Files
puzzles/twiddle.c
Simon Tatham 64e114cce1 draw_polygon() and draw_circle() have always had a portability
constraint: because some front ends interpret `draw filled shape' to
mean `including its boundary' while others interpret it to mean `not
including its boundary' (and X seems to vacillate between the two
opinions as it moves around the shape!), you MUST NOT draw a filled
shape only. You can fill in one colour and outline in another, you
can fill or outline in the same colour, or you can just outline, but
just filling is a no-no.

This leads to a _lot_ of double calls to these functions, so I've
changed the interface. draw_circle() and draw_polygon() now each
take two colour arguments, a fill colour (which can be -1 for none)
and an outline colour (which must be valid). This should simplify
code in the game back ends, while also reducing the possibility for
coding error.

[originally from svn r6047]
2005-07-03 09:35:29 +00:00

1242 lines
32 KiB
C

/*
* twiddle.c: Puzzle involving rearranging a grid of squares by
* rotating subsquares. Adapted and generalised from a
* door-unlocking puzzle in Metroid Prime 2 (the one in the Main
* Gyro Chamber).
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <ctype.h>
#include <math.h>
#include "puzzles.h"
#define PREFERRED_TILE_SIZE 48
#define TILE_SIZE (ds->tilesize)
#define BORDER (TILE_SIZE / 2)
#define HIGHLIGHT_WIDTH (TILE_SIZE / 20)
#define COORD(x) ( (x) * TILE_SIZE + BORDER )
#define FROMCOORD(x) ( ((x) - BORDER + TILE_SIZE) / TILE_SIZE - 1 )
#define ANIM_PER_RADIUS_UNIT 0.13F
#define FLASH_FRAME 0.13F
enum {
COL_BACKGROUND,
COL_TEXT,
COL_HIGHLIGHT,
COL_HIGHLIGHT_GENTLE,
COL_LOWLIGHT,
COL_LOWLIGHT_GENTLE,
NCOLOURS
};
struct game_params {
int w, h, n;
int rowsonly;
int orientable;
int movetarget;
};
struct game_state {
int w, h, n;
int orientable;
int *grid;
int completed;
int just_used_solve; /* used to suppress undo animation */
int used_solve; /* used to suppress completion flash */
int movecount, movetarget;
int lastx, lasty, lastr; /* coordinates of last rotation */
};
static game_params *default_params(void)
{
game_params *ret = snew(game_params);
ret->w = ret->h = 3;
ret->n = 2;
ret->rowsonly = ret->orientable = FALSE;
ret->movetarget = 0;
return ret;
}
static void free_params(game_params *params)
{
sfree(params);
}
static game_params *dup_params(game_params *params)
{
game_params *ret = snew(game_params);
*ret = *params; /* structure copy */
return ret;
}
static int game_fetch_preset(int i, char **name, game_params **params)
{
static struct {
char *title;
game_params params;
} presets[] = {
{ "3x3 rows only", { 3, 3, 2, TRUE, FALSE } },
{ "3x3 normal", { 3, 3, 2, FALSE, FALSE } },
{ "3x3 orientable", { 3, 3, 2, FALSE, TRUE } },
{ "4x4 normal", { 4, 4, 2, FALSE } },
{ "4x4 orientable", { 4, 4, 2, FALSE, TRUE } },
{ "4x4 radius 3", { 4, 4, 3, FALSE } },
{ "5x5 radius 3", { 5, 5, 3, FALSE } },
{ "6x6 radius 4", { 6, 6, 4, FALSE } },
};
if (i < 0 || i >= lenof(presets))
return FALSE;
*name = dupstr(presets[i].title);
*params = dup_params(&presets[i].params);
return TRUE;
}
static void decode_params(game_params *ret, char const *string)
{
ret->w = ret->h = atoi(string);
ret->n = 2;
ret->rowsonly = ret->orientable = FALSE;
ret->movetarget = 0;
while (*string && isdigit(*string)) string++;
if (*string == 'x') {
string++;
ret->h = atoi(string);
while (*string && isdigit(*string)) string++;
}
if (*string == 'n') {
string++;
ret->n = atoi(string);
while (*string && isdigit(*string)) string++;
}
while (*string) {
if (*string == 'r') {
ret->rowsonly = TRUE;
} else if (*string == 'o') {
ret->orientable = TRUE;
} else if (*string == 'm') {
string++;
ret->movetarget = atoi(string);
while (string[1] && isdigit(string[1])) string++;
}
string++;
}
}
static char *encode_params(game_params *params, int full)
{
char buf[256];
sprintf(buf, "%dx%dn%d%s%s", params->w, params->h, params->n,
params->rowsonly ? "r" : "",
params->orientable ? "o" : "");
/* Shuffle limit is part of the limited parameters, because we have to
* supply the target move count. */
if (params->movetarget)
sprintf(buf + strlen(buf), "m%d", params->movetarget);
return dupstr(buf);
}
static config_item *game_configure(game_params *params)
{
config_item *ret;
char buf[80];
ret = snewn(7, config_item);
ret[0].name = "Width";
ret[0].type = C_STRING;
sprintf(buf, "%d", params->w);
ret[0].sval = dupstr(buf);
ret[0].ival = 0;
ret[1].name = "Height";
ret[1].type = C_STRING;
sprintf(buf, "%d", params->h);
ret[1].sval = dupstr(buf);
ret[1].ival = 0;
ret[2].name = "Rotation radius";
ret[2].type = C_STRING;
sprintf(buf, "%d", params->n);
ret[2].sval = dupstr(buf);
ret[2].ival = 0;
ret[3].name = "One number per row";
ret[3].type = C_BOOLEAN;
ret[3].sval = NULL;
ret[3].ival = params->rowsonly;
ret[4].name = "Orientation matters";
ret[4].type = C_BOOLEAN;
ret[4].sval = NULL;
ret[4].ival = params->orientable;
ret[5].name = "Number of shuffling moves";
ret[5].type = C_STRING;
sprintf(buf, "%d", params->movetarget);
ret[5].sval = dupstr(buf);
ret[5].ival = 0;
ret[6].name = NULL;
ret[6].type = C_END;
ret[6].sval = NULL;
ret[6].ival = 0;
return ret;
}
static game_params *custom_params(config_item *cfg)
{
game_params *ret = snew(game_params);
ret->w = atoi(cfg[0].sval);
ret->h = atoi(cfg[1].sval);
ret->n = atoi(cfg[2].sval);
ret->rowsonly = cfg[3].ival;
ret->orientable = cfg[4].ival;
ret->movetarget = atoi(cfg[5].sval);
return ret;
}
static char *validate_params(game_params *params)
{
if (params->n < 2)
return "Rotation radius must be at least two";
if (params->w < params->n)
return "Width must be at least the rotation radius";
if (params->h < params->n)
return "Height must be at least the rotation radius";
return NULL;
}
/*
* This function actually performs a rotation on a grid. The `x'
* and `y' coordinates passed in are the coordinates of the _top
* left corner_ of the rotated region. (Using the centre would have
* involved half-integers and been annoyingly fiddly. Clicking in
* the centre is good for a user interface, but too inconvenient to
* use internally.)
*/
static void do_rotate(int *grid, int w, int h, int n, int orientable,
int x, int y, int dir)
{
int i, j;
assert(x >= 0 && x+n <= w);
assert(y >= 0 && y+n <= h);
dir &= 3;
if (dir == 0)
return; /* nothing to do */
grid += y*w+x; /* translate region to top corner */
/*
* If we were leaving the result of the rotation in a separate
* grid, the simple thing to do would be to loop over each
* square within the rotated region and assign it from its
* source square. However, to do it in place without taking
* O(n^2) memory, we need to be marginally more clever. What
* I'm going to do is loop over about one _quarter_ of the
* rotated region and permute each element within that quarter
* with its rotational coset.
*
* The size of the region I need to loop over is (n+1)/2 by
* n/2, which is an obvious exact quarter for even n and is a
* rectangle for odd n. (For odd n, this technique leaves out
* one element of the square, which is of course the central
* one that never moves anyway.)
*/
for (i = 0; i < (n+1)/2; i++) {
for (j = 0; j < n/2; j++) {
int k;
int g[4];
int p[4];
p[0] = j*w+i;
p[1] = i*w+(n-j-1);
p[2] = (n-j-1)*w+(n-i-1);
p[3] = (n-i-1)*w+j;
for (k = 0; k < 4; k++)
g[k] = grid[p[k]];
for (k = 0; k < 4; k++) {
int v = g[(k+dir) & 3];
if (orientable)
v ^= ((v+dir) ^ v) & 3; /* alter orientation */
grid[p[k]] = v;
}
}
}
/*
* Don't forget the orientation on the centre square, if n is
* odd.
*/
if (orientable && (n & 1)) {
int v = grid[n/2*(w+1)];
v ^= ((v+dir) ^ v) & 3; /* alter orientation */
grid[n/2*(w+1)] = v;
}
}
static int grid_complete(int *grid, int wh, int orientable)
{
int ok = TRUE;
int i;
for (i = 1; i < wh; i++)
if (grid[i] < grid[i-1])
ok = FALSE;
if (orientable) {
for (i = 0; i < wh; i++)
if (grid[i] & 3)
ok = FALSE;
}
return ok;
}
static char *new_game_desc(game_params *params, random_state *rs,
char **aux, int interactive)
{
int *grid;
int w = params->w, h = params->h, n = params->n, wh = w*h;
int i;
char *ret;
int retlen;
int total_moves;
/*
* Set up a solved grid.
*/
grid = snewn(wh, int);
for (i = 0; i < wh; i++)
grid[i] = ((params->rowsonly ? i/w : i) + 1) * 4;
/*
* Shuffle it. This game is complex enough that I don't feel up
* to analysing its full symmetry properties (particularly at
* n=4 and above!), so I'm going to do it the pedestrian way
* and simply shuffle the grid by making a long sequence of
* randomly chosen moves.
*/
total_moves = params->movetarget;
if (!total_moves)
/* Add a random move to avoid parity issues. */
total_moves = w*h*n*n*2 + random_upto(rs, 2);
do {
int *prevmoves;
int rw, rh; /* w/h of rotation centre space */
rw = w - n + 1;
rh = h - n + 1;
prevmoves = snewn(rw * rh, int);
for (i = 0; i < rw * rh; i++)
prevmoves[i] = 0;
for (i = 0; i < total_moves; i++) {
int x, y, r, oldtotal, newtotal, dx, dy;
do {
x = random_upto(rs, w - n + 1);
y = random_upto(rs, h - n + 1);
r = 2 * random_upto(rs, 2) - 1;
/*
* See if any previous rotations has happened at
* this point which nothing has overlapped since.
* If so, ensure we haven't either undone a
* previous move or repeated one so many times that
* it turns into fewer moves in the inverse
* direction (i.e. three identical rotations).
*/
oldtotal = prevmoves[y*rw+x];
newtotal = oldtotal + r;
/*
* Special case here for w==h==n, in which case
* there is actually no way to _avoid_ all moves
* repeating or undoing previous ones.
*/
} while ((w != n || h != n) &&
(abs(newtotal) < abs(oldtotal) || abs(newtotal) > 2));
do_rotate(grid, w, h, n, params->orientable, x, y, r);
/*
* Log the rotation we've just performed at this point,
* for inversion detection in the next move.
*
* Also zero a section of the prevmoves array, because
* any rotation area which _overlaps_ this one is now
* entirely safe to perform further moves in.
*
* Two rotation areas overlap if their top left
* coordinates differ by strictly less than n in both
* directions
*/
prevmoves[y*rw+x] += r;
for (dy = -n+1; dy <= n-1; dy++) {
if (y + dy < 0 || y + dy >= rh)
continue;
for (dx = -n+1; dx <= n-1; dx++) {
if (x + dx < 0 || x + dx >= rw)
continue;
if (dx == 0 && dy == 0)
continue;
prevmoves[(y+dy)*rw+(x+dx)] = 0;
}
}
}
sfree(prevmoves);
} while (grid_complete(grid, wh, params->orientable));
/*
* Now construct the game description, by describing the grid
* as a simple sequence of integers. They're comma-separated,
* unless the puzzle is orientable in which case they're
* separated by orientation letters `u', `d', `l' and `r'.
*/
ret = NULL;
retlen = 0;
for (i = 0; i < wh; i++) {
char buf[80];
int k;
k = sprintf(buf, "%d%c", grid[i] / 4,
(char)(params->orientable ? "uldr"[grid[i] & 3] : ','));
ret = sresize(ret, retlen + k + 1, char);
strcpy(ret + retlen, buf);
retlen += k;
}
if (!params->orientable)
ret[retlen-1] = '\0'; /* delete last comma */
sfree(grid);
return ret;
}
static char *validate_desc(game_params *params, char *desc)
{
char *p, *err;
int w = params->w, h = params->h, wh = w*h;
int i;
p = desc;
err = NULL;
for (i = 0; i < wh; i++) {
if (*p < '0' || *p > '9')
return "Not enough numbers in string";
while (*p >= '0' && *p <= '9')
p++;
if (!params->orientable && i < wh-1) {
if (*p != ',')
return "Expected comma after number";
} else if (params->orientable && i < wh) {
if (*p != 'l' && *p != 'r' && *p != 'u' && *p != 'd')
return "Expected orientation letter after number";
} else if (i == wh-1 && *p) {
return "Excess junk at end of string";
}
if (*p) p++; /* eat comma */
}
return NULL;
}
static game_state *new_game(midend_data *me, game_params *params, char *desc)
{
game_state *state = snew(game_state);
int w = params->w, h = params->h, n = params->n, wh = w*h;
int i;
char *p;
state->w = w;
state->h = h;
state->n = n;
state->orientable = params->orientable;
state->completed = 0;
state->used_solve = state->just_used_solve = FALSE;
state->movecount = 0;
state->movetarget = params->movetarget;
state->lastx = state->lasty = state->lastr = -1;
state->grid = snewn(wh, int);
p = desc;
for (i = 0; i < wh; i++) {
state->grid[i] = 4 * atoi(p);
while (*p >= '0' && *p <= '9')
p++;
if (*p) {
if (params->orientable) {
switch (*p) {
case 'l': state->grid[i] |= 1; break;
case 'd': state->grid[i] |= 2; break;
case 'r': state->grid[i] |= 3; break;
}
}
p++;
}
}
return state;
}
static game_state *dup_game(game_state *state)
{
game_state *ret = snew(game_state);
ret->w = state->w;
ret->h = state->h;
ret->n = state->n;
ret->orientable = state->orientable;
ret->completed = state->completed;
ret->movecount = state->movecount;
ret->movetarget = state->movetarget;
ret->lastx = state->lastx;
ret->lasty = state->lasty;
ret->lastr = state->lastr;
ret->used_solve = state->used_solve;
ret->just_used_solve = state->just_used_solve;
ret->grid = snewn(ret->w * ret->h, int);
memcpy(ret->grid, state->grid, ret->w * ret->h * sizeof(int));
return ret;
}
static void free_game(game_state *state)
{
sfree(state->grid);
sfree(state);
}
static int compare_int(const void *av, const void *bv)
{
const int *a = (const int *)av;
const int *b = (const int *)bv;
if (*a < *b)
return -1;
else if (*a > *b)
return +1;
else
return 0;
}
static char *solve_game(game_state *state, game_state *currstate,
char *aux, char **error)
{
return dupstr("S");
}
static char *game_text_format(game_state *state)
{
char *ret, *p, buf[80];
int i, x, y, col, o, maxlen;
/*
* First work out how many characters we need to display each
* number. We're pretty flexible on grid contents here, so we
* have to scan the entire grid.
*/
col = 0;
for (i = 0; i < state->w * state->h; i++) {
x = sprintf(buf, "%d", state->grid[i] / 4);
if (col < x) col = x;
}
o = (state->orientable ? 1 : 0);
/*
* Now we know the exact total size of the grid we're going to
* produce: it's got h rows, each containing w lots of col+o,
* w-1 spaces and a trailing newline.
*/
maxlen = state->h * state->w * (col+o+1);
ret = snewn(maxlen+1, char);
p = ret;
for (y = 0; y < state->h; y++) {
for (x = 0; x < state->w; x++) {
int v = state->grid[state->w*y+x];
sprintf(buf, "%*d", col, v/4);
memcpy(p, buf, col);
p += col;
if (o)
*p++ = "^<v>"[v & 3];
if (x+1 == state->w)
*p++ = '\n';
else
*p++ = ' ';
}
}
assert(p - ret == maxlen);
*p = '\0';
return ret;
}
static game_ui *new_ui(game_state *state)
{
return NULL;
}
static void free_ui(game_ui *ui)
{
}
static char *encode_ui(game_ui *ui)
{
return NULL;
}
static void decode_ui(game_ui *ui, char *encoding)
{
}
static void game_changed_state(game_ui *ui, game_state *oldstate,
game_state *newstate)
{
}
struct game_drawstate {
int started;
int w, h, bgcolour;
int *grid;
int tilesize;
};
static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
int x, int y, int button)
{
int w = state->w, h = state->h, n = state->n /* , wh = w*h */;
char buf[80];
int dir;
button = button & (~MOD_MASK | MOD_NUM_KEYPAD);
if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
/*
* Determine the coordinates of the click. We offset by n-1
* half-blocks so that the user must click at the centre of
* a rotation region rather than at the corner.
*/
x -= (n-1) * TILE_SIZE / 2;
y -= (n-1) * TILE_SIZE / 2;
x = FROMCOORD(x);
y = FROMCOORD(y);
dir = (button == LEFT_BUTTON ? 1 : -1);
if (x < 0 || x > w-n || y < 0 || y > h-n)
return NULL;
} else if (button == 'a' || button == 'A' || button==MOD_NUM_KEYPAD+'7') {
x = y = 0;
dir = (button == 'A' ? -1 : +1);
} else if (button == 'b' || button == 'B' || button==MOD_NUM_KEYPAD+'9') {
x = w-n;
y = 0;
dir = (button == 'B' ? -1 : +1);
} else if (button == 'c' || button == 'C' || button==MOD_NUM_KEYPAD+'1') {
x = 0;
y = h-n;
dir = (button == 'C' ? -1 : +1);
} else if (button == 'd' || button == 'D' || button==MOD_NUM_KEYPAD+'3') {
x = w-n;
y = h-n;
dir = (button == 'D' ? -1 : +1);
} else if (button==MOD_NUM_KEYPAD+'8' && (w-n) % 2 == 0) {
x = (w-n) / 2;
y = 0;
dir = +1;
} else if (button==MOD_NUM_KEYPAD+'2' && (w-n) % 2 == 0) {
x = (w-n) / 2;
y = h-n;
dir = +1;
} else if (button==MOD_NUM_KEYPAD+'4' && (h-n) % 2 == 0) {
x = 0;
y = (h-n) / 2;
dir = +1;
} else if (button==MOD_NUM_KEYPAD+'6' && (h-n) % 2 == 0) {
x = w-n;
y = (h-n) / 2;
dir = +1;
} else if (button==MOD_NUM_KEYPAD+'5' && (w-n) % 2 == 0 && (h-n) % 2 == 0){
x = (w-n) / 2;
y = (h-n) / 2;
dir = +1;
} else {
return NULL; /* no move to be made */
}
/*
* If we reach here, we have a valid move.
*/
sprintf(buf, "M%d,%d,%d", x, y, dir);
return dupstr(buf);
}
static game_state *execute_move(game_state *from, char *move)
{
game_state *ret;
int w = from->w, h = from->h, n = from->n, wh = w*h;
int x, y, dir;
if (!strcmp(move, "S")) {
int i;
ret = dup_game(from);
/*
* Simply replace the grid with a solved one. For this game,
* this isn't a useful operation for actually telling the user
* what they should have done, but it is useful for
* conveniently being able to get hold of a clean state from
* which to practise manoeuvres.
*/
qsort(ret->grid, ret->w*ret->h, sizeof(int), compare_int);
for (i = 0; i < ret->w*ret->h; i++)
ret->grid[i] &= ~3;
ret->used_solve = ret->just_used_solve = TRUE;
ret->completed = ret->movecount = 1;
return ret;
}
if (move[0] != 'M' ||
sscanf(move+1, "%d,%d,%d", &x, &y, &dir) != 3 ||
x < 0 || y < 0 || x > from->w - n || y > from->h - n)
return NULL; /* can't parse this move string */
ret = dup_game(from);
ret->just_used_solve = FALSE; /* zero this in a hurry */
ret->movecount++;
do_rotate(ret->grid, w, h, n, ret->orientable, x, y, dir);
ret->lastx = x;
ret->lasty = y;
ret->lastr = dir;
/*
* See if the game has been completed. To do this we simply
* test that the grid contents are in increasing order.
*/
if (!ret->completed && grid_complete(ret->grid, wh, ret->orientable))
ret->completed = ret->movecount;
return ret;
}
/* ----------------------------------------------------------------------
* Drawing routines.
*/
static void game_size(game_params *params, game_drawstate *ds,
int *x, int *y, int expand)
{
double tsx, tsy, ts;
/*
* Each window dimension equals the tile size times one more
* than the grid dimension (the border is half the width of the
* tiles).
*/
tsx = (double)*x / ((double)params->w + 1.0);
tsy = (double)*y / ((double)params->h + 1.0);
ts = min(tsx, tsy);
if (expand)
ds->tilesize = (int)(ts + 0.5);
else
ds->tilesize = min((int)ts, PREFERRED_TILE_SIZE);
*x = TILE_SIZE * params->w + 2 * BORDER;
*y = TILE_SIZE * params->h + 2 * BORDER;
}
static float *game_colours(frontend *fe, game_state *state, int *ncolours)
{
float *ret = snewn(3 * NCOLOURS, float);
int i;
float max;
frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
/*
* Drop the background colour so that the highlight is
* noticeably brighter than it while still being under 1.
*/
max = ret[COL_BACKGROUND*3];
for (i = 1; i < 3; i++)
if (ret[COL_BACKGROUND*3+i] > max)
max = ret[COL_BACKGROUND*3+i];
if (max * 1.2F > 1.0F) {
for (i = 0; i < 3; i++)
ret[COL_BACKGROUND*3+i] /= (max * 1.2F);
}
for (i = 0; i < 3; i++) {
ret[COL_HIGHLIGHT * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 1.2F;
ret[COL_HIGHLIGHT_GENTLE * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 1.1F;
ret[COL_LOWLIGHT * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 0.8F;
ret[COL_LOWLIGHT_GENTLE * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 0.9F;
ret[COL_TEXT * 3 + i] = 0.0;
}
*ncolours = NCOLOURS;
return ret;
}
static game_drawstate *game_new_drawstate(game_state *state)
{
struct game_drawstate *ds = snew(struct game_drawstate);
int i;
ds->started = FALSE;
ds->w = state->w;
ds->h = state->h;
ds->bgcolour = COL_BACKGROUND;
ds->grid = snewn(ds->w*ds->h, int);
ds->tilesize = 0; /* haven't decided yet */
for (i = 0; i < ds->w*ds->h; i++)
ds->grid[i] = -1;
return ds;
}
static void game_free_drawstate(game_drawstate *ds)
{
sfree(ds->grid);
sfree(ds);
}
struct rotation {
int cx, cy, cw, ch; /* clip region */
int ox, oy; /* rotation origin */
float c, s; /* cos and sin of rotation angle */
int lc, rc, tc, bc; /* colours of tile edges */
};
static void rotate(int *xy, struct rotation *rot)
{
if (rot) {
float xf = xy[0] - rot->ox, yf = xy[1] - rot->oy;
float xf2, yf2;
xf2 = rot->c * xf + rot->s * yf;
yf2 = - rot->s * xf + rot->c * yf;
xy[0] = xf2 + rot->ox + 0.5; /* round to nearest */
xy[1] = yf2 + rot->oy + 0.5; /* round to nearest */
}
}
static void draw_tile(frontend *fe, game_drawstate *ds, game_state *state,
int x, int y, int tile, int flash_colour,
struct rotation *rot)
{
int coords[8];
char str[40];
/*
* If we've been passed a rotation region but we're drawing a
* tile which is outside it, we must draw it normally. This can
* occur if we're cleaning up after a completion flash while a
* new move is also being made.
*/
if (rot && (x < rot->cx || y < rot->cy ||
x >= rot->cx+rot->cw || y >= rot->cy+rot->ch))
rot = NULL;
if (rot)
clip(fe, rot->cx, rot->cy, rot->cw, rot->ch);
/*
* We must draw each side of the tile's highlight separately,
* because in some cases (during rotation) they will all need
* to be different colours.
*/
/* The centre point is common to all sides. */
coords[4] = x + TILE_SIZE / 2;
coords[5] = y + TILE_SIZE / 2;
rotate(coords+4, rot);
/* Right side. */
coords[0] = x + TILE_SIZE - 1;
coords[1] = y + TILE_SIZE - 1;
rotate(coords+0, rot);
coords[2] = x + TILE_SIZE - 1;
coords[3] = y;
rotate(coords+2, rot);
draw_polygon(fe, coords, 3, rot ? rot->rc : COL_LOWLIGHT,
rot ? rot->rc : COL_LOWLIGHT);
/* Bottom side. */
coords[2] = x;
coords[3] = y + TILE_SIZE - 1;
rotate(coords+2, rot);
draw_polygon(fe, coords, 3, rot ? rot->bc : COL_LOWLIGHT,
rot ? rot->bc : COL_LOWLIGHT);
/* Left side. */
coords[0] = x;
coords[1] = y;
rotate(coords+0, rot);
draw_polygon(fe, coords, 3, rot ? rot->lc : COL_HIGHLIGHT,
rot ? rot->lc : COL_HIGHLIGHT);
/* Top side. */
coords[2] = x + TILE_SIZE - 1;
coords[3] = y;
rotate(coords+2, rot);
draw_polygon(fe, coords, 3, rot ? rot->tc : COL_HIGHLIGHT,
rot ? rot->tc : COL_HIGHLIGHT);
/*
* Now the main blank area in the centre of the tile.
*/
if (rot) {
coords[0] = x + HIGHLIGHT_WIDTH;
coords[1] = y + HIGHLIGHT_WIDTH;
rotate(coords+0, rot);
coords[2] = x + HIGHLIGHT_WIDTH;
coords[3] = y + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
rotate(coords+2, rot);
coords[4] = x + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
coords[5] = y + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
rotate(coords+4, rot);
coords[6] = x + TILE_SIZE - 1 - HIGHLIGHT_WIDTH;
coords[7] = y + HIGHLIGHT_WIDTH;
rotate(coords+6, rot);
draw_polygon(fe, coords, 4, flash_colour, flash_colour);
} else {
draw_rect(fe, x + HIGHLIGHT_WIDTH, y + HIGHLIGHT_WIDTH,
TILE_SIZE - 2*HIGHLIGHT_WIDTH, TILE_SIZE - 2*HIGHLIGHT_WIDTH,
flash_colour);
}
/*
* Next, the triangles for orientation.
*/
if (state->orientable) {
int xdx, xdy, ydx, ydy;
int cx, cy, displ, displ2;
switch (tile & 3) {
case 0:
xdx = 1, xdy = 0;
ydx = 0, ydy = 1;
break;
case 1:
xdx = 0, xdy = -1;
ydx = 1, ydy = 0;
break;
case 2:
xdx = -1, xdy = 0;
ydx = 0, ydy = -1;
break;
default /* case 3 */:
xdx = 0, xdy = 1;
ydx = -1, ydy = 0;
break;
}
cx = x + TILE_SIZE / 2;
cy = y + TILE_SIZE / 2;
displ = TILE_SIZE / 2 - HIGHLIGHT_WIDTH - 2;
displ2 = TILE_SIZE / 3 - HIGHLIGHT_WIDTH;
coords[0] = cx - displ * xdx + displ2 * ydx;
coords[1] = cy - displ * xdy + displ2 * ydy;
rotate(coords+0, rot);
coords[2] = cx + displ * xdx + displ2 * ydx;
coords[3] = cy + displ * xdy + displ2 * ydy;
rotate(coords+2, rot);
coords[4] = cx - displ * ydx;
coords[5] = cy - displ * ydy;
rotate(coords+4, rot);
draw_polygon(fe, coords, 3, COL_LOWLIGHT_GENTLE, COL_LOWLIGHT_GENTLE);
}
coords[0] = x + TILE_SIZE/2;
coords[1] = y + TILE_SIZE/2;
rotate(coords+0, rot);
sprintf(str, "%d", tile / 4);
draw_text(fe, coords[0], coords[1],
FONT_VARIABLE, TILE_SIZE/3, ALIGN_VCENTRE | ALIGN_HCENTRE,
COL_TEXT, str);
if (rot)
unclip(fe);
draw_update(fe, x, y, TILE_SIZE, TILE_SIZE);
}
static int highlight_colour(float angle)
{
int colours[32] = {
COL_LOWLIGHT,
COL_LOWLIGHT_GENTLE,
COL_LOWLIGHT_GENTLE,
COL_LOWLIGHT_GENTLE,
COL_HIGHLIGHT_GENTLE,
COL_HIGHLIGHT_GENTLE,
COL_HIGHLIGHT_GENTLE,
COL_HIGHLIGHT,
COL_HIGHLIGHT,
COL_HIGHLIGHT,
COL_HIGHLIGHT,
COL_HIGHLIGHT,
COL_HIGHLIGHT,
COL_HIGHLIGHT,
COL_HIGHLIGHT,
COL_HIGHLIGHT,
COL_HIGHLIGHT,
COL_HIGHLIGHT_GENTLE,
COL_HIGHLIGHT_GENTLE,
COL_HIGHLIGHT_GENTLE,
COL_LOWLIGHT_GENTLE,
COL_LOWLIGHT_GENTLE,
COL_LOWLIGHT_GENTLE,
COL_LOWLIGHT,
COL_LOWLIGHT,
COL_LOWLIGHT,
COL_LOWLIGHT,
COL_LOWLIGHT,
COL_LOWLIGHT,
COL_LOWLIGHT,
COL_LOWLIGHT,
COL_LOWLIGHT,
};
return colours[(int)((angle + 2*PI) / (PI/16)) & 31];
}
static float game_anim_length(game_state *oldstate, game_state *newstate,
int dir, game_ui *ui)
{
if ((dir > 0 && newstate->just_used_solve) ||
(dir < 0 && oldstate->just_used_solve))
return 0.0F;
else
return ANIM_PER_RADIUS_UNIT * sqrt(newstate->n-1);
}
static float game_flash_length(game_state *oldstate, game_state *newstate,
int dir, game_ui *ui)
{
if (!oldstate->completed && newstate->completed &&
!oldstate->used_solve && !newstate->used_solve)
return 2 * FLASH_FRAME;
else
return 0.0F;
}
static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
game_state *state, int dir, game_ui *ui,
float animtime, float flashtime)
{
int i, bgcolour;
struct rotation srot, *rot;
int lastx = -1, lasty = -1, lastr = -1;
if (flashtime > 0) {
int frame = (int)(flashtime / FLASH_FRAME);
bgcolour = (frame % 2 ? COL_LOWLIGHT : COL_HIGHLIGHT);
} else
bgcolour = COL_BACKGROUND;
if (!ds->started) {
int coords[10];
draw_rect(fe, 0, 0,
TILE_SIZE * state->w + 2 * BORDER,
TILE_SIZE * state->h + 2 * BORDER, COL_BACKGROUND);
draw_update(fe, 0, 0,
TILE_SIZE * state->w + 2 * BORDER,
TILE_SIZE * state->h + 2 * BORDER);
/*
* Recessed area containing the whole puzzle.
*/
coords[0] = COORD(state->w) + HIGHLIGHT_WIDTH - 1;
coords[1] = COORD(state->h) + HIGHLIGHT_WIDTH - 1;
coords[2] = COORD(state->w) + HIGHLIGHT_WIDTH - 1;
coords[3] = COORD(0) - HIGHLIGHT_WIDTH;
coords[4] = coords[2] - TILE_SIZE;
coords[5] = coords[3] + TILE_SIZE;
coords[8] = COORD(0) - HIGHLIGHT_WIDTH;
coords[9] = COORD(state->h) + HIGHLIGHT_WIDTH - 1;
coords[6] = coords[8] + TILE_SIZE;
coords[7] = coords[9] - TILE_SIZE;
draw_polygon(fe, coords, 5, COL_HIGHLIGHT, COL_HIGHLIGHT);
coords[1] = COORD(0) - HIGHLIGHT_WIDTH;
coords[0] = COORD(0) - HIGHLIGHT_WIDTH;
draw_polygon(fe, coords, 5, COL_LOWLIGHT, COL_LOWLIGHT);
ds->started = TRUE;
}
/*
* If we're drawing any rotated tiles, sort out the rotation
* parameters, and also zap the rotation region to the
* background colour before doing anything else.
*/
if (oldstate) {
float angle;
float anim_max = game_anim_length(oldstate, state, dir, ui);
if (dir > 0) {
lastx = state->lastx;
lasty = state->lasty;
lastr = state->lastr;
} else {
lastx = oldstate->lastx;
lasty = oldstate->lasty;
lastr = -oldstate->lastr;
}
rot = &srot;
rot->cx = COORD(lastx);
rot->cy = COORD(lasty);
rot->cw = rot->ch = TILE_SIZE * state->n;
rot->ox = rot->cx + rot->cw/2;
rot->oy = rot->cy + rot->ch/2;
angle = (-PI/2 * lastr) * (1.0 - animtime / anim_max);
rot->c = cos(angle);
rot->s = sin(angle);
/*
* Sort out the colours of the various sides of the tile.
*/
rot->lc = highlight_colour(PI + angle);
rot->rc = highlight_colour(angle);
rot->tc = highlight_colour(PI/2 + angle);
rot->bc = highlight_colour(-PI/2 + angle);
draw_rect(fe, rot->cx, rot->cy, rot->cw, rot->ch, bgcolour);
} else
rot = NULL;
/*
* Now draw each tile.
*/
for (i = 0; i < state->w * state->h; i++) {
int t;
int tx = i % state->w, ty = i / state->w;
/*
* Figure out what should be displayed at this location.
* Usually it will be state->grid[i], unless we're in the
* middle of animating an actual rotation and this cell is
* within the rotation region, in which case we set -1
* (always display).
*/
if (oldstate && lastx >= 0 && lasty >= 0 &&
tx >= lastx && tx < lastx + state->n &&
ty >= lasty && ty < lasty + state->n)
t = -1;
else
t = state->grid[i];
if (ds->bgcolour != bgcolour || /* always redraw when flashing */
ds->grid[i] != t || ds->grid[i] == -1 || t == -1) {
int x = COORD(tx), y = COORD(ty);
draw_tile(fe, ds, state, x, y, state->grid[i], bgcolour, rot);
ds->grid[i] = t;
}
}
ds->bgcolour = bgcolour;
/*
* Update the status bar.
*/
{
char statusbuf[256];
/*
* Don't show the new status until we're also showing the
* new _state_ - after the game animation is complete.
*/
if (oldstate)
state = oldstate;
if (state->used_solve)
sprintf(statusbuf, "Moves since auto-solve: %d",
state->movecount - state->completed);
else {
sprintf(statusbuf, "%sMoves: %d",
(state->completed ? "COMPLETED! " : ""),
(state->completed ? state->completed : state->movecount));
if (state->movetarget)
sprintf(statusbuf+strlen(statusbuf), " (target %d)",
state->movetarget);
}
status_bar(fe, statusbuf);
}
}
static int game_wants_statusbar(void)
{
return TRUE;
}
static int game_timing_state(game_state *state)
{
return TRUE;
}
#ifdef COMBINED
#define thegame twiddle
#endif
const struct game thegame = {
"Twiddle", "games.twiddle",
default_params,
game_fetch_preset,
decode_params,
encode_params,
free_params,
dup_params,
TRUE, game_configure, custom_params,
validate_params,
new_game_desc,
validate_desc,
new_game,
dup_game,
free_game,
TRUE, solve_game,
TRUE, game_text_format,
new_ui,
free_ui,
encode_ui,
decode_ui,
game_changed_state,
interpret_move,
execute_move,
game_size,
game_colours,
game_new_drawstate,
game_free_drawstate,
game_redraw,
game_anim_length,
game_flash_length,
game_wants_statusbar,
FALSE, game_timing_state,
0, /* mouse_priorities */
};