Files
puzzles/penrose.h
Simon Tatham 4a172274f2 Apply the rotation in Penrose grid descriptions by rotating in the
4-vector representation, rather than mucking about with sines and
cosines after grid generation. _Should_ make no difference in the
generated grids (there's a theoretical risk of an unlucky rounding
error just about managing to push some point in or out of bounds, but
I think it's vanishingly small), but simplifies the coordinate-
flattening procedure, and in particular increases its chance of
getting vertical lines actually vertical.

(Prior to this change, the game ID
10x10t12:G2554,-31,108_a3b12h0a212a3d102b2a23a2e3b01b0a2c2a0c0 was
generating a not-quite-vertical edge at top left, in the Java port but
not on Linux; I suspect differences in sin and cos as the cause of the
discrepancy. With the rotation done like this, the points'
x-coordinates are now computed without reference to their
y-coordinates.)

[originally from svn r9168]
2011-05-06 17:09:03 +00:00

60 lines
1.7 KiB
C

/* penrose.h
*
* Penrose tiling functions.
*
* Provides an interface with which to generate Penrose tilings
* by recursive subdivision of an initial tile of choice (one of the
* four sets of two pairs kite/dart, or thin/thick rhombus).
*
* You supply a callback function and a context pointer, which is
* called with each tile in turn: you choose how many times to recurse.
*/
#ifndef _PENROSE_H
#define _PENROSE_H
#ifndef PHI
#define PHI 1.6180339887
#endif
typedef struct vector vector;
double v_x(vector *vs, int i);
double v_y(vector *vs, int i);
typedef struct penrose_state penrose_state;
/* Return non-zero to clip the tree here (i.e. not recurse
* below this tile).
*
* Parameters are state, vector array, npoints, depth.
* ctx is inside state.
*/
typedef int (*tile_callback)(penrose_state *, vector *, int, int);
struct penrose_state {
int start_size; /* initial side length */
int max_depth; /* Recursion depth */
tile_callback new_tile;
void *ctx; /* for callback */
};
enum { PENROSE_P2, PENROSE_P3 };
extern int penrose(penrose_state *state, int which, int angle);
/* Returns the side-length of a penrose tile at recursion level
* gen, given a starting side length. */
extern double penrose_side_length(double start_size, int depth);
/* Returns the count of each type of tile at a given recursion depth. */
extern void penrose_count_tiles(int gen, int *nlarge, int *nsmall);
/* Calculate start size and recursion depth required to produce a
* width-by-height sized patch of penrose tiles with the given tilesize */
extern void penrose_calculate_size(int which, int tilesize, int w, int h,
double *required_radius, int *start_size, int *depth);
#endif