mirror of
git://git.tartarus.org/simon/puzzles.git
synced 2025-04-21 08:01:30 -07:00
Files

After Ben fixed all the unwanted global functions by using gcc's -Wmissing-declarations to spot any that were not predeclared, I remembered that clang has -Wmissing-variable-declarations, which does the same job for global objects. Enabled it in -DSTRICT=ON, and made the code clean under it. Mostly this was just a matter of sticking 'static' on the front of things. One variable was outright removed ('verbose' in signpost.c) because after I made it static clang was then able to spot that it was also unused. The more interesting cases were the ones where declarations had to be _added_ to header files. In particular, in COMBINED builds, puzzles.h now arranges to have predeclared each 'game' structure defined by a puzzle backend. Also there's a new tiny header file gtk.h, containing the declarations of xpm_icons and n_xpm_icons which are exported by each puzzle's autogenerated icon source file and by no-icon.c. Happily even the real XPM icon files were generated by our own Perl script rather than being raw xpm output from ImageMagick, so there was no difficulty adding the corresponding #include in there.
2877 lines
86 KiB
C
2877 lines
86 KiB
C
/*
|
|
* pearl.c: Nikoli's `Masyu' puzzle.
|
|
*/
|
|
|
|
/*
|
|
* TODO:
|
|
*
|
|
* - The current keyboard cursor mechanism works well on ordinary PC
|
|
* keyboards, but for platforms with only arrow keys and a select
|
|
* button or two, we may at some point need a simpler one which can
|
|
* handle 'x' markings without needing shift keys. For instance, a
|
|
* cursor with twice the grid resolution, so that it can range
|
|
* across face centres, edge centres and vertices; 'clicks' on face
|
|
* centres begin a drag as currently, clicks on edges toggle
|
|
* markings, and clicks on vertices are ignored (but it would be
|
|
* too confusing not to let the cursor rest on them). But I'm
|
|
* pretty sure that would be less pleasant to play on a full
|
|
* keyboard, so probably a #ifdef would be the thing.
|
|
*
|
|
* - Generation is still pretty slow, due to difficulty coming up in
|
|
* the first place with a loop that makes a soluble puzzle even
|
|
* with all possible clues filled in.
|
|
* + A possible alternative strategy to further tuning of the
|
|
* existing loop generator would be to throw the entire
|
|
* mechanism out and instead write a different generator from
|
|
* scratch which evolves the solution along with the puzzle:
|
|
* place a few clues, nail down a bit of the loop, place another
|
|
* clue, nail down some more, etc. However, I don't have a
|
|
* detailed plan for any such mechanism, so it may be a pipe
|
|
* dream.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <ctype.h>
|
|
#include <limits.h>
|
|
#include <math.h>
|
|
|
|
#include "puzzles.h"
|
|
#include "grid.h"
|
|
#include "loopgen.h"
|
|
|
|
#define SWAP(i,j) do { int swaptmp = (i); (i) = (j); (j) = swaptmp; } while (0)
|
|
|
|
#define NOCLUE 0
|
|
#define CORNER 1
|
|
#define STRAIGHT 2
|
|
|
|
#define R 1
|
|
#define U 2
|
|
#define L 4
|
|
#define D 8
|
|
|
|
#define DX(d) ( ((d)==R) - ((d)==L) )
|
|
#define DY(d) ( ((d)==D) - ((d)==U) )
|
|
|
|
#define F(d) (((d << 2) | (d >> 2)) & 0xF)
|
|
#define C(d) (((d << 3) | (d >> 1)) & 0xF)
|
|
#define A(d) (((d << 1) | (d >> 3)) & 0xF)
|
|
|
|
#define LR (L | R)
|
|
#define RL (R | L)
|
|
#define UD (U | D)
|
|
#define DU (D | U)
|
|
#define LU (L | U)
|
|
#define UL (U | L)
|
|
#define LD (L | D)
|
|
#define DL (D | L)
|
|
#define RU (R | U)
|
|
#define UR (U | R)
|
|
#define RD (R | D)
|
|
#define DR (D | R)
|
|
#define BLANK 0
|
|
#define UNKNOWN 15
|
|
|
|
#define bLR (1 << LR)
|
|
#define bRL (1 << RL)
|
|
#define bUD (1 << UD)
|
|
#define bDU (1 << DU)
|
|
#define bLU (1 << LU)
|
|
#define bUL (1 << UL)
|
|
#define bLD (1 << LD)
|
|
#define bDL (1 << DL)
|
|
#define bRU (1 << RU)
|
|
#define bUR (1 << UR)
|
|
#define bRD (1 << RD)
|
|
#define bDR (1 << DR)
|
|
#define bBLANK (1 << BLANK)
|
|
|
|
enum {
|
|
COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT,
|
|
COL_CURSOR_BACKGROUND = COL_LOWLIGHT,
|
|
COL_BLACK, COL_WHITE,
|
|
COL_ERROR, COL_GRID, COL_FLASH,
|
|
COL_DRAGON, COL_DRAGOFF,
|
|
NCOLOURS
|
|
};
|
|
|
|
/* Macro ickery copied from slant.c */
|
|
#define DIFFLIST(A) \
|
|
A(EASY,Easy,e) \
|
|
A(TRICKY,Tricky,t)
|
|
#define ENUM(upper,title,lower) DIFF_ ## upper,
|
|
#define TITLE(upper,title,lower) #title,
|
|
#define ENCODE(upper,title,lower) #lower
|
|
#define CONFIG(upper,title,lower) ":" #title
|
|
enum { DIFFLIST(ENUM) DIFFCOUNT };
|
|
static char const *const pearl_diffnames[] = { DIFFLIST(TITLE) "(count)" };
|
|
static char const pearl_diffchars[] = DIFFLIST(ENCODE);
|
|
#define DIFFCONFIG DIFFLIST(CONFIG)
|
|
|
|
struct game_params {
|
|
int w, h;
|
|
int difficulty;
|
|
bool nosolve; /* XXX remove me! */
|
|
};
|
|
|
|
struct shared_state {
|
|
int w, h, sz;
|
|
char *clues; /* size w*h */
|
|
int refcnt;
|
|
};
|
|
|
|
#define INGRID(state, gx, gy) ((gx) >= 0 && (gx) < (state)->shared->w && \
|
|
(gy) >= 0 && (gy) < (state)->shared->h)
|
|
struct game_state {
|
|
struct shared_state *shared;
|
|
char *lines; /* size w*h: lines placed */
|
|
char *errors; /* size w*h: errors detected */
|
|
char *marks; /* size w*h: 'no line here' marks placed. */
|
|
bool completed, used_solve;
|
|
};
|
|
|
|
#define DEFAULT_PRESET 3
|
|
|
|
static const struct game_params pearl_presets[] = {
|
|
{6, 6, DIFF_EASY},
|
|
{6, 6, DIFF_TRICKY},
|
|
{8, 8, DIFF_EASY},
|
|
{8, 8, DIFF_TRICKY},
|
|
{10, 10, DIFF_EASY},
|
|
{10, 10, DIFF_TRICKY},
|
|
{12, 8, DIFF_EASY},
|
|
{12, 8, DIFF_TRICKY},
|
|
};
|
|
|
|
static game_params *default_params(void)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
*ret = pearl_presets[DEFAULT_PRESET];
|
|
ret->nosolve = false;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool game_fetch_preset(int i, char **name, game_params **params)
|
|
{
|
|
game_params *ret;
|
|
char buf[64];
|
|
|
|
if (i < 0 || i >= lenof(pearl_presets)) return false;
|
|
|
|
ret = default_params();
|
|
*ret = pearl_presets[i]; /* struct copy */
|
|
*params = ret;
|
|
|
|
sprintf(buf, "%dx%d %s",
|
|
pearl_presets[i].w, pearl_presets[i].h,
|
|
pearl_diffnames[pearl_presets[i].difficulty]);
|
|
*name = dupstr(buf);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void free_params(game_params *params)
|
|
{
|
|
sfree(params);
|
|
}
|
|
|
|
static game_params *dup_params(const game_params *params)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
*ret = *params; /* structure copy */
|
|
return ret;
|
|
}
|
|
|
|
static void decode_params(game_params *ret, char const *string)
|
|
{
|
|
ret->w = ret->h = atoi(string);
|
|
while (*string && isdigit((unsigned char) *string)) ++string;
|
|
if (*string == 'x') {
|
|
string++;
|
|
ret->h = atoi(string);
|
|
while (*string && isdigit((unsigned char)*string)) string++;
|
|
}
|
|
|
|
ret->difficulty = DIFF_EASY;
|
|
if (*string == 'd') {
|
|
int i;
|
|
string++;
|
|
for (i = 0; i < DIFFCOUNT; i++)
|
|
if (*string == pearl_diffchars[i])
|
|
ret->difficulty = i;
|
|
if (*string) string++;
|
|
}
|
|
|
|
ret->nosolve = false;
|
|
if (*string == 'n') {
|
|
ret->nosolve = true;
|
|
string++;
|
|
}
|
|
}
|
|
|
|
static char *encode_params(const game_params *params, bool full)
|
|
{
|
|
char buf[256];
|
|
sprintf(buf, "%dx%d", params->w, params->h);
|
|
if (full)
|
|
sprintf(buf + strlen(buf), "d%c%s",
|
|
pearl_diffchars[params->difficulty],
|
|
params->nosolve ? "n" : "");
|
|
return dupstr(buf);
|
|
}
|
|
|
|
static config_item *game_configure(const game_params *params)
|
|
{
|
|
config_item *ret;
|
|
char buf[64];
|
|
|
|
ret = snewn(5, config_item);
|
|
|
|
ret[0].name = "Width";
|
|
ret[0].type = C_STRING;
|
|
sprintf(buf, "%d", params->w);
|
|
ret[0].u.string.sval = dupstr(buf);
|
|
|
|
ret[1].name = "Height";
|
|
ret[1].type = C_STRING;
|
|
sprintf(buf, "%d", params->h);
|
|
ret[1].u.string.sval = dupstr(buf);
|
|
|
|
ret[2].name = "Difficulty";
|
|
ret[2].type = C_CHOICES;
|
|
ret[2].u.choices.choicenames = DIFFCONFIG;
|
|
ret[2].u.choices.selected = params->difficulty;
|
|
|
|
ret[3].name = "Allow unsoluble";
|
|
ret[3].type = C_BOOLEAN;
|
|
ret[3].u.boolean.bval = params->nosolve;
|
|
|
|
ret[4].name = NULL;
|
|
ret[4].type = C_END;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static game_params *custom_params(const config_item *cfg)
|
|
{
|
|
game_params *ret = snew(game_params);
|
|
|
|
ret->w = atoi(cfg[0].u.string.sval);
|
|
ret->h = atoi(cfg[1].u.string.sval);
|
|
ret->difficulty = cfg[2].u.choices.selected;
|
|
ret->nosolve = cfg[3].u.boolean.bval;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const char *validate_params(const game_params *params, bool full)
|
|
{
|
|
if (params->w < 5) return "Width must be at least five";
|
|
if (params->h < 5) return "Height must be at least five";
|
|
if (params->w > INT_MAX / params->h)
|
|
return "Width times height must not be unreasonably large";
|
|
if (params->difficulty < 0 || params->difficulty >= DIFFCOUNT)
|
|
return "Unknown difficulty level";
|
|
if (params->difficulty >= DIFF_TRICKY && params->w + params->h < 11)
|
|
return "Width or height must be at least six for Tricky";
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Solver.
|
|
*/
|
|
|
|
static int pearl_solve(int w, int h, char *clues, char *result,
|
|
int difficulty, bool partial)
|
|
{
|
|
int W = 2*w+1, H = 2*h+1;
|
|
short *workspace;
|
|
int *dsf, *dsfsize;
|
|
int x, y, b, d;
|
|
int ret = -1;
|
|
|
|
/*
|
|
* workspace[(2*y+1)*W+(2*x+1)] indicates the possible nature
|
|
* of the square (x,y), as a logical OR of bitfields.
|
|
*
|
|
* workspace[(2*y)*W+(2*x+1)], for x odd and y even, indicates
|
|
* whether the horizontal edge between (x,y) and (x+1,y) is
|
|
* connected (1), disconnected (2) or unknown (3).
|
|
*
|
|
* workspace[(2*y+1)*W+(2*x)], indicates the same about the
|
|
* vertical edge between (x,y) and (x,y+1).
|
|
*
|
|
* Initially, every square is considered capable of being in
|
|
* any of the seven possible states (two straights, four
|
|
* corners and empty), except those corresponding to clue
|
|
* squares which are more restricted.
|
|
*
|
|
* Initially, all edges are unknown, except the ones around the
|
|
* grid border which are known to be disconnected.
|
|
*/
|
|
workspace = snewn(W*H, short);
|
|
for (x = 0; x < W*H; x++)
|
|
workspace[x] = 0;
|
|
/* Square states */
|
|
for (y = 0; y < h; y++)
|
|
for (x = 0; x < w; x++)
|
|
switch (clues[y*w+x]) {
|
|
case CORNER:
|
|
workspace[(2*y+1)*W+(2*x+1)] = bLU|bLD|bRU|bRD;
|
|
break;
|
|
case STRAIGHT:
|
|
workspace[(2*y+1)*W+(2*x+1)] = bLR|bUD;
|
|
break;
|
|
default:
|
|
workspace[(2*y+1)*W+(2*x+1)] = bLR|bUD|bLU|bLD|bRU|bRD|bBLANK;
|
|
break;
|
|
}
|
|
/* Horizontal edges */
|
|
for (y = 0; y <= h; y++)
|
|
for (x = 0; x < w; x++)
|
|
workspace[(2*y)*W+(2*x+1)] = (y==0 || y==h ? 2 : 3);
|
|
/* Vertical edges */
|
|
for (y = 0; y < h; y++)
|
|
for (x = 0; x <= w; x++)
|
|
workspace[(2*y+1)*W+(2*x)] = (x==0 || x==w ? 2 : 3);
|
|
|
|
/*
|
|
* We maintain a dsf of connected squares, together with a
|
|
* count of the size of each equivalence class.
|
|
*/
|
|
dsf = snewn(w*h, int);
|
|
dsfsize = snewn(w*h, int);
|
|
|
|
/*
|
|
* Now repeatedly try to find something we can do.
|
|
*/
|
|
while (1) {
|
|
bool done_something = false;
|
|
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
for (y = 0; y < H; y++) {
|
|
for (x = 0; x < W; x++)
|
|
printf("%*x", (x&1) ? 5 : 2, workspace[y*W+x]);
|
|
printf("\n");
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Go through the square state words, and discard any
|
|
* square state which is inconsistent with known facts
|
|
* about the edges around the square.
|
|
*/
|
|
for (y = 0; y < h; y++)
|
|
for (x = 0; x < w; x++) {
|
|
for (b = 0; b < 0xD; b++)
|
|
if (workspace[(2*y+1)*W+(2*x+1)] & (1<<b)) {
|
|
/*
|
|
* If any edge of this square is known to
|
|
* be connected when state b would require
|
|
* it disconnected, or vice versa, discard
|
|
* the state.
|
|
*/
|
|
for (d = 1; d <= 8; d += d) {
|
|
int ex = 2*x+1 + DX(d), ey = 2*y+1 + DY(d);
|
|
if (workspace[ey*W+ex] ==
|
|
((b & d) ? 2 : 1)) {
|
|
workspace[(2*y+1)*W+(2*x+1)] &= ~(1<<b);
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("edge (%d,%d)-(%d,%d) rules out state"
|
|
" %d for square (%d,%d)\n",
|
|
ex/2, ey/2, (ex+1)/2, (ey+1)/2,
|
|
b, x, y);
|
|
#endif
|
|
done_something = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Consistency check: each square must have at
|
|
* least one state left!
|
|
*/
|
|
if (!workspace[(2*y+1)*W+(2*x+1)]) {
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("edge check at (%d,%d): inconsistency\n", x, y);
|
|
#endif
|
|
ret = 0;
|
|
goto cleanup;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now go through the states array again, and nail down any
|
|
* unknown edge if one of its neighbouring squares makes it
|
|
* known.
|
|
*/
|
|
for (y = 0; y < h; y++)
|
|
for (x = 0; x < w; x++) {
|
|
int edgeor = 0, edgeand = 15;
|
|
|
|
for (b = 0; b < 0xD; b++)
|
|
if (workspace[(2*y+1)*W+(2*x+1)] & (1<<b)) {
|
|
edgeor |= b;
|
|
edgeand &= b;
|
|
}
|
|
|
|
/*
|
|
* Now any bit clear in edgeor marks a disconnected
|
|
* edge, and any bit set in edgeand marks a
|
|
* connected edge.
|
|
*/
|
|
|
|
/* First check consistency: neither bit is both! */
|
|
if (edgeand & ~edgeor) {
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("square check at (%d,%d): inconsistency\n", x, y);
|
|
#endif
|
|
ret = 0;
|
|
goto cleanup;
|
|
}
|
|
|
|
for (d = 1; d <= 8; d += d) {
|
|
int ex = 2*x+1 + DX(d), ey = 2*y+1 + DY(d);
|
|
|
|
if (!(edgeor & d) && workspace[ey*W+ex] == 3) {
|
|
workspace[ey*W+ex] = 2;
|
|
done_something = true;
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("possible states of square (%d,%d) force edge"
|
|
" (%d,%d)-(%d,%d) to be disconnected\n",
|
|
x, y, ex/2, ey/2, (ex+1)/2, (ey+1)/2);
|
|
#endif
|
|
} else if ((edgeand & d) && workspace[ey*W+ex] == 3) {
|
|
workspace[ey*W+ex] = 1;
|
|
done_something = true;
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("possible states of square (%d,%d) force edge"
|
|
" (%d,%d)-(%d,%d) to be connected\n",
|
|
x, y, ex/2, ey/2, (ex+1)/2, (ey+1)/2);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
if (done_something)
|
|
continue;
|
|
|
|
/*
|
|
* Now for longer-range clue-based deductions (using the
|
|
* rules that a corner clue must connect to two straight
|
|
* squares, and a straight clue must connect to at least
|
|
* one corner square).
|
|
*/
|
|
for (y = 0; y < h; y++)
|
|
for (x = 0; x < w; x++)
|
|
switch (clues[y*w+x]) {
|
|
case CORNER:
|
|
for (d = 1; d <= 8; d += d) {
|
|
int ex = 2*x+1 + DX(d), ey = 2*y+1 + DY(d);
|
|
int fx = ex + DX(d), fy = ey + DY(d);
|
|
int type = d | F(d);
|
|
|
|
if (workspace[ey*W+ex] == 1) {
|
|
/*
|
|
* If a corner clue is connected on any
|
|
* edge, then we can immediately nail
|
|
* down the square beyond that edge as
|
|
* being a straight in the appropriate
|
|
* direction.
|
|
*/
|
|
if (workspace[fy*W+fx] != (1<<type)) {
|
|
workspace[fy*W+fx] = (1<<type);
|
|
done_something = true;
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("corner clue at (%d,%d) forces square "
|
|
"(%d,%d) into state %d\n", x, y,
|
|
fx/2, fy/2, type);
|
|
#endif
|
|
|
|
}
|
|
} else if (workspace[ey*W+ex] == 3) {
|
|
/*
|
|
* Conversely, if a corner clue is
|
|
* separated by an unknown edge from a
|
|
* square which _cannot_ be a straight
|
|
* in the appropriate direction, we can
|
|
* mark that edge as disconnected.
|
|
*/
|
|
if (!(workspace[fy*W+fx] & (1<<type))) {
|
|
workspace[ey*W+ex] = 2;
|
|
done_something = true;
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("corner clue at (%d,%d), plus square "
|
|
"(%d,%d) not being state %d, "
|
|
"disconnects edge (%d,%d)-(%d,%d)\n",
|
|
x, y, fx/2, fy/2, type,
|
|
ex/2, ey/2, (ex+1)/2, (ey+1)/2);
|
|
#endif
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
break;
|
|
case STRAIGHT:
|
|
/*
|
|
* If a straight clue is between two squares
|
|
* neither of which is capable of being a
|
|
* corner connected to it, then the straight
|
|
* clue cannot point in that direction.
|
|
*/
|
|
for (d = 1; d <= 2; d += d) {
|
|
int fx = 2*x+1 + 2*DX(d), fy = 2*y+1 + 2*DY(d);
|
|
int gx = 2*x+1 - 2*DX(d), gy = 2*y+1 - 2*DY(d);
|
|
int type = d | F(d);
|
|
|
|
if (!(workspace[(2*y+1)*W+(2*x+1)] & (1<<type)))
|
|
continue;
|
|
|
|
if (!(workspace[fy*W+fx] & ((1<<(F(d)|A(d))) |
|
|
(1<<(F(d)|C(d))))) &&
|
|
!(workspace[gy*W+gx] & ((1<<( d |A(d))) |
|
|
(1<<( d |C(d)))))) {
|
|
workspace[(2*y+1)*W+(2*x+1)] &= ~(1<<type);
|
|
done_something = true;
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("straight clue at (%d,%d) cannot corner at "
|
|
"(%d,%d) or (%d,%d) so is not state %d\n",
|
|
x, y, fx/2, fy/2, gx/2, gy/2, type);
|
|
#endif
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* If a straight clue with known direction is
|
|
* connected on one side to a known straight,
|
|
* then on the other side it must be a corner.
|
|
*/
|
|
for (d = 1; d <= 8; d += d) {
|
|
int fx = 2*x+1 + 2*DX(d), fy = 2*y+1 + 2*DY(d);
|
|
int gx = 2*x+1 - 2*DX(d), gy = 2*y+1 - 2*DY(d);
|
|
int type = d | F(d);
|
|
|
|
if (workspace[(2*y+1)*W+(2*x+1)] != (1<<type))
|
|
continue;
|
|
|
|
if (!(workspace[fy*W+fx] &~ (bLR|bUD)) &&
|
|
(workspace[gy*W+gx] &~ (bLU|bLD|bRU|bRD))) {
|
|
workspace[gy*W+gx] &= (bLU|bLD|bRU|bRD);
|
|
done_something = true;
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("straight clue at (%d,%d) connecting to "
|
|
"straight at (%d,%d) makes (%d,%d) a "
|
|
"corner\n", x, y, fx/2, fy/2, gx/2, gy/2);
|
|
#endif
|
|
}
|
|
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (done_something)
|
|
continue;
|
|
|
|
/*
|
|
* Now detect shortcut loops.
|
|
*/
|
|
|
|
{
|
|
int nonblanks, loopclass;
|
|
|
|
dsf_init(dsf, w*h);
|
|
for (x = 0; x < w*h; x++)
|
|
dsfsize[x] = 1;
|
|
|
|
/*
|
|
* First go through the edge entries and update the dsf
|
|
* of which squares are connected to which others. We
|
|
* also track the number of squares in each equivalence
|
|
* class, and count the overall number of
|
|
* known-non-blank squares.
|
|
*
|
|
* In the process of doing this, we must notice if a
|
|
* loop has already been formed. If it has, we blank
|
|
* out any square which isn't part of that loop
|
|
* (failing a consistency check if any such square does
|
|
* not have BLANK as one of its remaining options) and
|
|
* exit the deduction loop with success.
|
|
*/
|
|
nonblanks = 0;
|
|
loopclass = -1;
|
|
for (y = 1; y < H-1; y++)
|
|
for (x = 1; x < W-1; x++)
|
|
if ((y ^ x) & 1) {
|
|
/*
|
|
* (x,y) are the workspace coordinates of
|
|
* an edge field. Compute the normal-space
|
|
* coordinates of the squares it connects.
|
|
*/
|
|
int ax = (x-1)/2, ay = (y-1)/2, ac = ay*w+ax;
|
|
int bx = x/2, by = y/2, bc = by*w+bx;
|
|
|
|
/*
|
|
* If the edge is connected, do the dsf
|
|
* thing.
|
|
*/
|
|
if (workspace[y*W+x] == 1) {
|
|
int ae, be;
|
|
|
|
ae = dsf_canonify(dsf, ac);
|
|
be = dsf_canonify(dsf, bc);
|
|
|
|
if (ae == be) {
|
|
/*
|
|
* We have a loop!
|
|
*/
|
|
if (loopclass != -1) {
|
|
/*
|
|
* In fact, we have two
|
|
* separate loops, which is
|
|
* doom.
|
|
*/
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("two loops found in grid!\n");
|
|
#endif
|
|
ret = 0;
|
|
goto cleanup;
|
|
}
|
|
loopclass = ae;
|
|
} else {
|
|
/*
|
|
* Merge the two equivalence
|
|
* classes.
|
|
*/
|
|
int size = dsfsize[ae] + dsfsize[be];
|
|
dsf_merge(dsf, ac, bc);
|
|
ae = dsf_canonify(dsf, ac);
|
|
dsfsize[ae] = size;
|
|
}
|
|
}
|
|
} else if ((y & x) & 1) {
|
|
/*
|
|
* (x,y) are the workspace coordinates of a
|
|
* square field. If the square is
|
|
* definitely not blank, count it.
|
|
*/
|
|
if (!(workspace[y*W+x] & bBLANK))
|
|
nonblanks++;
|
|
}
|
|
|
|
/*
|
|
* If we discovered an existing loop above, we must now
|
|
* blank every square not part of it, and exit the main
|
|
* deduction loop.
|
|
*/
|
|
if (loopclass != -1) {
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("loop found in grid!\n");
|
|
#endif
|
|
for (y = 0; y < h; y++)
|
|
for (x = 0; x < w; x++)
|
|
if (dsf_canonify(dsf, y*w+x) != loopclass) {
|
|
if (workspace[(y*2+1)*W+(x*2+1)] & bBLANK) {
|
|
workspace[(y*2+1)*W+(x*2+1)] = bBLANK;
|
|
} else {
|
|
/*
|
|
* This square is not part of the
|
|
* loop, but is known non-blank. We
|
|
* have goofed.
|
|
*/
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("non-blank square (%d,%d) found outside"
|
|
" loop!\n", x, y);
|
|
#endif
|
|
ret = 0;
|
|
goto cleanup;
|
|
}
|
|
}
|
|
/*
|
|
* And we're done.
|
|
*/
|
|
ret = 1;
|
|
break;
|
|
}
|
|
|
|
/* Further deductions are considered 'tricky'. */
|
|
if (difficulty == DIFF_EASY) goto done_deductions;
|
|
|
|
/*
|
|
* Now go through the workspace again and mark any edge
|
|
* which would cause a shortcut loop (i.e. would
|
|
* connect together two squares in the same equivalence
|
|
* class, and that equivalence class does not contain
|
|
* _all_ the known-non-blank squares currently in the
|
|
* grid) as disconnected. Also, mark any _square state_
|
|
* which would cause a shortcut loop as disconnected.
|
|
*/
|
|
for (y = 1; y < H-1; y++)
|
|
for (x = 1; x < W-1; x++)
|
|
if ((y ^ x) & 1) {
|
|
/*
|
|
* (x,y) are the workspace coordinates of
|
|
* an edge field. Compute the normal-space
|
|
* coordinates of the squares it connects.
|
|
*/
|
|
int ax = (x-1)/2, ay = (y-1)/2, ac = ay*w+ax;
|
|
int bx = x/2, by = y/2, bc = by*w+bx;
|
|
|
|
/*
|
|
* If the edge is currently unknown, and
|
|
* sits between two squares in the same
|
|
* equivalence class, and the size of that
|
|
* class is less than nonblanks, then
|
|
* connecting this edge would be a shortcut
|
|
* loop and so we must not do so.
|
|
*/
|
|
if (workspace[y*W+x] == 3) {
|
|
int ae, be;
|
|
|
|
ae = dsf_canonify(dsf, ac);
|
|
be = dsf_canonify(dsf, bc);
|
|
|
|
if (ae == be) {
|
|
/*
|
|
* We have a loop. Is it a shortcut?
|
|
*/
|
|
if (dsfsize[ae] < nonblanks) {
|
|
/*
|
|
* Yes! Mark this edge disconnected.
|
|
*/
|
|
workspace[y*W+x] = 2;
|
|
done_something = true;
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("edge (%d,%d)-(%d,%d) would create"
|
|
" a shortcut loop, hence must be"
|
|
" disconnected\n", x/2, y/2,
|
|
(x+1)/2, (y+1)/2);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
} else if ((y & x) & 1) {
|
|
/*
|
|
* (x,y) are the workspace coordinates of a
|
|
* square field. Go through its possible
|
|
* (non-blank) states and see if any gives
|
|
* rise to a shortcut loop.
|
|
*
|
|
* This is slightly fiddly, because we have
|
|
* to check whether this square is already
|
|
* part of the same equivalence class as
|
|
* the things it's joining.
|
|
*/
|
|
int ae = dsf_canonify(dsf, (y/2)*w+(x/2));
|
|
|
|
for (b = 2; b < 0xD; b++)
|
|
if (workspace[y*W+x] & (1<<b)) {
|
|
/*
|
|
* Find the equivalence classes of
|
|
* the two squares this one would
|
|
* connect if it were in this
|
|
* state.
|
|
*/
|
|
int e = -1;
|
|
|
|
for (d = 1; d <= 8; d += d) if (b & d) {
|
|
int xx = x/2 + DX(d), yy = y/2 + DY(d);
|
|
int ee = dsf_canonify(dsf, yy*w+xx);
|
|
|
|
if (e == -1)
|
|
ee = e;
|
|
else if (e != ee)
|
|
e = -2;
|
|
}
|
|
|
|
if (e >= 0) {
|
|
/*
|
|
* This square state would form
|
|
* a loop on equivalence class
|
|
* e. Measure the size of that
|
|
* loop, and see if it's a
|
|
* shortcut.
|
|
*/
|
|
int loopsize = dsfsize[e];
|
|
if (e != ae)
|
|
loopsize++;/* add the square itself */
|
|
if (loopsize < nonblanks) {
|
|
/*
|
|
* It is! Mark this square
|
|
* state invalid.
|
|
*/
|
|
workspace[y*W+x] &= ~(1<<b);
|
|
done_something = true;
|
|
#ifdef SOLVER_DIAGNOSTICS
|
|
printf("square (%d,%d) would create a "
|
|
"shortcut loop in state %d, "
|
|
"hence cannot be\n",
|
|
x/2, y/2, b);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
done_deductions:
|
|
|
|
if (done_something)
|
|
continue;
|
|
|
|
/*
|
|
* If we reach here, there is nothing left we can do.
|
|
* Return 2 for ambiguous puzzle.
|
|
*/
|
|
ret = 2;
|
|
break;
|
|
}
|
|
|
|
cleanup:
|
|
|
|
/*
|
|
* If ret = 1 then we've successfully achieved a solution. This
|
|
* means that we expect every square to be nailed down to
|
|
* exactly one possibility. If this is the case, or if the caller
|
|
* asked for a partial solution anyway, transcribe those
|
|
* possibilities into the result array.
|
|
*/
|
|
if (ret == 1 || partial) {
|
|
for (y = 0; y < h; y++) {
|
|
for (x = 0; x < w; x++) {
|
|
for (b = 0; b < 0xD; b++)
|
|
if (workspace[(2*y+1)*W+(2*x+1)] == (1<<b)) {
|
|
result[y*w+x] = b;
|
|
break;
|
|
}
|
|
if (ret == 1) assert(b < 0xD); /* we should have had a break by now */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Ensure we haven't left the _data structure_ inconsistent,
|
|
* regardless of the consistency of the _puzzle_. In
|
|
* particular, we should never have marked one square as
|
|
* linked to its neighbour if the neighbour is not
|
|
* reciprocally linked back to the original square.
|
|
*
|
|
* This can happen if we get part way through solving an
|
|
* impossible puzzle and then give up trying to make further
|
|
* progress. So here we fix it up to avoid confusing the rest
|
|
* of the game.
|
|
*/
|
|
for (y = 0; y < h; y++) {
|
|
for (x = 0; x < w; x++) {
|
|
for (d = 1; d <= 8; d += d) {
|
|
int nx = x + DX(d), ny = y + DY(d);
|
|
int rlink;
|
|
if (0 <= nx && nx < w && 0 <= ny && ny < h)
|
|
rlink = result[ny*w+nx] & F(d);
|
|
else
|
|
rlink = 0; /* off-board squares don't link back */
|
|
|
|
/* If other square doesn't link to us, don't link to it */
|
|
if (!rlink)
|
|
result[y*w+x] &= ~d;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
sfree(dsfsize);
|
|
sfree(dsf);
|
|
sfree(workspace);
|
|
assert(ret >= 0);
|
|
return ret;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Loop generator.
|
|
*/
|
|
|
|
/*
|
|
* We use the loop generator code from loopy, hard-coding to a square
|
|
* grid of the appropriate size. Knowing the grid layout and the tile
|
|
* size we can shrink that to our small grid and then make our line
|
|
* layout from the face colour info.
|
|
*
|
|
* We provide a bias function to the loop generator which tries to
|
|
* bias in favour of loops with more scope for Pearl black clues. This
|
|
* seems to improve the success rate of the puzzle generator, in that
|
|
* such loops have a better chance of being soluble with all valid
|
|
* clues put in.
|
|
*/
|
|
|
|
struct pearl_loopgen_bias_ctx {
|
|
/*
|
|
* Our bias function counts the number of 'black clue' corners
|
|
* (i.e. corners adjacent to two straights) in both the
|
|
* BLACK/nonBLACK and WHITE/nonWHITE boundaries. In order to do
|
|
* this, we must:
|
|
*
|
|
* - track the edges that are part of each of those loops
|
|
* - track the types of vertex in each loop (corner, straight,
|
|
* none)
|
|
* - track the current black-clue status of each vertex in each
|
|
* loop.
|
|
*
|
|
* Each of these chunks of data is updated incrementally from the
|
|
* previous one, to avoid slowdown due to the bias function
|
|
* rescanning the whole grid every time it's called.
|
|
*
|
|
* So we need a lot of separate arrays, plus a tdq for each one,
|
|
* and we must repeat it all twice for the BLACK and WHITE
|
|
* boundaries.
|
|
*/
|
|
struct pearl_loopgen_bias_ctx_boundary {
|
|
int colour; /* FACE_WHITE or FACE_BLACK */
|
|
|
|
bool *edges; /* is each edge part of the loop? */
|
|
tdq *edges_todo;
|
|
|
|
char *vertextypes; /* bits 0-3 == outgoing edge bitmap;
|
|
* bit 4 set iff corner clue.
|
|
* Hence, 0 means non-vertex;
|
|
* nonzero but bit 4 zero = straight. */
|
|
int *neighbour[2]; /* indices of neighbour vertices in loop */
|
|
tdq *vertextypes_todo;
|
|
|
|
char *blackclues; /* is each vertex a black clue site? */
|
|
tdq *blackclues_todo;
|
|
} boundaries[2]; /* boundaries[0]=WHITE, [1]=BLACK */
|
|
|
|
char *faces; /* remember last-seen colour of each face */
|
|
tdq *faces_todo;
|
|
|
|
int score;
|
|
|
|
grid *g;
|
|
};
|
|
static int pearl_loopgen_bias(void *vctx, char *board, int face)
|
|
{
|
|
struct pearl_loopgen_bias_ctx *ctx = (struct pearl_loopgen_bias_ctx *)vctx;
|
|
grid *g = ctx->g;
|
|
int oldface, newface;
|
|
int i, j, k;
|
|
|
|
tdq_add(ctx->faces_todo, face);
|
|
while ((j = tdq_remove(ctx->faces_todo)) >= 0) {
|
|
oldface = ctx->faces[j];
|
|
ctx->faces[j] = newface = board[j];
|
|
for (i = 0; i < 2; i++) {
|
|
struct pearl_loopgen_bias_ctx_boundary *b = &ctx->boundaries[i];
|
|
int c = b->colour;
|
|
|
|
/*
|
|
* If the face has changed either from or to colour c, we need
|
|
* to reprocess the edges for this boundary.
|
|
*/
|
|
if (oldface == c || newface == c) {
|
|
grid_face *f = &g->faces[face];
|
|
for (k = 0; k < f->order; k++)
|
|
tdq_add(b->edges_todo, f->edges[k] - g->edges);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
struct pearl_loopgen_bias_ctx_boundary *b = &ctx->boundaries[i];
|
|
int c = b->colour;
|
|
|
|
/*
|
|
* Go through the to-do list of edges. For each edge, decide
|
|
* anew whether it's part of this boundary or not. Any edge
|
|
* that changes state has to have both its endpoints put on
|
|
* the vertextypes_todo list.
|
|
*/
|
|
while ((j = tdq_remove(b->edges_todo)) >= 0) {
|
|
grid_edge *e = &g->edges[j];
|
|
int fc1 = e->face1 ? board[e->face1 - g->faces] : FACE_BLACK;
|
|
int fc2 = e->face2 ? board[e->face2 - g->faces] : FACE_BLACK;
|
|
bool oldedge = b->edges[j];
|
|
bool newedge = (fc1==c) ^ (fc2==c);
|
|
if (oldedge != newedge) {
|
|
b->edges[j] = newedge;
|
|
tdq_add(b->vertextypes_todo, e->dot1 - g->dots);
|
|
tdq_add(b->vertextypes_todo, e->dot2 - g->dots);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Go through the to-do list of vertices whose types need
|
|
* refreshing. For each one, decide whether it's a corner, a
|
|
* straight, or a vertex not in the loop, and in the former
|
|
* two cases also work out the indices of its neighbour
|
|
* vertices along the loop. Any vertex that changes state must
|
|
* be put back on the to-do list for deciding if it's a black
|
|
* clue site, and so must its two new neighbours _and_ its two
|
|
* old neighbours.
|
|
*/
|
|
while ((j = tdq_remove(b->vertextypes_todo)) >= 0) {
|
|
grid_dot *d = &g->dots[j];
|
|
int neighbours[2], type = 0, n = 0;
|
|
|
|
for (k = 0; k < d->order; k++) {
|
|
grid_edge *e = d->edges[k];
|
|
grid_dot *d2 = (e->dot1 == d ? e->dot2 : e->dot1);
|
|
/* dir == 0,1,2,3 for an edge going L,U,R,D */
|
|
int dir = (d->y == d2->y) + 2*(d->x+d->y > d2->x+d2->y);
|
|
int ei = e - g->edges;
|
|
if (b->edges[ei]) {
|
|
type |= 1 << dir;
|
|
neighbours[n] = d2 - g->dots;
|
|
n++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Decide if it's a corner, and set the corner flag if so.
|
|
*/
|
|
if (type != 0 && type != 0x5 && type != 0xA)
|
|
type |= 0x10;
|
|
|
|
if (type != b->vertextypes[j]) {
|
|
/*
|
|
* Recompute old neighbours, if any.
|
|
*/
|
|
if (b->vertextypes[j]) {
|
|
tdq_add(b->blackclues_todo, b->neighbour[0][j]);
|
|
tdq_add(b->blackclues_todo, b->neighbour[1][j]);
|
|
}
|
|
/*
|
|
* Recompute this vertex.
|
|
*/
|
|
tdq_add(b->blackclues_todo, j);
|
|
b->vertextypes[j] = type;
|
|
/*
|
|
* Recompute new neighbours, if any.
|
|
*/
|
|
if (b->vertextypes[j]) {
|
|
b->neighbour[0][j] = neighbours[0];
|
|
b->neighbour[1][j] = neighbours[1];
|
|
tdq_add(b->blackclues_todo, b->neighbour[0][j]);
|
|
tdq_add(b->blackclues_todo, b->neighbour[1][j]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Go through the list of vertices which we must check to see
|
|
* if they're black clue sites. Each one is a black clue site
|
|
* iff it is a corner and its loop neighbours are non-corners.
|
|
* Adjust the running total of black clues we've counted.
|
|
*/
|
|
while ((j = tdq_remove(b->blackclues_todo)) >= 0) {
|
|
ctx->score -= b->blackclues[j];
|
|
b->blackclues[j] = ((b->vertextypes[j] & 0x10) &&
|
|
!((b->vertextypes[b->neighbour[0][j]] |
|
|
b->vertextypes[b->neighbour[1][j]])
|
|
& 0x10));
|
|
ctx->score += b->blackclues[j];
|
|
}
|
|
}
|
|
|
|
return ctx->score;
|
|
}
|
|
|
|
static void pearl_loopgen(int w, int h, char *lines, random_state *rs)
|
|
{
|
|
grid *g = grid_new(GRID_SQUARE, w-1, h-1, NULL);
|
|
char *board = snewn(g->num_faces, char);
|
|
int i, s = g->tilesize;
|
|
struct pearl_loopgen_bias_ctx biasctx;
|
|
|
|
memset(lines, 0, w*h);
|
|
|
|
/*
|
|
* Initialise the context for the bias function. Initially we fill
|
|
* all the to-do lists, so that the first call will scan
|
|
* everything; thereafter the lists stay empty so we make
|
|
* incremental changes.
|
|
*/
|
|
biasctx.g = g;
|
|
biasctx.faces = snewn(g->num_faces, char);
|
|
biasctx.faces_todo = tdq_new(g->num_faces);
|
|
tdq_fill(biasctx.faces_todo);
|
|
biasctx.score = 0;
|
|
memset(biasctx.faces, FACE_GREY, g->num_faces);
|
|
for (i = 0; i < 2; i++) {
|
|
biasctx.boundaries[i].edges = snewn(g->num_edges, bool);
|
|
memset(biasctx.boundaries[i].edges, 0, g->num_edges * sizeof(bool));
|
|
biasctx.boundaries[i].edges_todo = tdq_new(g->num_edges);
|
|
tdq_fill(biasctx.boundaries[i].edges_todo);
|
|
biasctx.boundaries[i].vertextypes = snewn(g->num_dots, char);
|
|
memset(biasctx.boundaries[i].vertextypes, 0, g->num_dots);
|
|
biasctx.boundaries[i].neighbour[0] = snewn(g->num_dots, int);
|
|
biasctx.boundaries[i].neighbour[1] = snewn(g->num_dots, int);
|
|
biasctx.boundaries[i].vertextypes_todo = tdq_new(g->num_dots);
|
|
tdq_fill(biasctx.boundaries[i].vertextypes_todo);
|
|
biasctx.boundaries[i].blackclues = snewn(g->num_dots, char);
|
|
memset(biasctx.boundaries[i].blackclues, 0, g->num_dots);
|
|
biasctx.boundaries[i].blackclues_todo = tdq_new(g->num_dots);
|
|
tdq_fill(biasctx.boundaries[i].blackclues_todo);
|
|
}
|
|
biasctx.boundaries[0].colour = FACE_WHITE;
|
|
biasctx.boundaries[1].colour = FACE_BLACK;
|
|
generate_loop(g, board, rs, pearl_loopgen_bias, &biasctx);
|
|
sfree(biasctx.faces);
|
|
tdq_free(biasctx.faces_todo);
|
|
for (i = 0; i < 2; i++) {
|
|
sfree(biasctx.boundaries[i].edges);
|
|
tdq_free(biasctx.boundaries[i].edges_todo);
|
|
sfree(biasctx.boundaries[i].vertextypes);
|
|
sfree(biasctx.boundaries[i].neighbour[0]);
|
|
sfree(biasctx.boundaries[i].neighbour[1]);
|
|
tdq_free(biasctx.boundaries[i].vertextypes_todo);
|
|
sfree(biasctx.boundaries[i].blackclues);
|
|
tdq_free(biasctx.boundaries[i].blackclues_todo);
|
|
}
|
|
|
|
for (i = 0; i < g->num_edges; i++) {
|
|
grid_edge *e = g->edges + i;
|
|
enum face_colour c1 = FACE_COLOUR(e->face1);
|
|
enum face_colour c2 = FACE_COLOUR(e->face2);
|
|
assert(c1 != FACE_GREY);
|
|
assert(c2 != FACE_GREY);
|
|
if (c1 != c2) {
|
|
/* This grid edge is on the loop: lay line along it */
|
|
int x1 = e->dot1->x/s, y1 = e->dot1->y/s;
|
|
int x2 = e->dot2->x/s, y2 = e->dot2->y/s;
|
|
|
|
/* (x1,y1) and (x2,y2) are now in our grid coords (0-w,0-h). */
|
|
if (x1 == x2) {
|
|
if (y1 > y2) SWAP(y1,y2);
|
|
|
|
assert(y1+1 == y2);
|
|
lines[y1*w+x1] |= D;
|
|
lines[y2*w+x1] |= U;
|
|
} else if (y1 == y2) {
|
|
if (x1 > x2) SWAP(x1,x2);
|
|
|
|
assert(x1+1 == x2);
|
|
lines[y1*w+x1] |= R;
|
|
lines[y1*w+x2] |= L;
|
|
} else
|
|
assert(!"grid with diagonal coords?!");
|
|
}
|
|
}
|
|
|
|
grid_free(g);
|
|
sfree(board);
|
|
|
|
#if defined LOOPGEN_DIAGNOSTICS && !defined GENERATION_DIAGNOSTICS
|
|
printf("as returned:\n");
|
|
for (y = 0; y < h; y++) {
|
|
for (x = 0; x < w; x++) {
|
|
int type = lines[y*w+x];
|
|
char s[5], *p = s;
|
|
if (type & L) *p++ = 'L';
|
|
if (type & R) *p++ = 'R';
|
|
if (type & U) *p++ = 'U';
|
|
if (type & D) *p++ = 'D';
|
|
*p = '\0';
|
|
printf("%3s", s);
|
|
}
|
|
printf("\n");
|
|
}
|
|
printf("\n");
|
|
#endif
|
|
}
|
|
|
|
static int new_clues(const game_params *params, random_state *rs,
|
|
char *clues, char *grid)
|
|
{
|
|
int w = params->w, h = params->h, diff = params->difficulty;
|
|
int ngen = 0, x, y, d, ret, i;
|
|
|
|
|
|
/*
|
|
* Difficulty exception: 5x5 Tricky is not generable (the
|
|
* generator will spin forever trying) and so we fudge it to Easy.
|
|
*/
|
|
if (w == 5 && h == 5 && diff > DIFF_EASY)
|
|
diff = DIFF_EASY;
|
|
|
|
while (1) {
|
|
ngen++;
|
|
pearl_loopgen(w, h, grid, rs);
|
|
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
printf("grid array:\n");
|
|
for (y = 0; y < h; y++) {
|
|
for (x = 0; x < w; x++) {
|
|
int type = grid[y*w+x];
|
|
char s[5], *p = s;
|
|
if (type & L) *p++ = 'L';
|
|
if (type & R) *p++ = 'R';
|
|
if (type & U) *p++ = 'U';
|
|
if (type & D) *p++ = 'D';
|
|
*p = '\0';
|
|
printf("%2s ", s);
|
|
}
|
|
printf("\n");
|
|
}
|
|
printf("\n");
|
|
#endif
|
|
|
|
/*
|
|
* Set up the maximal clue array.
|
|
*/
|
|
for (y = 0; y < h; y++)
|
|
for (x = 0; x < w; x++) {
|
|
int type = grid[y*w+x];
|
|
|
|
clues[y*w+x] = NOCLUE;
|
|
|
|
if ((bLR|bUD) & (1 << type)) {
|
|
/*
|
|
* This is a straight; see if it's a viable
|
|
* candidate for a straight clue. It qualifies if
|
|
* at least one of the squares it connects to is a
|
|
* corner.
|
|
*/
|
|
for (d = 1; d <= 8; d += d) if (type & d) {
|
|
int xx = x + DX(d), yy = y + DY(d);
|
|
assert(xx >= 0 && xx < w && yy >= 0 && yy < h);
|
|
if ((bLU|bLD|bRU|bRD) & (1 << grid[yy*w+xx]))
|
|
break;
|
|
}
|
|
if (d <= 8) /* we found one */
|
|
clues[y*w+x] = STRAIGHT;
|
|
} else if ((bLU|bLD|bRU|bRD) & (1 << type)) {
|
|
/*
|
|
* This is a corner; see if it's a viable candidate
|
|
* for a corner clue. It qualifies if all the
|
|
* squares it connects to are straights.
|
|
*/
|
|
for (d = 1; d <= 8; d += d) if (type & d) {
|
|
int xx = x + DX(d), yy = y + DY(d);
|
|
assert(xx >= 0 && xx < w && yy >= 0 && yy < h);
|
|
if (!((bLR|bUD) & (1 << grid[yy*w+xx])))
|
|
break;
|
|
}
|
|
if (d > 8) /* we didn't find a counterexample */
|
|
clues[y*w+x] = CORNER;
|
|
}
|
|
}
|
|
|
|
#ifdef GENERATION_DIAGNOSTICS
|
|
printf("clue array:\n");
|
|
for (y = 0; y < h; y++) {
|
|
for (x = 0; x < w; x++) {
|
|
printf("%c", " *O"[(unsigned char)clues[y*w+x]]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
printf("\n");
|
|
#endif
|
|
|
|
if (!params->nosolve) {
|
|
int *cluespace, *straights, *corners;
|
|
int nstraights, ncorners, nstraightpos, ncornerpos;
|
|
|
|
/*
|
|
* See if we can solve the puzzle just like this.
|
|
*/
|
|
ret = pearl_solve(w, h, clues, grid, diff, false);
|
|
assert(ret > 0); /* shouldn't be inconsistent! */
|
|
if (ret != 1)
|
|
continue; /* go round and try again */
|
|
|
|
/*
|
|
* Check this puzzle isn't too easy.
|
|
*/
|
|
if (diff > DIFF_EASY) {
|
|
ret = pearl_solve(w, h, clues, grid, diff-1, false);
|
|
assert(ret > 0);
|
|
if (ret == 1)
|
|
continue; /* too easy: try again */
|
|
}
|
|
|
|
/*
|
|
* Now shuffle the grid points and gradually remove the
|
|
* clues to find a minimal set which still leaves the
|
|
* puzzle soluble.
|
|
*
|
|
* We preferentially attempt to remove whichever type of
|
|
* clue is currently most numerous, to combat a general
|
|
* tendency of plain random generation to bias in favour
|
|
* of many white clues and few black.
|
|
*
|
|
* 'nstraights' and 'ncorners' count the number of clues
|
|
* of each type currently remaining in the grid;
|
|
* 'nstraightpos' and 'ncornerpos' count the clues of each
|
|
* type we have left to try to remove. (Clues which we
|
|
* have tried and failed to remove are counted by the
|
|
* former but not the latter.)
|
|
*/
|
|
cluespace = snewn(w*h, int);
|
|
straights = cluespace;
|
|
nstraightpos = 0;
|
|
for (i = 0; i < w*h; i++)
|
|
if (clues[i] == STRAIGHT)
|
|
straights[nstraightpos++] = i;
|
|
corners = straights + nstraightpos;
|
|
ncornerpos = 0;
|
|
for (i = 0; i < w*h; i++)
|
|
if (clues[i] == STRAIGHT)
|
|
corners[ncornerpos++] = i;
|
|
nstraights = nstraightpos;
|
|
ncorners = ncornerpos;
|
|
|
|
shuffle(straights, nstraightpos, sizeof(*straights), rs);
|
|
shuffle(corners, ncornerpos, sizeof(*corners), rs);
|
|
while (nstraightpos > 0 || ncornerpos > 0) {
|
|
int cluepos;
|
|
int clue;
|
|
|
|
/*
|
|
* Decide which clue to try to remove next. If both
|
|
* types are available, we choose whichever kind is
|
|
* currently overrepresented; otherwise we take
|
|
* whatever we can get.
|
|
*/
|
|
if (nstraightpos > 0 && ncornerpos > 0) {
|
|
if (nstraights >= ncorners)
|
|
cluepos = straights[--nstraightpos];
|
|
else
|
|
cluepos = straights[--ncornerpos];
|
|
} else {
|
|
if (nstraightpos > 0)
|
|
cluepos = straights[--nstraightpos];
|
|
else
|
|
cluepos = straights[--ncornerpos];
|
|
}
|
|
|
|
y = cluepos / w;
|
|
x = cluepos % w;
|
|
|
|
clue = clues[y*w+x];
|
|
clues[y*w+x] = 0; /* try removing this clue */
|
|
|
|
ret = pearl_solve(w, h, clues, grid, diff, false);
|
|
assert(ret > 0);
|
|
if (ret != 1)
|
|
clues[y*w+x] = clue; /* oops, put it back again */
|
|
}
|
|
sfree(cluespace);
|
|
}
|
|
|
|
#ifdef FINISHED_PUZZLE
|
|
printf("clue array:\n");
|
|
for (y = 0; y < h; y++) {
|
|
for (x = 0; x < w; x++) {
|
|
printf("%c", " *O"[(unsigned char)clues[y*w+x]]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
printf("\n");
|
|
#endif
|
|
|
|
break; /* got it */
|
|
}
|
|
|
|
debug(("%d %dx%d loops before finished puzzle.\n", ngen, w, h));
|
|
|
|
return ngen;
|
|
}
|
|
|
|
static char *new_game_desc(const game_params *params, random_state *rs,
|
|
char **aux, bool interactive)
|
|
{
|
|
char *grid, *clues;
|
|
char *desc;
|
|
int w = params->w, h = params->h, i, j;
|
|
|
|
grid = snewn(w*h, char);
|
|
clues = snewn(w*h, char);
|
|
|
|
new_clues(params, rs, clues, grid);
|
|
|
|
desc = snewn(w * h + 1, char);
|
|
for (i = j = 0; i < w*h; i++) {
|
|
if (clues[i] == NOCLUE && j > 0 &&
|
|
desc[j-1] >= 'a' && desc[j-1] < 'z')
|
|
desc[j-1]++;
|
|
else if (clues[i] == NOCLUE)
|
|
desc[j++] = 'a';
|
|
else if (clues[i] == CORNER)
|
|
desc[j++] = 'B';
|
|
else if (clues[i] == STRAIGHT)
|
|
desc[j++] = 'W';
|
|
}
|
|
desc[j] = '\0';
|
|
|
|
*aux = snewn(w*h+1, char);
|
|
for (i = 0; i < w*h; i++)
|
|
(*aux)[i] = (grid[i] < 10) ? (grid[i] + '0') : (grid[i] + 'A' - 10);
|
|
(*aux)[w*h] = '\0';
|
|
|
|
sfree(grid);
|
|
sfree(clues);
|
|
|
|
return desc;
|
|
}
|
|
|
|
static const char *validate_desc(const game_params *params, const char *desc)
|
|
{
|
|
int i, sizesofar;
|
|
const int totalsize = params->w * params->h;
|
|
|
|
sizesofar = 0;
|
|
for (i = 0; desc[i]; i++) {
|
|
if (desc[i] >= 'a' && desc[i] <= 'z')
|
|
sizesofar += desc[i] - 'a' + 1;
|
|
else if (desc[i] == 'B' || desc[i] == 'W')
|
|
sizesofar++;
|
|
else
|
|
return "unrecognised character in string";
|
|
}
|
|
|
|
if (sizesofar > totalsize)
|
|
return "string too long";
|
|
else if (sizesofar < totalsize)
|
|
return "string too short";
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static game_state *new_game(midend *me, const game_params *params,
|
|
const char *desc)
|
|
{
|
|
game_state *state = snew(game_state);
|
|
int i, j, sz = params->w*params->h;
|
|
|
|
state->completed = false;
|
|
state->used_solve = false;
|
|
state->shared = snew(struct shared_state);
|
|
|
|
state->shared->w = params->w;
|
|
state->shared->h = params->h;
|
|
state->shared->sz = sz;
|
|
state->shared->refcnt = 1;
|
|
state->shared->clues = snewn(sz, char);
|
|
for (i = j = 0; desc[i]; i++) {
|
|
assert(j < sz);
|
|
if (desc[i] >= 'a' && desc[i] <= 'z') {
|
|
int n = desc[i] - 'a' + 1;
|
|
assert(j + n <= sz);
|
|
while (n-- > 0)
|
|
state->shared->clues[j++] = NOCLUE;
|
|
} else if (desc[i] == 'B') {
|
|
state->shared->clues[j++] = CORNER;
|
|
} else if (desc[i] == 'W') {
|
|
state->shared->clues[j++] = STRAIGHT;
|
|
}
|
|
}
|
|
|
|
state->lines = snewn(sz, char);
|
|
state->errors = snewn(sz, char);
|
|
state->marks = snewn(sz, char);
|
|
for (i = 0; i < sz; i++)
|
|
state->lines[i] = state->errors[i] = state->marks[i] = BLANK;
|
|
|
|
return state;
|
|
}
|
|
|
|
static game_state *dup_game(const game_state *state)
|
|
{
|
|
game_state *ret = snew(game_state);
|
|
int sz = state->shared->sz, i;
|
|
|
|
ret->shared = state->shared;
|
|
ret->completed = state->completed;
|
|
ret->used_solve = state->used_solve;
|
|
++ret->shared->refcnt;
|
|
|
|
ret->lines = snewn(sz, char);
|
|
ret->errors = snewn(sz, char);
|
|
ret->marks = snewn(sz, char);
|
|
for (i = 0; i < sz; i++) {
|
|
ret->lines[i] = state->lines[i];
|
|
ret->errors[i] = state->errors[i];
|
|
ret->marks[i] = state->marks[i];
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void free_game(game_state *state)
|
|
{
|
|
assert(state);
|
|
if (--state->shared->refcnt == 0) {
|
|
sfree(state->shared->clues);
|
|
sfree(state->shared);
|
|
}
|
|
sfree(state->lines);
|
|
sfree(state->errors);
|
|
sfree(state->marks);
|
|
sfree(state);
|
|
}
|
|
|
|
static char nbits[16] = { 0, 1, 1, 2,
|
|
1, 2, 2, 3,
|
|
1, 2, 2, 3,
|
|
2, 3, 3, 4 };
|
|
#define NBITS(l) ( ((l) < 0 || (l) > 15) ? 4 : nbits[l] )
|
|
|
|
#define ERROR_CLUE 16
|
|
|
|
/* Returns false if the state is invalid. */
|
|
static bool dsf_update_completion(game_state *state, int ax, int ay, char dir,
|
|
int *dsf)
|
|
{
|
|
int w = state->shared->w /*, h = state->shared->h */;
|
|
int ac = ay*w+ax, bx, by, bc;
|
|
|
|
if (!(state->lines[ac] & dir)) return true; /* no link */
|
|
bx = ax + DX(dir); by = ay + DY(dir);
|
|
|
|
if (!INGRID(state, bx, by))
|
|
return false; /* should not have a link off grid */
|
|
|
|
bc = by*w+bx;
|
|
if (!(state->lines[bc] & F(dir)))
|
|
return false; /* should have reciprocal link */
|
|
if (!(state->lines[bc] & F(dir))) return true;
|
|
|
|
dsf_merge(dsf, ac, bc);
|
|
return true;
|
|
}
|
|
|
|
/* Returns false if the state is invalid. */
|
|
static bool check_completion(game_state *state, bool mark)
|
|
{
|
|
int w = state->shared->w, h = state->shared->h, x, y, i, d;
|
|
bool had_error = false;
|
|
int *dsf, *component_state;
|
|
int nsilly, nloop, npath, largest_comp, largest_size, total_pathsize;
|
|
enum { COMP_NONE, COMP_LOOP, COMP_PATH, COMP_SILLY, COMP_EMPTY };
|
|
|
|
if (mark) {
|
|
for (i = 0; i < w*h; i++) {
|
|
state->errors[i] = 0;
|
|
}
|
|
}
|
|
|
|
#define ERROR(x,y,e) do { had_error = true; if (mark) state->errors[(y)*w+(x)] |= (e); } while(0)
|
|
|
|
/*
|
|
* Analyse the solution into loops, paths and stranger things.
|
|
* Basic strategy here is all the same as in Loopy - see the big
|
|
* comment in loopy.c's check_completion() - and for exactly the
|
|
* same reasons, since Loopy and Pearl have basically the same
|
|
* form of expected solution.
|
|
*/
|
|
dsf = snew_dsf(w*h);
|
|
|
|
/* Build the dsf. */
|
|
for (x = 0; x < w; x++) {
|
|
for (y = 0; y < h; y++) {
|
|
if (!dsf_update_completion(state, x, y, R, dsf) ||
|
|
!dsf_update_completion(state, x, y, D, dsf)) {
|
|
sfree(dsf);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Initialise a state variable for each connected component. */
|
|
component_state = snewn(w*h, int);
|
|
for (i = 0; i < w*h; i++) {
|
|
if (dsf_canonify(dsf, i) == i)
|
|
component_state[i] = COMP_LOOP;
|
|
else
|
|
component_state[i] = COMP_NONE;
|
|
}
|
|
|
|
/*
|
|
* Classify components, and mark errors where a square has more
|
|
* than two line segments.
|
|
*/
|
|
for (x = 0; x < w; x++) {
|
|
for (y = 0; y < h; y++) {
|
|
int type = state->lines[y*w+x];
|
|
int degree = NBITS(type);
|
|
int comp = dsf_canonify(dsf, y*w+x);
|
|
if (degree > 2) {
|
|
ERROR(x,y,type);
|
|
component_state[comp] = COMP_SILLY;
|
|
} else if (degree == 0) {
|
|
component_state[comp] = COMP_EMPTY;
|
|
} else if (degree == 1) {
|
|
if (component_state[comp] != COMP_SILLY)
|
|
component_state[comp] = COMP_PATH;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Count the components, and find the largest sensible one. */
|
|
nsilly = nloop = npath = 0;
|
|
total_pathsize = 0;
|
|
largest_comp = largest_size = -1;
|
|
for (i = 0; i < w*h; i++) {
|
|
if (component_state[i] == COMP_SILLY) {
|
|
nsilly++;
|
|
} else if (component_state[i] == COMP_PATH) {
|
|
total_pathsize += dsf_size(dsf, i);
|
|
npath = 1;
|
|
} else if (component_state[i] == COMP_LOOP) {
|
|
int this_size;
|
|
|
|
nloop++;
|
|
|
|
if ((this_size = dsf_size(dsf, i)) > largest_size) {
|
|
largest_comp = i;
|
|
largest_size = this_size;
|
|
}
|
|
}
|
|
}
|
|
if (largest_size < total_pathsize) {
|
|
largest_comp = -1; /* means the paths */
|
|
largest_size = total_pathsize;
|
|
}
|
|
|
|
if (nloop > 0 && nloop + npath > 1) {
|
|
/*
|
|
* If there are at least two sensible components including at
|
|
* least one loop, highlight every sensible component that is
|
|
* not the largest one.
|
|
*/
|
|
for (i = 0; i < w*h; i++) {
|
|
int comp = dsf_canonify(dsf, i);
|
|
if ((component_state[comp] == COMP_PATH &&
|
|
-1 != largest_comp) ||
|
|
(component_state[comp] == COMP_LOOP &&
|
|
comp != largest_comp))
|
|
ERROR(i%w, i/w, state->lines[i]);
|
|
}
|
|
}
|
|
|
|
/* Now we've finished with the dsf and component states. The only
|
|
* thing we'll need to remember later on is whether all edges were
|
|
* part of a single loop, for which our counter variables
|
|
* nsilly,nloop,npath are enough. */
|
|
sfree(component_state);
|
|
sfree(dsf);
|
|
|
|
/*
|
|
* Check that no clues are contradicted. This code is similar to
|
|
* the code that sets up the maximal clue array for any given
|
|
* loop.
|
|
*/
|
|
for (x = 0; x < w; x++) {
|
|
for (y = 0; y < h; y++) {
|
|
int type = state->lines[y*w+x];
|
|
if (state->shared->clues[y*w+x] == CORNER) {
|
|
/* Supposed to be a corner: will find a contradiction if
|
|
* it actually contains a straight line, or if it touches any
|
|
* corners. */
|
|
if ((bLR|bUD) & (1 << type)) {
|
|
ERROR(x,y,ERROR_CLUE); /* actually straight */
|
|
}
|
|
for (d = 1; d <= 8; d += d) if (type & d) {
|
|
int xx = x + DX(d), yy = y + DY(d);
|
|
if (!INGRID(state, xx, yy)) {
|
|
ERROR(x,y,d); /* leads off grid */
|
|
} else {
|
|
if ((bLU|bLD|bRU|bRD) & (1 << state->lines[yy*w+xx])) {
|
|
ERROR(x,y,ERROR_CLUE); /* touches corner */
|
|
}
|
|
}
|
|
}
|
|
} else if (state->shared->clues[y*w+x] == STRAIGHT) {
|
|
/* Supposed to be straight: will find a contradiction if
|
|
* it actually contains a corner, or if it only touches
|
|
* straight lines. */
|
|
if ((bLU|bLD|bRU|bRD) & (1 << type)) {
|
|
ERROR(x,y,ERROR_CLUE); /* actually a corner */
|
|
}
|
|
i = 0;
|
|
for (d = 1; d <= 8; d += d) if (type & d) {
|
|
int xx = x + DX(d), yy = y + DY(d);
|
|
if (!INGRID(state, xx, yy)) {
|
|
ERROR(x,y,d); /* leads off grid */
|
|
} else {
|
|
if ((bLR|bUD) & (1 << state->lines[yy*w+xx]))
|
|
i++; /* a straight */
|
|
}
|
|
}
|
|
if (i >= 2 && NBITS(type) >= 2) {
|
|
ERROR(x,y,ERROR_CLUE); /* everything touched is straight */
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (nloop == 1 && nsilly == 0 && npath == 0) {
|
|
/*
|
|
* If there's exactly one loop (so that the puzzle is at least
|
|
* potentially complete), we need to ensure it hasn't left any
|
|
* clue out completely.
|
|
*/
|
|
for (x = 0; x < w; x++) {
|
|
for (y = 0; y < h; y++) {
|
|
if (state->lines[y*w+x] == BLANK) {
|
|
if (state->shared->clues[y*w+x] != NOCLUE) {
|
|
/* the loop doesn't include this clue square! */
|
|
ERROR(x, y, ERROR_CLUE);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* But if not, then we're done!
|
|
*/
|
|
if (!had_error)
|
|
state->completed = true;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* completion check:
|
|
*
|
|
* - no clues must be contradicted (highlight clue itself in error if so)
|
|
* - if there is a closed loop it must include every line segment laid
|
|
* - if there's a smaller closed loop then highlight whole loop as error
|
|
* - no square must have more than 2 lines radiating from centre point
|
|
* (highlight all lines in that square as error if so)
|
|
*/
|
|
|
|
static char *solve_for_diff(game_state *state, char *old_lines, char *new_lines)
|
|
{
|
|
int w = state->shared->w, h = state->shared->h, i;
|
|
char *move = snewn(w*h*40, char), *p = move;
|
|
|
|
*p++ = 'S';
|
|
for (i = 0; i < w*h; i++) {
|
|
if (old_lines[i] != new_lines[i]) {
|
|
p += sprintf(p, ";R%d,%d,%d", new_lines[i], i%w, i/w);
|
|
}
|
|
}
|
|
*p++ = '\0';
|
|
move = sresize(move, p - move, char);
|
|
|
|
return move;
|
|
}
|
|
|
|
static char *solve_game(const game_state *state, const game_state *currstate,
|
|
const char *aux, const char **error)
|
|
{
|
|
game_state *solved = dup_game(state);
|
|
int i, ret, sz = state->shared->sz;
|
|
char *move;
|
|
|
|
if (aux) {
|
|
for (i = 0; i < sz; i++) {
|
|
if (aux[i] >= '0' && aux[i] <= '9')
|
|
solved->lines[i] = aux[i] - '0';
|
|
else if (aux[i] >= 'A' && aux[i] <= 'F')
|
|
solved->lines[i] = aux[i] - 'A' + 10;
|
|
else {
|
|
*error = "invalid char in aux";
|
|
move = NULL;
|
|
goto done;
|
|
}
|
|
}
|
|
ret = 1;
|
|
} else {
|
|
/* Try to solve with present (half-solved) state first: if there's no
|
|
* solution from there go back to original state. */
|
|
ret = pearl_solve(currstate->shared->w, currstate->shared->h,
|
|
currstate->shared->clues, solved->lines,
|
|
DIFFCOUNT, false);
|
|
if (ret < 1)
|
|
ret = pearl_solve(state->shared->w, state->shared->h,
|
|
state->shared->clues, solved->lines,
|
|
DIFFCOUNT, false);
|
|
|
|
}
|
|
|
|
if (ret < 1) {
|
|
*error = "Unable to find solution";
|
|
move = NULL;
|
|
} else {
|
|
move = solve_for_diff(solved, currstate->lines, solved->lines);
|
|
}
|
|
|
|
done:
|
|
free_game(solved);
|
|
return move;
|
|
}
|
|
|
|
static bool game_can_format_as_text_now(const game_params *params)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static char *game_text_format(const game_state *state)
|
|
{
|
|
int w = state->shared->w, h = state->shared->h, cw = 4, ch = 2;
|
|
int gw = cw*(w-1) + 2, gh = ch*(h-1) + 1, len = gw * gh, r, c, j;
|
|
char *board = snewn(len + 1, char);
|
|
|
|
assert(board);
|
|
memset(board, ' ', len);
|
|
|
|
for (r = 0; r < h; ++r) {
|
|
for (c = 0; c < w; ++c) {
|
|
int i = r*w + c, cell = r*ch*gw + c*cw;
|
|
board[cell] = "+BW"[(unsigned char)state->shared->clues[i]];
|
|
if (c < w - 1 && (state->lines[i] & R || state->lines[i+1] & L))
|
|
memset(board + cell + 1, '-', cw - 1);
|
|
if (r < h - 1 && (state->lines[i] & D || state->lines[i+w] & U))
|
|
for (j = 1; j < ch; ++j) board[cell + j*gw] = '|';
|
|
if (c < w - 1 && (state->marks[i] & R || state->marks[i+1] & L))
|
|
board[cell + cw/2] = 'x';
|
|
if (r < h - 1 && (state->marks[i] & D || state->marks[i+w] & U))
|
|
board[cell + (ch/2 * gw)] = 'x';
|
|
}
|
|
|
|
for (j = 0; j < (r == h - 1 ? 1 : ch); ++j)
|
|
board[r*ch*gw + (gw - 1) + j*gw] = '\n';
|
|
}
|
|
|
|
board[len] = '\0';
|
|
return board;
|
|
}
|
|
|
|
struct game_ui {
|
|
int *dragcoords; /* list of (y*w+x) coords in drag so far */
|
|
int ndragcoords; /* number of entries in dragcoords.
|
|
* 0 = click but no drag yet. -1 = no drag at all */
|
|
int clickx, clicky; /* pixel position of initial click */
|
|
|
|
int curx, cury; /* grid position of keyboard cursor */
|
|
bool cursor_active; /* true iff cursor is shown */
|
|
};
|
|
|
|
static game_ui *new_ui(const game_state *state)
|
|
{
|
|
game_ui *ui = snew(game_ui);
|
|
int sz = state->shared->sz;
|
|
|
|
ui->ndragcoords = -1;
|
|
ui->dragcoords = snewn(sz, int);
|
|
ui->cursor_active = false;
|
|
ui->curx = ui->cury = 0;
|
|
|
|
return ui;
|
|
}
|
|
|
|
static void free_ui(game_ui *ui)
|
|
{
|
|
sfree(ui->dragcoords);
|
|
sfree(ui);
|
|
}
|
|
|
|
static char *encode_ui(const game_ui *ui)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static void decode_ui(game_ui *ui, const char *encoding)
|
|
{
|
|
}
|
|
|
|
static void game_changed_state(game_ui *ui, const game_state *oldstate,
|
|
const game_state *newstate)
|
|
{
|
|
}
|
|
|
|
static const char *current_key_label(const game_ui *ui,
|
|
const game_state *state, int button)
|
|
{
|
|
if (IS_CURSOR_SELECT(button) && ui->cursor_active) {
|
|
if (button == CURSOR_SELECT) {
|
|
if (ui->ndragcoords == -1) return "Start";
|
|
return "Stop";
|
|
}
|
|
if (button == CURSOR_SELECT2 && ui->ndragcoords >= 0)
|
|
return "Cancel";
|
|
}
|
|
return "";
|
|
}
|
|
|
|
#define PREFERRED_TILE_SIZE 31
|
|
#define HALFSZ (ds->halfsz)
|
|
#define TILE_SIZE (ds->halfsz*2 + 1)
|
|
|
|
#define BORDER ((get_gui_style() == GUI_LOOPY) ? (TILE_SIZE/8) : (TILE_SIZE/2))
|
|
|
|
#define BORDER_WIDTH (max(TILE_SIZE / 32, 1))
|
|
|
|
#define COORD(x) ( (x) * TILE_SIZE + BORDER )
|
|
#define CENTERED_COORD(x) ( COORD(x) + TILE_SIZE/2 )
|
|
#define FROMCOORD(x) ( ((x) < BORDER) ? -1 : ( ((x) - BORDER) / TILE_SIZE) )
|
|
|
|
#define DS_ESHIFT 4 /* R/U/L/D shift, for error flags */
|
|
#define DS_DSHIFT 8 /* R/U/L/D shift, for drag-in-progress flags */
|
|
#define DS_MSHIFT 12 /* shift for no-line mark */
|
|
|
|
#define DS_ERROR_CLUE (1 << 20)
|
|
#define DS_FLASH (1 << 21)
|
|
#define DS_CURSOR (1 << 22)
|
|
|
|
enum { GUI_MASYU, GUI_LOOPY };
|
|
|
|
static int get_gui_style(void)
|
|
{
|
|
static int gui_style = -1;
|
|
|
|
if (gui_style == -1) {
|
|
char *env = getenv("PEARL_GUI_LOOPY");
|
|
if (env && (env[0] == 'y' || env[0] == 'Y'))
|
|
gui_style = GUI_LOOPY;
|
|
else
|
|
gui_style = GUI_MASYU;
|
|
}
|
|
return gui_style;
|
|
}
|
|
|
|
struct game_drawstate {
|
|
int halfsz;
|
|
bool started;
|
|
|
|
int w, h, sz;
|
|
unsigned int *lflags; /* size w*h */
|
|
|
|
char *draglines; /* size w*h; lines flipped by current drag */
|
|
};
|
|
|
|
/*
|
|
* Routine shared between multiple callers to work out the intended
|
|
* effect of a drag path on the grid.
|
|
*
|
|
* Call it in a loop, like this:
|
|
*
|
|
* bool clearing = true;
|
|
* for (i = 0; i < ui->ndragcoords - 1; i++) {
|
|
* int sx, sy, dx, dy, dir, oldstate, newstate;
|
|
* interpret_ui_drag(state, ui, &clearing, i, &sx, &sy, &dx, &dy,
|
|
* &dir, &oldstate, &newstate);
|
|
*
|
|
* [do whatever is needed to handle the fact that the drag
|
|
* wants the edge from sx,sy to dx,dy (heading in direction
|
|
* 'dir' at the sx,sy end) to be changed from state oldstate
|
|
* to state newstate, each of which equals either 0 or dir]
|
|
* }
|
|
*/
|
|
static void interpret_ui_drag(const game_state *state, const game_ui *ui,
|
|
bool *clearing, int i, int *sx, int *sy,
|
|
int *dx, int *dy, int *dir,
|
|
int *oldstate, int *newstate)
|
|
{
|
|
int w = state->shared->w;
|
|
int sp = ui->dragcoords[i], dp = ui->dragcoords[i+1];
|
|
*sy = sp/w;
|
|
*sx = sp%w;
|
|
*dy = dp/w;
|
|
*dx = dp%w;
|
|
*dir = (*dy>*sy ? D : *dy<*sy ? U : *dx>*sx ? R : L);
|
|
*oldstate = state->lines[sp] & *dir;
|
|
if (*oldstate) {
|
|
/*
|
|
* The edge we've dragged over was previously
|
|
* present. Set it to absent, unless we've already
|
|
* stopped doing that.
|
|
*/
|
|
*newstate = *clearing ? 0 : *dir;
|
|
} else {
|
|
/*
|
|
* The edge we've dragged over was previously
|
|
* absent. Set it to present, and cancel the
|
|
* 'clearing' flag so that all subsequent edges in
|
|
* the drag are set rather than cleared.
|
|
*/
|
|
*newstate = *dir;
|
|
*clearing = false;
|
|
}
|
|
}
|
|
|
|
static void update_ui_drag(const game_state *state, game_ui *ui,
|
|
int gx, int gy)
|
|
{
|
|
int /* sz = state->shared->sz, */ w = state->shared->w;
|
|
int i, ox, oy, pos;
|
|
int lastpos;
|
|
|
|
if (!INGRID(state, gx, gy))
|
|
return; /* square is outside grid */
|
|
|
|
if (ui->ndragcoords < 0)
|
|
return; /* drag not in progress anyway */
|
|
|
|
pos = gy * w + gx;
|
|
|
|
lastpos = ui->dragcoords[ui->ndragcoords > 0 ? ui->ndragcoords-1 : 0];
|
|
if (pos == lastpos)
|
|
return; /* same square as last visited one */
|
|
|
|
/* Drag confirmed, if it wasn't already. */
|
|
if (ui->ndragcoords == 0)
|
|
ui->ndragcoords = 1;
|
|
|
|
/*
|
|
* Dragging the mouse into a square that's already been visited by
|
|
* the drag path so far has the effect of truncating the path back
|
|
* to that square, so a player can back out part of an uncommitted
|
|
* drag without having to let go of the mouse.
|
|
*
|
|
* An exception is that you're allowed to drag round in a loop
|
|
* back to the very start of the drag, provided that doesn't
|
|
* create a vertex of the wrong degree. This allows a player who's
|
|
* after an extra challenge to draw the entire loop in a single
|
|
* drag, without it cancelling itself just before release.
|
|
*/
|
|
for (i = 1; i < ui->ndragcoords; i++)
|
|
if (pos == ui->dragcoords[i]) {
|
|
ui->ndragcoords = i+1;
|
|
return;
|
|
}
|
|
|
|
if (pos == ui->dragcoords[0]) {
|
|
/* More complex check for a loop-shaped drag, which has to go
|
|
* through interpret_ui_drag to decide on the final degree of
|
|
* the start/end vertex. */
|
|
ui->dragcoords[ui->ndragcoords] = pos;
|
|
bool clearing = true;
|
|
int lines = state->lines[pos] & (L|R|U|D);
|
|
for (i = 0; i < ui->ndragcoords; i++) {
|
|
int sx, sy, dx, dy, dir, oldstate, newstate;
|
|
interpret_ui_drag(state, ui, &clearing, i, &sx, &sy, &dx, &dy,
|
|
&dir, &oldstate, &newstate);
|
|
if (sx == gx && sy == gy)
|
|
lines ^= (oldstate ^ newstate);
|
|
if (dx == gx && dy == gy)
|
|
lines ^= (F(oldstate) ^ F(newstate));
|
|
}
|
|
if (NBITS(lines) > 2) {
|
|
/* Bad vertex degree: fall back to the backtracking behaviour. */
|
|
ui->ndragcoords = 1;
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Otherwise, dragging the mouse into a square that's a rook-move
|
|
* away from the last one on the path extends the path.
|
|
*/
|
|
oy = ui->dragcoords[ui->ndragcoords-1] / w;
|
|
ox = ui->dragcoords[ui->ndragcoords-1] % w;
|
|
if (ox == gx || oy == gy) {
|
|
int dx = (gx < ox ? -1 : gx > ox ? +1 : 0);
|
|
int dy = (gy < oy ? -1 : gy > oy ? +1 : 0);
|
|
int dir = (dy>0 ? D : dy<0 ? U : dx>0 ? R : L);
|
|
while (ox != gx || oy != gy) {
|
|
/*
|
|
* If the drag attempts to cross a 'no line here' mark,
|
|
* stop there. We physically don't allow the user to drag
|
|
* over those marks.
|
|
*/
|
|
if (state->marks[oy*w+ox] & dir)
|
|
break;
|
|
ox += dx;
|
|
oy += dy;
|
|
ui->dragcoords[ui->ndragcoords++] = oy * w + ox;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Failing that, we do nothing at all: if the user has dragged
|
|
* diagonally across the board, they'll just have to return the
|
|
* mouse to the last known position and do whatever they meant to
|
|
* do again, more slowly and clearly.
|
|
*/
|
|
}
|
|
|
|
static char *mark_in_direction(const game_state *state, int x, int y, int dir,
|
|
bool primary, char *buf)
|
|
{
|
|
int w = state->shared->w /*, h = state->shared->h, sz = state->shared->sz */;
|
|
int x2 = x + DX(dir);
|
|
int y2 = y + DY(dir);
|
|
int dir2 = F(dir);
|
|
|
|
char ch = primary ? 'F' : 'M', *other;
|
|
|
|
if (!INGRID(state, x, y) || !INGRID(state, x2, y2)) return UI_UPDATE;
|
|
|
|
/* disallow laying a mark over a line, or vice versa. */
|
|
other = primary ? state->marks : state->lines;
|
|
if (other[y*w+x] & dir || other[y2*w+x2] & dir2) return UI_UPDATE;
|
|
|
|
sprintf(buf, "%c%d,%d,%d;%c%d,%d,%d", ch, dir, x, y, ch, dir2, x2, y2);
|
|
return dupstr(buf);
|
|
}
|
|
|
|
#define KEY_DIRECTION(btn) (\
|
|
(btn) == CURSOR_DOWN ? D : (btn) == CURSOR_UP ? U :\
|
|
(btn) == CURSOR_LEFT ? L : R)
|
|
|
|
static char *interpret_move(const game_state *state, game_ui *ui,
|
|
const game_drawstate *ds,
|
|
int x, int y, int button)
|
|
{
|
|
int w = state->shared->w, h = state->shared->h /*, sz = state->shared->sz */;
|
|
int gx = FROMCOORD(x), gy = FROMCOORD(y), i;
|
|
bool release = false;
|
|
char tmpbuf[80];
|
|
|
|
bool shift = button & MOD_SHFT, control = button & MOD_CTRL;
|
|
button &= ~MOD_MASK;
|
|
|
|
if (IS_MOUSE_DOWN(button)) {
|
|
ui->cursor_active = false;
|
|
|
|
if (!INGRID(state, gx, gy)) {
|
|
ui->ndragcoords = -1;
|
|
return NULL;
|
|
}
|
|
|
|
ui->clickx = x; ui->clicky = y;
|
|
ui->dragcoords[0] = gy * w + gx;
|
|
ui->ndragcoords = 0; /* will be 1 once drag is confirmed */
|
|
|
|
return UI_UPDATE;
|
|
}
|
|
|
|
if (button == LEFT_DRAG && ui->ndragcoords >= 0) {
|
|
update_ui_drag(state, ui, gx, gy);
|
|
return UI_UPDATE;
|
|
}
|
|
|
|
if (IS_MOUSE_RELEASE(button)) release = true;
|
|
|
|
if (IS_CURSOR_MOVE(button)) {
|
|
if (!ui->cursor_active) {
|
|
ui->cursor_active = true;
|
|
} else if (control || shift) {
|
|
char *move;
|
|
if (ui->ndragcoords > 0) return NULL;
|
|
ui->ndragcoords = -1;
|
|
move = mark_in_direction(state, ui->curx, ui->cury,
|
|
KEY_DIRECTION(button), control, tmpbuf);
|
|
if (control && !shift && *move)
|
|
move_cursor(button, &ui->curx, &ui->cury, w, h, false);
|
|
return move;
|
|
} else {
|
|
move_cursor(button, &ui->curx, &ui->cury, w, h, false);
|
|
if (ui->ndragcoords >= 0)
|
|
update_ui_drag(state, ui, ui->curx, ui->cury);
|
|
}
|
|
return UI_UPDATE;
|
|
}
|
|
|
|
if (IS_CURSOR_SELECT(button)) {
|
|
if (!ui->cursor_active) {
|
|
ui->cursor_active = true;
|
|
return UI_UPDATE;
|
|
} else if (button == CURSOR_SELECT) {
|
|
if (ui->ndragcoords == -1) {
|
|
ui->ndragcoords = 0;
|
|
ui->dragcoords[0] = ui->cury * w + ui->curx;
|
|
ui->clickx = CENTERED_COORD(ui->curx);
|
|
ui->clicky = CENTERED_COORD(ui->cury);
|
|
return UI_UPDATE;
|
|
} else release = true;
|
|
} else if (button == CURSOR_SELECT2 && ui->ndragcoords >= 0) {
|
|
ui->ndragcoords = -1;
|
|
return UI_UPDATE;
|
|
}
|
|
}
|
|
|
|
if ((button == 27 || button == '\b') && ui->ndragcoords >= 0) {
|
|
ui->ndragcoords = -1;
|
|
return UI_UPDATE;
|
|
}
|
|
|
|
if (release) {
|
|
if (ui->ndragcoords > 0) {
|
|
/* End of a drag: process the cached line data. */
|
|
int buflen = 0, bufsize = 256, tmplen;
|
|
char *buf = NULL;
|
|
const char *sep = "";
|
|
bool clearing = true;
|
|
|
|
for (i = 0; i < ui->ndragcoords - 1; i++) {
|
|
int sx, sy, dx, dy, dir, oldstate, newstate;
|
|
interpret_ui_drag(state, ui, &clearing, i, &sx, &sy, &dx, &dy,
|
|
&dir, &oldstate, &newstate);
|
|
|
|
if (oldstate != newstate) {
|
|
if (!buf) buf = snewn(bufsize, char);
|
|
tmplen = sprintf(tmpbuf, "%sF%d,%d,%d;F%d,%d,%d", sep,
|
|
dir, sx, sy, F(dir), dx, dy);
|
|
if (buflen + tmplen >= bufsize) {
|
|
bufsize = (buflen + tmplen) * 5 / 4 + 256;
|
|
buf = sresize(buf, bufsize, char);
|
|
}
|
|
strcpy(buf + buflen, tmpbuf);
|
|
buflen += tmplen;
|
|
sep = ";";
|
|
}
|
|
}
|
|
|
|
ui->ndragcoords = -1;
|
|
|
|
return buf ? buf : UI_UPDATE;
|
|
} else if (ui->ndragcoords == 0) {
|
|
/* Click (or tiny drag). Work out which edge we were
|
|
* closest to. */
|
|
int cx, cy;
|
|
|
|
ui->ndragcoords = -1;
|
|
|
|
/*
|
|
* We process clicks based on the mouse-down location,
|
|
* because that's more natural for a user to carefully
|
|
* control than the mouse-up.
|
|
*/
|
|
x = ui->clickx;
|
|
y = ui->clicky;
|
|
|
|
gx = FROMCOORD(x);
|
|
gy = FROMCOORD(y);
|
|
cx = CENTERED_COORD(gx);
|
|
cy = CENTERED_COORD(gy);
|
|
|
|
if (!INGRID(state, gx, gy)) return UI_UPDATE;
|
|
|
|
if (max(abs(x-cx),abs(y-cy)) < TILE_SIZE/4) {
|
|
/* TODO closer to centre of grid: process as a cell click not an edge click. */
|
|
|
|
return UI_UPDATE;
|
|
} else {
|
|
int direction;
|
|
if (abs(x-cx) < abs(y-cy)) {
|
|
/* Closest to top/bottom edge. */
|
|
direction = (y < cy) ? U : D;
|
|
} else {
|
|
/* Closest to left/right edge. */
|
|
direction = (x < cx) ? L : R;
|
|
}
|
|
return mark_in_direction(state, gx, gy, direction,
|
|
(button == LEFT_RELEASE), tmpbuf);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (button == 'H' || button == 'h')
|
|
return dupstr("H");
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static game_state *execute_move(const game_state *state, const char *move)
|
|
{
|
|
int w = state->shared->w, h = state->shared->h;
|
|
char c;
|
|
int x, y, l, n;
|
|
game_state *ret = dup_game(state);
|
|
|
|
debug(("move: %s\n", move));
|
|
|
|
while (*move) {
|
|
c = *move;
|
|
if (c == 'S') {
|
|
ret->used_solve = true;
|
|
move++;
|
|
} else if (c == 'L' || c == 'N' || c == 'R' || c == 'F' || c == 'M') {
|
|
/* 'line' or 'noline' or 'replace' or 'flip' or 'mark' */
|
|
move++;
|
|
if (sscanf(move, "%d,%d,%d%n", &l, &x, &y, &n) != 3)
|
|
goto badmove;
|
|
if (!INGRID(state, x, y)) goto badmove;
|
|
if (l < 0 || l > 15) goto badmove;
|
|
|
|
if (c == 'L')
|
|
ret->lines[y*w + x] |= (char)l;
|
|
else if (c == 'N')
|
|
ret->lines[y*w + x] &= ~((char)l);
|
|
else if (c == 'R') {
|
|
ret->lines[y*w + x] = (char)l;
|
|
ret->marks[y*w + x] &= ~((char)l); /* erase marks too */
|
|
} else if (c == 'F')
|
|
ret->lines[y*w + x] ^= (char)l;
|
|
else if (c == 'M')
|
|
ret->marks[y*w + x] ^= (char)l;
|
|
|
|
/*
|
|
* If we ended up trying to lay a line _over_ a mark,
|
|
* that's a failed move: interpret_move() should have
|
|
* ensured we never received a move string like that in
|
|
* the first place.
|
|
*/
|
|
if ((ret->lines[y*w + x] & (char)l) &&
|
|
(ret->marks[y*w + x] & (char)l))
|
|
goto badmove;
|
|
|
|
move += n;
|
|
} else if (strcmp(move, "H") == 0) {
|
|
pearl_solve(ret->shared->w, ret->shared->h,
|
|
ret->shared->clues, ret->lines, DIFFCOUNT, true);
|
|
for (n = 0; n < w*h; n++)
|
|
ret->marks[n] &= ~ret->lines[n]; /* erase marks too */
|
|
move++;
|
|
} else {
|
|
goto badmove;
|
|
}
|
|
if (*move == ';')
|
|
move++;
|
|
else if (*move)
|
|
goto badmove;
|
|
}
|
|
|
|
if (!check_completion(ret, true)) goto badmove;
|
|
|
|
return ret;
|
|
|
|
badmove:
|
|
free_game(ret);
|
|
return NULL;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Drawing routines.
|
|
*/
|
|
|
|
#define FLASH_TIME 0.5F
|
|
|
|
static void game_compute_size(const game_params *params, int tilesize,
|
|
int *x, int *y)
|
|
{
|
|
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
|
|
struct { int halfsz; } ads, *ds = &ads;
|
|
ads.halfsz = (tilesize-1)/2;
|
|
|
|
*x = (params->w) * TILE_SIZE + 2 * BORDER;
|
|
*y = (params->h) * TILE_SIZE + 2 * BORDER;
|
|
}
|
|
|
|
static void game_set_size(drawing *dr, game_drawstate *ds,
|
|
const game_params *params, int tilesize)
|
|
{
|
|
ds->halfsz = (tilesize-1)/2;
|
|
}
|
|
|
|
static float *game_colours(frontend *fe, int *ncolours)
|
|
{
|
|
float *ret = snewn(3 * NCOLOURS, float);
|
|
int i;
|
|
|
|
game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT);
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
ret[COL_BLACK * 3 + i] = 0.0F;
|
|
ret[COL_WHITE * 3 + i] = 1.0F;
|
|
ret[COL_GRID * 3 + i] = 0.4F;
|
|
}
|
|
|
|
ret[COL_ERROR * 3 + 0] = 1.0F;
|
|
ret[COL_ERROR * 3 + 1] = 0.0F;
|
|
ret[COL_ERROR * 3 + 2] = 0.0F;
|
|
|
|
ret[COL_DRAGON * 3 + 0] = 0.0F;
|
|
ret[COL_DRAGON * 3 + 1] = 0.0F;
|
|
ret[COL_DRAGON * 3 + 2] = 1.0F;
|
|
|
|
ret[COL_DRAGOFF * 3 + 0] = 0.8F;
|
|
ret[COL_DRAGOFF * 3 + 1] = 0.8F;
|
|
ret[COL_DRAGOFF * 3 + 2] = 1.0F;
|
|
|
|
ret[COL_FLASH * 3 + 0] = 1.0F;
|
|
ret[COL_FLASH * 3 + 1] = 1.0F;
|
|
ret[COL_FLASH * 3 + 2] = 1.0F;
|
|
|
|
*ncolours = NCOLOURS;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state)
|
|
{
|
|
struct game_drawstate *ds = snew(struct game_drawstate);
|
|
int i;
|
|
|
|
ds->halfsz = 0;
|
|
ds->started = false;
|
|
|
|
ds->w = state->shared->w;
|
|
ds->h = state->shared->h;
|
|
ds->sz = state->shared->sz;
|
|
ds->lflags = snewn(ds->sz, unsigned int);
|
|
for (i = 0; i < ds->sz; i++)
|
|
ds->lflags[i] = 0;
|
|
|
|
ds->draglines = snewn(ds->sz, char);
|
|
|
|
return ds;
|
|
}
|
|
|
|
static void game_free_drawstate(drawing *dr, game_drawstate *ds)
|
|
{
|
|
sfree(ds->draglines);
|
|
sfree(ds->lflags);
|
|
sfree(ds);
|
|
}
|
|
|
|
static void draw_lines_specific(drawing *dr, game_drawstate *ds,
|
|
int x, int y, unsigned int lflags,
|
|
unsigned int shift, int c)
|
|
{
|
|
int ox = COORD(x), oy = COORD(y);
|
|
int t2 = HALFSZ, t16 = HALFSZ/4;
|
|
int cx = ox + t2, cy = oy + t2;
|
|
int d;
|
|
|
|
/* Draw each of the four directions, where laid (or error, or drag, etc.) */
|
|
for (d = 1; d < 16; d *= 2) {
|
|
int xoff = t2 * DX(d), yoff = t2 * DY(d);
|
|
int xnudge = abs(t16 * DX(C(d))), ynudge = abs(t16 * DY(C(d)));
|
|
|
|
if ((lflags >> shift) & d) {
|
|
int lx = cx + ((xoff < 0) ? xoff : 0) - xnudge;
|
|
int ly = cy + ((yoff < 0) ? yoff : 0) - ynudge;
|
|
|
|
if (c == COL_DRAGOFF && !(lflags & d))
|
|
continue;
|
|
if (c == COL_DRAGON && (lflags & d))
|
|
continue;
|
|
|
|
draw_rect(dr, lx, ly,
|
|
abs(xoff)+2*xnudge+1,
|
|
abs(yoff)+2*ynudge+1, c);
|
|
/* end cap */
|
|
draw_rect(dr, cx - t16, cy - t16, 2*t16+1, 2*t16+1, c);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void draw_square(drawing *dr, game_drawstate *ds, const game_ui *ui,
|
|
int x, int y, unsigned int lflags, char clue)
|
|
{
|
|
int ox = COORD(x), oy = COORD(y);
|
|
int t2 = HALFSZ, t16 = HALFSZ/4;
|
|
int cx = ox + t2, cy = oy + t2;
|
|
int d;
|
|
|
|
assert(dr);
|
|
|
|
/* Clip to the grid square. */
|
|
clip(dr, ox, oy, TILE_SIZE, TILE_SIZE);
|
|
|
|
/* Clear the square. */
|
|
draw_rect(dr, ox, oy, TILE_SIZE, TILE_SIZE,
|
|
(lflags & DS_CURSOR) ?
|
|
COL_CURSOR_BACKGROUND : COL_BACKGROUND);
|
|
|
|
|
|
if (get_gui_style() == GUI_LOOPY) {
|
|
/* Draw small dot, underneath any lines. */
|
|
draw_circle(dr, cx, cy, t16, COL_GRID, COL_GRID);
|
|
} else {
|
|
/* Draw outline of grid square */
|
|
draw_line(dr, ox, oy, COORD(x+1), oy, COL_GRID);
|
|
draw_line(dr, ox, oy, ox, COORD(y+1), COL_GRID);
|
|
}
|
|
|
|
/* Draw grid: either thin gridlines, or no-line marks.
|
|
* We draw these first because the thick laid lines should be on top. */
|
|
for (d = 1; d < 16; d *= 2) {
|
|
int xoff = t2 * DX(d), yoff = t2 * DY(d);
|
|
|
|
if ((x == 0 && d == L) ||
|
|
(y == 0 && d == U) ||
|
|
(x == ds->w-1 && d == R) ||
|
|
(y == ds->h-1 && d == D))
|
|
continue; /* no gridlines out to the border. */
|
|
|
|
if ((lflags >> DS_MSHIFT) & d) {
|
|
/* either a no-line mark ... */
|
|
int mx = cx + xoff, my = cy + yoff, msz = t16;
|
|
|
|
draw_line(dr, mx-msz, my-msz, mx+msz, my+msz, COL_BLACK);
|
|
draw_line(dr, mx-msz, my+msz, mx+msz, my-msz, COL_BLACK);
|
|
} else {
|
|
if (get_gui_style() == GUI_LOOPY) {
|
|
/* draw grid lines connecting centre of cells */
|
|
draw_line(dr, cx, cy, cx+xoff, cy+yoff, COL_GRID);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Draw each of the four directions, where laid (or error, or drag, etc.)
|
|
* Order is important here, specifically for the eventual colours of the
|
|
* exposed end caps. */
|
|
draw_lines_specific(dr, ds, x, y, lflags, 0,
|
|
(lflags & DS_FLASH ? COL_FLASH : COL_BLACK));
|
|
draw_lines_specific(dr, ds, x, y, lflags, DS_ESHIFT, COL_ERROR);
|
|
draw_lines_specific(dr, ds, x, y, lflags, DS_DSHIFT, COL_DRAGOFF);
|
|
draw_lines_specific(dr, ds, x, y, lflags, DS_DSHIFT, COL_DRAGON);
|
|
|
|
/* Draw a clue, if present */
|
|
if (clue != NOCLUE) {
|
|
int c = (lflags & DS_FLASH) ? COL_FLASH :
|
|
(clue == STRAIGHT) ? COL_WHITE : COL_BLACK;
|
|
|
|
if (lflags & DS_ERROR_CLUE) /* draw a bigger 'error' clue circle. */
|
|
draw_circle(dr, cx, cy, TILE_SIZE*3/8, COL_ERROR, COL_ERROR);
|
|
|
|
draw_circle(dr, cx, cy, TILE_SIZE/4, c, COL_BLACK);
|
|
}
|
|
|
|
unclip(dr);
|
|
draw_update(dr, ox, oy, TILE_SIZE, TILE_SIZE);
|
|
}
|
|
|
|
static void game_redraw(drawing *dr, game_drawstate *ds,
|
|
const game_state *oldstate, const game_state *state,
|
|
int dir, const game_ui *ui,
|
|
float animtime, float flashtime)
|
|
{
|
|
int w = state->shared->w, h = state->shared->h, sz = state->shared->sz;
|
|
int x, y, flashing = 0;
|
|
bool force = false;
|
|
|
|
if (!ds->started) {
|
|
if (get_gui_style() == GUI_MASYU) {
|
|
/*
|
|
* Black rectangle which is the main grid.
|
|
*/
|
|
draw_rect(dr, BORDER - BORDER_WIDTH, BORDER - BORDER_WIDTH,
|
|
w*TILE_SIZE + 2*BORDER_WIDTH + 1,
|
|
h*TILE_SIZE + 2*BORDER_WIDTH + 1,
|
|
COL_GRID);
|
|
}
|
|
|
|
draw_update(dr, 0, 0, w*TILE_SIZE + 2*BORDER, h*TILE_SIZE + 2*BORDER);
|
|
|
|
ds->started = true;
|
|
force = true;
|
|
}
|
|
|
|
if (flashtime > 0 &&
|
|
(flashtime <= FLASH_TIME/3 ||
|
|
flashtime >= FLASH_TIME*2/3))
|
|
flashing = DS_FLASH;
|
|
|
|
memset(ds->draglines, 0, sz);
|
|
if (ui->ndragcoords > 0) {
|
|
int i;
|
|
bool clearing = true;
|
|
for (i = 0; i < ui->ndragcoords - 1; i++) {
|
|
int sx, sy, dx, dy, dir, oldstate, newstate;
|
|
interpret_ui_drag(state, ui, &clearing, i, &sx, &sy, &dx, &dy,
|
|
&dir, &oldstate, &newstate);
|
|
ds->draglines[sy*w+sx] ^= (oldstate ^ newstate);
|
|
ds->draglines[dy*w+dx] ^= (F(oldstate) ^ F(newstate));
|
|
}
|
|
}
|
|
|
|
for (x = 0; x < w; x++) {
|
|
for (y = 0; y < h; y++) {
|
|
unsigned int f = (unsigned int)state->lines[y*w+x];
|
|
unsigned int eline = (unsigned int)(state->errors[y*w+x] & (R|U|L|D));
|
|
|
|
f |= eline << DS_ESHIFT;
|
|
f |= ((unsigned int)ds->draglines[y*w+x]) << DS_DSHIFT;
|
|
f |= ((unsigned int)state->marks[y*w+x]) << DS_MSHIFT;
|
|
|
|
if (state->errors[y*w+x] & ERROR_CLUE)
|
|
f |= DS_ERROR_CLUE;
|
|
|
|
f |= flashing;
|
|
|
|
if (ui->cursor_active && x == ui->curx && y == ui->cury)
|
|
f |= DS_CURSOR;
|
|
|
|
if (f != ds->lflags[y*w+x] || force) {
|
|
ds->lflags[y*w+x] = f;
|
|
draw_square(dr, ds, ui, x, y, f, state->shared->clues[y*w+x]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static float game_anim_length(const game_state *oldstate,
|
|
const game_state *newstate, int dir, game_ui *ui)
|
|
{
|
|
return 0.0F;
|
|
}
|
|
|
|
static float game_flash_length(const game_state *oldstate,
|
|
const game_state *newstate, int dir, game_ui *ui)
|
|
{
|
|
if (!oldstate->completed && newstate->completed &&
|
|
!oldstate->used_solve && !newstate->used_solve)
|
|
return FLASH_TIME;
|
|
else
|
|
return 0.0F;
|
|
}
|
|
|
|
static void game_get_cursor_location(const game_ui *ui,
|
|
const game_drawstate *ds,
|
|
const game_state *state,
|
|
const game_params *params,
|
|
int *x, int *y, int *w, int *h)
|
|
{
|
|
if(ui->cursor_active) {
|
|
*x = COORD(ui->curx);
|
|
*y = COORD(ui->cury);
|
|
*w = *h = TILE_SIZE;
|
|
}
|
|
}
|
|
|
|
static int game_status(const game_state *state)
|
|
{
|
|
return state->completed ? +1 : 0;
|
|
}
|
|
|
|
static void game_print_size(const game_params *params, float *x, float *y)
|
|
{
|
|
int pw, ph;
|
|
|
|
/*
|
|
* I'll use 6mm squares by default.
|
|
*/
|
|
game_compute_size(params, 600, &pw, &ph);
|
|
*x = pw / 100.0F;
|
|
*y = ph / 100.0F;
|
|
}
|
|
|
|
static void game_print(drawing *dr, const game_state *state, int tilesize)
|
|
{
|
|
int w = state->shared->w, h = state->shared->h, x, y;
|
|
int black = print_mono_colour(dr, 0);
|
|
int white = print_mono_colour(dr, 1);
|
|
|
|
/* Ick: fake up `ds->tilesize' for macro expansion purposes */
|
|
game_drawstate *ds = game_new_drawstate(dr, state);
|
|
game_set_size(dr, ds, NULL, tilesize);
|
|
|
|
if (get_gui_style() == GUI_MASYU) {
|
|
/* Draw grid outlines (black). */
|
|
for (x = 0; x <= w; x++)
|
|
draw_line(dr, COORD(x), COORD(0), COORD(x), COORD(h), black);
|
|
for (y = 0; y <= h; y++)
|
|
draw_line(dr, COORD(0), COORD(y), COORD(w), COORD(y), black);
|
|
} else {
|
|
/* Draw small dots, and dotted lines connecting them. For
|
|
* added clarity, try to start and end the dotted lines a
|
|
* little way away from the dots. */
|
|
print_line_width(dr, TILE_SIZE / 40);
|
|
print_line_dotted(dr, true);
|
|
for (x = 0; x < w; x++) {
|
|
for (y = 0; y < h; y++) {
|
|
int cx = COORD(x) + HALFSZ, cy = COORD(y) + HALFSZ;
|
|
draw_circle(dr, cx, cy, tilesize/10, black, black);
|
|
if (x+1 < w)
|
|
draw_line(dr, cx+tilesize/5, cy,
|
|
cx+tilesize-tilesize/5, cy, black);
|
|
if (y+1 < h)
|
|
draw_line(dr, cx, cy+tilesize/5,
|
|
cx, cy+tilesize-tilesize/5, black);
|
|
}
|
|
}
|
|
print_line_dotted(dr, false);
|
|
}
|
|
|
|
for (x = 0; x < w; x++) {
|
|
for (y = 0; y < h; y++) {
|
|
int cx = COORD(x) + HALFSZ, cy = COORD(y) + HALFSZ;
|
|
int clue = state->shared->clues[y*w+x];
|
|
|
|
draw_lines_specific(dr, ds, x, y, state->lines[y*w+x], 0, black);
|
|
|
|
if (clue != NOCLUE) {
|
|
int c = (clue == CORNER) ? black : white;
|
|
draw_circle(dr, cx, cy, TILE_SIZE/4, c, black);
|
|
}
|
|
}
|
|
}
|
|
|
|
game_free_drawstate(dr, ds);
|
|
}
|
|
|
|
#ifdef COMBINED
|
|
#define thegame pearl
|
|
#endif
|
|
|
|
const struct game thegame = {
|
|
"Pearl", "games.pearl", "pearl",
|
|
default_params,
|
|
game_fetch_preset, NULL,
|
|
decode_params,
|
|
encode_params,
|
|
free_params,
|
|
dup_params,
|
|
true, game_configure, custom_params,
|
|
validate_params,
|
|
new_game_desc,
|
|
validate_desc,
|
|
new_game,
|
|
dup_game,
|
|
free_game,
|
|
true, solve_game,
|
|
true, game_can_format_as_text_now, game_text_format,
|
|
new_ui,
|
|
free_ui,
|
|
encode_ui,
|
|
decode_ui,
|
|
NULL, /* game_request_keys */
|
|
game_changed_state,
|
|
current_key_label,
|
|
interpret_move,
|
|
execute_move,
|
|
PREFERRED_TILE_SIZE, game_compute_size, game_set_size,
|
|
game_colours,
|
|
game_new_drawstate,
|
|
game_free_drawstate,
|
|
game_redraw,
|
|
game_anim_length,
|
|
game_flash_length,
|
|
game_get_cursor_location,
|
|
game_status,
|
|
true, false, game_print_size, game_print,
|
|
false, /* wants_statusbar */
|
|
false, NULL, /* timing_state */
|
|
0, /* flags */
|
|
};
|
|
|
|
#ifdef STANDALONE_SOLVER
|
|
|
|
#include <time.h>
|
|
#include <stdarg.h>
|
|
|
|
static const char *quis = NULL;
|
|
|
|
static void usage(FILE *out) {
|
|
fprintf(out, "usage: %s <params>\n", quis);
|
|
}
|
|
|
|
static void pnum(int n, int ntot, const char *desc)
|
|
{
|
|
printf("%2.1f%% (%d) %s", (double)n*100.0 / (double)ntot, n, desc);
|
|
}
|
|
|
|
static void start_soak(game_params *p, random_state *rs, int nsecs)
|
|
{
|
|
time_t tt_start, tt_now, tt_last;
|
|
int n = 0, nsolved = 0, nimpossible = 0, ret;
|
|
char *grid, *clues;
|
|
|
|
tt_start = tt_last = time(NULL);
|
|
|
|
/* Currently this generates puzzles of any difficulty (trying to solve it
|
|
* on the maximum difficulty level and not checking it's not too easy). */
|
|
printf("Soak-testing a %dx%d grid (any difficulty)", p->w, p->h);
|
|
if (nsecs > 0) printf(" for %d seconds", nsecs);
|
|
printf(".\n");
|
|
|
|
p->nosolve = true;
|
|
|
|
grid = snewn(p->w*p->h, char);
|
|
clues = snewn(p->w*p->h, char);
|
|
|
|
while (1) {
|
|
n += new_clues(p, rs, clues, grid); /* should be 1, with nosolve */
|
|
|
|
ret = pearl_solve(p->w, p->h, clues, grid, DIFF_TRICKY, false);
|
|
if (ret <= 0) nimpossible++;
|
|
if (ret == 1) nsolved++;
|
|
|
|
tt_now = time(NULL);
|
|
if (tt_now > tt_last) {
|
|
tt_last = tt_now;
|
|
|
|
printf("%d total, %3.1f/s, ",
|
|
n, (double)n / ((double)tt_now - tt_start));
|
|
pnum(nsolved, n, "solved"); printf(", ");
|
|
printf("%3.1f/s", (double)nsolved / ((double)tt_now - tt_start));
|
|
if (nimpossible > 0)
|
|
pnum(nimpossible, n, "impossible");
|
|
printf("\n");
|
|
}
|
|
if (nsecs > 0 && (tt_now - tt_start) > nsecs) {
|
|
printf("\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
sfree(grid);
|
|
sfree(clues);
|
|
}
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
game_params *p = NULL;
|
|
random_state *rs = NULL;
|
|
time_t seed = time(NULL);
|
|
char *id = NULL;
|
|
const char *err;
|
|
|
|
setvbuf(stdout, NULL, _IONBF, 0);
|
|
|
|
quis = argv[0];
|
|
|
|
while (--argc > 0) {
|
|
char *p = (char*)(*++argv);
|
|
if (!strcmp(p, "-e") || !strcmp(p, "--seed")) {
|
|
seed = atoi(*++argv);
|
|
argc--;
|
|
} else if (*p == '-') {
|
|
fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
|
|
usage(stderr);
|
|
exit(1);
|
|
} else {
|
|
id = p;
|
|
}
|
|
}
|
|
|
|
rs = random_new((void*)&seed, sizeof(time_t));
|
|
p = default_params();
|
|
|
|
if (id) {
|
|
if (strchr(id, ':')) {
|
|
fprintf(stderr, "soak takes params only.\n");
|
|
goto done;
|
|
}
|
|
|
|
decode_params(p, id);
|
|
err = validate_params(p, true);
|
|
if (err) {
|
|
fprintf(stderr, "%s: %s", argv[0], err);
|
|
goto done;
|
|
}
|
|
|
|
start_soak(p, rs, 0); /* run forever */
|
|
} else {
|
|
int i;
|
|
|
|
for (i = 5; i <= 12; i++) {
|
|
p->w = p->h = i;
|
|
start_soak(p, rs, 5);
|
|
}
|
|
}
|
|
|
|
done:
|
|
free_params(p);
|
|
random_free(rs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
/* vim: set shiftwidth=4 tabstop=8: */
|