|
|
int *rowdata;
|
|
|
|
matrix = snewn(w*h, unsigned char);
|
|
max = max(w, h);
|
|
workspace = snewn(max*3, unsigned char);
|
|
rowdata = snewn(max+1, int);
|
|
|
|
memset(matrix, 0, w*h);
|
|
|
|
do {
|
|
done_any = 0;
|
|
for (i=0; i<h; i++) {
|
|
memcpy(rowdata, s->rowdata + s->rowsize*(w+i),
|
|
max*sizeof(int));
|
|
rowdata[s->rowlen[w+i]] = 0;
|
|
done_any |= do_row(workspace, workspace+max, workspace+2*max,
|
|
matrix+i*w, w, 1, rowdata);
|
|
}
|
|
for (i=0; i<w; i++) {
|
|
memcpy(rowdata, s->rowdata + s->rowsize*i, max*sizeof(int));
|
|
rowdata[s->rowlen[i]] = 0;
|
|
done_any |= do_row(workspace, workspace+max, workspace+2*max,
|
|
matrix+i, h, w, rowdata);
|
|
}
|
|
} while (done_any);
|
|
|
|
for (i = 0; i < h; i++) {
|
|
for (j = 0; j < w; j++) {
|
|
int c = (matrix[i*w+j] == UNKNOWN ? '?' :
|
|
matrix[i*w+j] == BLOCK ? '#' :
|
|
matrix[i*w+j] == DOT ? '.' :
|
|
'!');
|
|
putchar(c);
|
|
}
|
|
printf("\n");
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif
|